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Beyond the effective length: How to analyze magnetic interference patterns of thin-film planar
Josephson junctions with finite lateral dimensions
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The magnetic-field-dependent critical current Ic(B) of a Josephson junction is determined by the screening
currents in its electrodes. In macroscopic junctions, a local vector potential drives the currents; however, in
thin-film planar junctions, with electrodes of finite size and various shapes, they are governed by nonlocal
electrodynamics. This complicates the extraction of parameters such as the geometry of the effective junction
area, the effective junction length, and the critical current density distribution from the Ic(B) interference patterns.
Here, we provide a method to tackle this problem by simulating the phase differences that drive the shielding
currents and use those to find Ic(B). To this end, we extend the technique proposed by Clem [Phys. Rev. B
81, 144515 (2010)] to find Ic(B) for Josephson junctions separating a superconducting strip of length L and
width W with rectangular, ellipsoid, and rhomboid geometries. We find the periodicity of the interference
pattern (�B) to have geometry-independent limits for L � W and L � W . By fabricating elliptically shaped
superconductor–normal-metal–superconductor junctions with various aspect ratios, we experimentally verify
the L/W dependence of �B. Finally, we incorporate these results to correctly extract the distribution of critical
currents in the junction by the Fourier analysis of Ic(B), which makes these results essential for the correct
analysis of topological channels in thin-film planar Josephson junctions.
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I. INTRODUCTION

Planar Josephson junctions are ubiquitous in modern
solid-state physics research, with examples ranging from
topological junctions [1–3], high-critical-temperature (grain
boundary) junctions [4,5], gated junctions that control super-
current flow [6,7], graphene-based junctions [8,9], magnetic
field sensors [10–12], and junctions with a ferromagnetic
weak link [13–15]. A major tool in analyzing these junc-
tions experimentally is the magnetic interference pattern
observed in the critical current [Ic(B)], the shape and pe-
riodicity of which can reveal, using the Fourier transform,
information about the underlying distribution of critical cur-
rent in the weak link [16]. Often this Fourier analysis is
carried out in terms of an effective junction length, given,
for macroscopic junctions, by 2λ + d , where λ is the Lon-
don penetration depth and d is the thickness of the weak
link. This effective length originates from the Meissner ef-
fect. However, when the junction is formed between two
superconducting thin films, with a thickness below λ, the
shielding currents running along the junction, responsible for
the shape and periodicity of the magnetic interference of the
critical current Ic(B), are no longer determined by the Meiss-
ner effect in its macroscopic form (i.e., by the local vector
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potential). Rather, they are determined by nonlocal electrody-
namic effects [17–20].

In numerous theoretical and experimental studies, it was
found that in thin-film planar junctions, Ic(B) becomes com-
pletely independent of λ and is solely determined by the
geometry of the sample [20–24]. Moreover, Clem provided
a method to calculate Ic(B) for planar junctions that are also
restricted in their lateral size (i.e., a Josephson junction sep-
arating a rectangular superconducting strip of width W and
length L in two halves) [23]. As experimental studies often
deal with finite-size geometries, his theory is highly topical at
the moment.

This paper bridges the gap between predicting the Ic(B)
of thin-film planar junctions featuring finite lateral geome-
try and the correct analysis of the experimental interference
patterns used to extract the current density distribution.
First we review the technique proposed by Clem and ex-
tend on his work by covering two more geometries: the
ellipse and the rhomboid. We calculate Ic(B) for these ge-
ometries, extract the periodicity of the interference pattern
(�B) for different ratios of L/W , and find �B to have
two geometry-independent limits for L � W and L � W .
By fabricating elliptically shaped superconductor–normal-
metal–superconductor (S-N-S) junctions with different ratios
L/W , we experimentally verify the geometry dependence of
�B. Finally, we adapt the well-known Fourier relation be-
tween Ic(B) and the critical current density distribution for
use on laterally finite thin-film planar junctions. We find
that altering the Fourier transform is crucial for predicting
the location of possible current channels in thin-film planar
junctions.
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FIG. 1. Schematics of the three geometries used for calculating
Ic(B), being (a) the rectangle, (b) the ellipse, and (c) the rhombus.
The schematics resemble superconducting thin films of width W and
length L, which are separated by a normal-metal junction of width
d (colored red). The numbers indicate different sections of the right
electrode edge. The boundary conditions of the calculations for these
are summarized in Table I. In (d) we show a zoom of the junction area
under the magnetic induction B = Bẑ. The dark blue path is used
as loop integral to determine Ic(B). L and R stand for left and right
electrode respectively.

II. REVIEW OF THE CLEM MODEL

We consider a normal-metal Josephson junction (dimen-
sions WJJ and d) that divides a symmetric superconducting
thin film, having dimensions L and W , into two halves. Fig-
ure 1 shows a schematic of three such films, having different
geometries. The junction, colored red in Fig. 1, runs along
the y direction from −W/2 to W/2 (i.e., WJJ = W ). Since we
examine the thin-film limit, the screening current density is
assumed to be uniform along the thickness of the film, which
effectively reduces the problem to a two-dimensional (2D)
one. We specifically consider the junction to be in the short-
junction limit, as the model by Clem treats an infinitesimally
thin insulating tunnel junction. Furthermore, it is assumed that
the electrode dimensions are smaller than the Pearl length,
given by

� = 2λ2

tfilm
, (1)

where tfilm is the thickness of the superconducting films. This
implies that the self-fields originating from the screening
currents are far smaller than the applied external field. Addi-
tionally, we assume that the junction is in the narrow limit,
meaning that the junction is less wide than the Josephson
penetration length, which for planar junctions in the thin-film
limit is the given by [20,21,23]

l = �0tjuncW

4πμ0λ2Ic(0)
. (2)

Here, tjunc is the thickness of the junction (not necessarily
equal to the thickness of the film), Ic(0) is its critical current
at zero magnetic field, μ0 is the vacuum permeability, and �0

is the magnetic flux quantum.
In order to calculate Ic(B), we assume a sinusoidal

current-phase relation Jx = Jc sin ϕ(y), where ϕ(y) is the
gauge-invariant phase difference over the junction, which
depends on the location along the junction. It can be eval-
uated within the framework of Ginzburg-Landau theory by
considering the second Ginzburg-Landau equation, which is
given as

J = − �0

2πμ0λ2

(
2π

�0
A + ∇γ

)
= �0

2πμ0λ2
θ. (3)

Here, A is the vector potential corresponding to the applied
magnetic field (B = ∇ × A), and γ is the gauge-covariant
phase of the wave function describing the superconducting
order parameter (given by 
 = 
0eiγ [25]). Finally, θ is the
gauge-invariant phase gradient (required by the fact that J is a
gauge-invariant property). ϕ(y) is then given by integrating θ

across the junction:

ϕ(y) = γ

(
−d

2
, y

)
− γ

(
d

2
, y

)
− 2π

�0

∫ d/2

−d/2
Ax(x, y) dx.

(4)

In Fig. 1(d), we sketch a zoom of a junction, where
we specify an integration contour under a magnetic induc-
tion of B = Bẑ. By integrating ∇γ along this contour and
realizing that

∫
C ∇γ dl = 2πn, where n is an integer and

sin (ϕ + 2πn) = sin (ϕ), we find

ϕ(y) = ϕ(0) + 2π

�0

[
ydB + 2μ0λ

2
∫ y

0
Jy

(
d

2
, y′

)
dy′

]
. (5)

Here, we have used the Stokes theorem to evaluate the flux
entering the contour and used the fact that the electrodes are
mirror symmetric [Jy( d

2 , y) = −Jy(− d
2 , y)]. For macroscopic

junctions, Jy,R( d
2 , y′) = Bμ0

λL
resulting from the the Meiss-

ner effect, leading to ϕ(y) = ϕ(0) + 2π (2λ+d )B
�0

y, where we
recognize the effective junction length. Since the junctions
considered here are in the thin-film limit, we take a different
approach in evaluating Jy( d

2 , y′). First note that the super-
current is conserved and therefore ∇ · J = 0. By choosing
the convenient gauge A = −yBx̂, we find ∇ × A = Bẑ and
∇ · A = 0. Therefore the divergence of the second Ginzburg-
Landau equation [Eq. (3)] reduces to

∇2γ = 0. (6)

Therefore we mapped the second Ginzburg-Landau equa-
tion onto the Laplace equation. With sufficient boundary
conditions, it can be solved for a unique solution, which
allows us to calculate Jy( d

2 , y). The boundary conditions arise
from the prerequisite that no supercurrent can exit the sam-
ple at its outer boundaries. Furthermore, we assume a weak
Josephson coupling, meaning that the shielding currents in the
electrodes are far larger than the Josephson currents between
the electrodes, which we approximate as Jx( d

2 , y) = 0. There-
fore we can write

J · n̂R = 0, (7)
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where n̂R is the unit vector, normal to the outer edges of the
right electrode. Combined with the second Ginzburg-Landau
equation, this leads to a set of Neumann boundary conditions:

(∇γ ) · n̂R = −2π

�0
A · n̂R, (8)

which is sufficient to solve for γ (x, y). Next, Eq. (5) allows us
to find the gauge-invariant phase difference over the junction
ϕ(y). Note that we have conveniently chosen Ay = 0. We then
find

2μ0λ
2
∫ y

0
Jy

(
d

2
, y′

)
dy′ = 2γ

(
d

2
, y

)
. (9)

Therefore ϕ(y) is given by the simple expression

ϕ(y) = ϕ(0) + 2πdB

�0
y + 2γ

(
d

2
, y

)
. (10)

Next, the current across the junction is given by
∫

J dS, yield-
ing

I (B) =
∫ W/2

−W/2
tjuncJc sin

[
ϕ(0) + 2πdB

�0
y + 2γ

(
d

2
, y

)]
dy.

(11)

We assume that the critical current density at zero field is
distributed uniformly over the junction, yielding Jc = Ic(0)

tjuncW
.

Also, note that ϕ(0) is independent of y and therefore is
merely a phase factor. The critical current is reached if we
current-bias the junction by setting ϕ(0) = π/2, from which
follows

Ic(B)

Ic(0)
= 1

W

∣∣∣∣∣
∫ W/2

−W/2
cos

[
2πdB

�0
y + 2γ

(
d

2
, y

)]
dy

∣∣∣∣∣. (12)

We see that finding Ic(B) becomes equal to a boundary condi-
tion problem of solving the Laplace equation in the geometry
of the electrodes. Indeed, the solution is completely deter-
mined by the geometry of the sample and is independent of
λ.

III. COMPARING DIFFERENT GEOMETRIES

As it is not trivial to find a general analytical solution
to the boundary problem of Eq. (6) for the ellipsoid and
rhomboid geometries, we solve the Laplace equation numer-
ically using COMSOL MULTIPHYSICS version 5.4. We define
the right-electrode geometry in 2D, divided into a triangular
grid. Crucial for correctly solving Eq. (6) is a grid size that
is small enough to capture small changes in γ and, on the
edges, n̂R. We found a maximum element size (i.e., the grid
edge size) of 0.01 ln (1 + L/W ) nm to be a good compromise
between computation time and precision. Using trigonometry,
we evaluate A · n̂R for each geometry and list the correspond-
ing boundary conditions in Table I (the numbering in Table I
corresponds to the numbers in Fig. 1). In the Appendix, we
provide a full derivation of each of the boundary conditions,
while the Supplemental Material contains the COMSOL appli-
cation file [26].

TABLE I. The Neumann boundary conditions for each electrode
boundary, listed by the numbering used in Fig. 1.

Boundary (∇∇∇γ ) · n̂̂n̂n�

1 2πB
�0

y

2 − 2πB
�0

y

3 0

4 2πB
�0

W xy

L
√

( W x
L )2+( Ly

W )2

5 − 2πB
�0

Wy√
W 2+L2

A. Simulation results

Clem showed that the analytical solution for the rectan-
gular geometry is an infinite series of sines and hyperbolic
tangents [23]. For the rectangle, this leads to the maximum in
γ ( d

2 , y) occurring at W/2, which can be approximated as

γ

(
d

2
,

W

2

)
= 7 ζ (3)

π2

BW 2

�0
tanh

(
π3

28 ζ (3)

L

W

)
. (13)

Here, ζ is the Riemann zeta function. Now we generalize this
approximation to include the other geometries. We find that
the simulated γ ( d

2 , y) universally follows

γ

(
d

2
, y

)
= 7 ζ (3)

π2

BW 2

�0
tanh

(
π3

28 ζ (3)

A

W 2

)
f
( y

W

)
, (14)

where f ( y
W ) is a dimensionless function defined by the spe-

cific geometry and A is the total surface area of the electrodes
(i.e., the combined area of the left and right electrodes). Note
that we have substituted L

W in the argument of the hyperbolic
tangent for A

W 2 ; the reason for this choice will become ap-
parent below when discussing the period of the Ic(B) pattern.
Figure 2(a) shows the calculated γ (x, y) for a disk geometry,
normalized to the applied magnetic field and width of the
electrodes γ�0/BW 2. We plot f ( y

W ) for this disk in Fig. 2(b).
By evaluating the integral of Eq. (12) numerically for dif-
ferent values of B, we calculate the interference pattern of
a disk-shaped junction [Fig. 2(c)]. The pattern resembles a
Fraunhofer pattern at first sight. However, the peak height
decreases less strongly than 1/B, and the width of the middle
lobe is not twice the width of the sidelobes. In the inset of
Fig. 2(c), we plot the width of the nth sidelobe (�Bn); the
width increases and reaches an asymptotic value for large n.

In order to compare the interference patterns of junctions
of different geometry, we define the period of the oscillations
to be the width of the fifth sidelobe (�B = �B5). In the inset
of Fig. 2(c), this is shown by the vertical reference line. The
width of the fifth sidelobe is not only sufficiently close to the
asymptotic value but also experimentally accessible without
the need for large magnetic fields. We now compare the peri-
odicity of the interference patterns for different geometries by
plotting the dimensionless value �BW 2/�0 as a function of
the aspect ratio L/W in Fig. 3(a) on a log-log scale. First, we
find the results obtained on the rectangular junction to match
the analytical results obtained by Clem [23]. Furthermore, the
periodicity of the pattern increases as the sample dimensions
are diminished. Finally, we evaluate the width of the junction
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FIG. 2. (a) Gauge-covariant phase simulated in the right elec-
trode for a disk-shaped planar Josephson junction, normalized to the
applied magnetic field and width of the junction γ�0/BW 2. The
junction is shown as a green line. This result allows for extracting
the gauge-covariant phase along the junction. It follows the scaling
of Eq. (14), and it is determined by a dimensionless function, which
is plotted in (b). (c) Interference pattern calculated using the result in
(a) by numerically evaluating Eq. (12) for different values of B. The
typical interference pattern looks like a Fraunhofer pattern at first
sight. However, the peak height decreases less strongly than 1/B,
and the width of the sidelobes is larger than half of the middle lobe,
which is 10.76 mT wide. Furthermore, the width of the nth sidelobe
increases and reaches an asymptotic value for large values of n,
which is evident from the inset of (c), where we plot the width of the
nth sidelobe. The width of the fifth sidelobe is used for comparisons
between simulations and experiments.

(d) to be irrelevant in determining �B. Specifically, its contri-
bution to the period is in the µT range for realistic sizes of d .
The consequence is that �B is determined by the maximum
of γ , i.e., γ ( d

2 , W
2 ).

�B reaches asymptotic values for the limits L � W and
L � W for all three geometries. The value of �B becomes
geometry independent in these limits, as revealed by rescaling
the results from Fig. 3(a) to an A

W 2 dependence, displayed
in Fig. 3(b). In the first limit, L � W , all three geometries
become an infinite superconducting strip. Here, we retrieve
�B = 1.842�0/W 2, which matches the literature [22,23]. In
this limit, we find γ ( d

2 , y) to follow

γ

(
d

2
, y

)
= 7 ζ (3)

π2

BW 2

�0
fstrip

( y

W

)
(15)

= π

2

1

1.842

BW 2

�0
fstrip

( y

W

)
, (16)

where fstrip( y
W ) is a dimensionless function running from −1

to 1, plotted in Fig. 4(a). In the other limit, L � W , Eq. (14)

FIG. 3. Dimensionless measure of the period �B (the width of
the fifth sidelobe) of the calculated interference pattern Ic(B) for the
three geometries. In (a) we plot this value on a log-log scale vs the
aspect ratio L/W , and in (b) it is plotted vs the total electrode area
A (i.e., the combined area of the left and right electrodes), scaled by
W 2. (b) reveals two limits for �B for L � W and L � W . The first
corresponds to the limit of an infinite superconducting strip �B =
1.842�0/W 2, whereas in the latter we find �B = 2�0/A. In contrast
to �B, Ic(B) itself is not geometry independent in this limit.

reduces to

γ

(
d

2
, y

)
= πAB

4�0
f
( y

W

)
= π

2

AB

2�0
f
( y

W

)
. (17)

Figure 4(b) shows f ( y
W ) in the limit L � W , for all three

geometries. Since the maximum of f ( y
W ) becomes indepen-

dent of the underlying geometry and equal to unity, we find
a geometry-independent period, where �B = 2�0/A. We can
generalize this concept to find a general expression for �B:

�B = π

2

1

max(γ /B)
= π

2

B

γ
(

d
2 , W

2

) . (18)

Note that max[ f ( y
W )] ≈ 1 for all ratios L/W , and thus Eq. (18)

can serve as a good approximation for �B. Therefore we
justify the relation of Eq. (14) as it demonstrates the emerging
universal limits where �B = 2�0/A and �B = 1.842�0/W 2,
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FIG. 4. Dimensionless scaling functions f ( y
W ) from Eq. (14), for

the limit L � W in (a) and L � W in (b). The maximum of these
functions is located at y = |W/2| and equals unity. Therefore �B
[large-n limit of the nth sidelobe of Ic(B)] is universal for these limits.
However, for the limit L � W , f ( y

W ) is not geometry independent,
which entails that Ic(B) is not geometry independent either, in this
limit.

as well as providing a good approximation of �B between the
limiting cases.

Although �B is geometry independent in the limit L � W ,
Ic(B) itself is not universal in this limit. This is caused by
the fact that f ( y

W ) differs between geometries for y �= |W/2|
[see Fig. 4(b)]. For the rectangular geometry, for example,
this function is linear in y: f ( y

W ) = 2y
W . Therefore we retrieve

the Fraunhofer pattern, where Leff = L/2 + d . The effective
length equals the length of a single superconducting elec-
trode plus the junction length. This can be understood by
considering that the screening currents trace loops in the
electrodes, that reduce to two parallel and opposite current
tracks, when L � W . γ ( d

2 , y) in the rhomboid geometry is
radically different; it is well approximated by a sine function:
f ( y

W ) = sin ( πy
W ). This leads to an interference pattern that

is far closer to the pattern shown in Fig. 2(c), and not a
Fraunhofer pattern. In conclusion, the shape and periodicity
of the Ic(B) pattern for low magnetic fields is independent of
�B, which is universal for L � W .

B. Comparison with experiments

In order to verify the dependence on the geometry, we
fabricate five ellipse-shaped planar S-N-S junctions for dif-
ferent ratios of L/W . Besides, we make a rectangular-shaped
junction with dimensions well within the L � W limit.

First, a four-probe contact geometry is patterned on Si
substrates using electron-beam lithography. Next, a bilayer
of Ag (20 nm) and MoGe (55 nm) is deposited by sputter
deposition. Subsequently, we use focused ion beam (FIB)
milling to structure elliptical devices in the bilayer. By ap-
plying an ultralow beam current of 1.5 pA, the weak link is
formed by a line cut in the MoGe layer at the center of the
device. This completely removes the superconductor on top,
but leaves a normal-metal connection. The resulting trench
separates the MoGe electrodes by a roughly 20-nm weak link,
allowing Josephson coupling in this S-N-S system. Similar
junctions, featuring a ferromagnetic layer, were fabricated in
this manner, to study the interplay between supercurrents and
ferromagnetic spin textures [13,14,27]. Figures 5(a) and 5(c)
show false-color electron micrographs of two such devices,
for L = W and L = 4W , respectively.

Two corresponding interference patterns obtained on the
samples in Figs. 5(a) and 5(c) are shown in Figs. 5(b) and 5(d).
Clearly, the period of the interference patterns scales with
L/W . However, we find that the middle peak is twice the width
of the neighboring ones and the amplitude of the sidelobes
of the Ic(B) pattern feature a similar width, instead of the
asymptotic behavior predicted by our theory [see Fig. 2(c)].
This can be explained by considering that l ≈ 100 nm (Eq. (2);
based on λ = 535 nm [29]), which is small with respect to
W . Our samples are therefore not in the narrow-junction limit
and allow Josephson vortices to stabilize in the junction. The
width of the middle lobe can therefore not be predicted by our
theory. However, Boris et al. have shown that �Bn for large
n follows the predictions of nonlocal electrodynamics [20].
Therefore we can compare the measured �B = �B5 with our
theoretical model.

To compare the period of the Ic(B) pattern with our the-
ory, we plot �B for all measured samples along with the
calculated values in Fig. 6. With the blue star symbol, we
also mark the periodicity of the Co-based superconductor-
ferromagnet-superconductor (S-F-S) disk junctions discussed
elsewhere [14]. Although there is a constant offset between
the measured periodicity and the calculated values, the overall
trend is well predicted.

This constant offset is due to a trivial side effect of the
FIB structuring method: Some parts of the bilayer (i.e., the
edges of the device) mill faster than the bulk of the material.
Consequently, notches develop on the side of the device when
fabricating the trench. These notches make the width of the
weak link (WJJ) shorter than the width of the electrodes (W ),
which can result in a constant offset between experiments
and the simulations, where it is assumed that WJJ = W . In
order to show that we reach the geometry-independent limit
for L � W , we have fabricated a bar-shaped sample with
L/W > 10. In the Supplemental Material we present a scan-
ning electron micrograph of this device accompanied by the
interference pattern obtained on this sample [26]. In this limit
we expect �BW 2

JJ/�0 = 1.842 [10,12]. By inspection of the
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FIG. 5. Two S-N-S junction samples with a circular and ellipsoid geometry, produced from an Ag/MoGe bilayer and their corresponding
Ic(B) patterns, obtained at 2.5 K. (a) A false-color electron micrograph of a disk-shaped sample, viewed at an angle. The white arrows indicate
the junction. Note the notches on the side of the sample due to an increased milling rate at the edges of the disk. The scale bar equals 500 nm.
(b) The corresponding Ic(B) displayed as a dV/dI color map. As expected, the peak height of the sidelobes is decreasing less rapidly than
1/B. In contrast to the calculated pattern in Fig. 2(c), the middle peak is twice as wide as the neighboring ones. (c) A top-view false-color
electron micrograph of an ellipse-shaped junction. Again we indicate the junction, and notches, with white arrows; the scale bar represents 1
µm. (d) The corresponding interference pattern as a dV/dI color map, which is used to extract the periodicity of the oscillations [28].

scanning electron micrograph we have extracted WJJ for the
bar-shaped sample, which leads to �BW 2

JJ/�0 = 1.70. With
the green open star symbol, we plot �BW 2

JJ/�0 for the bar-
shaped sample in Fig. 6. The error bars correspond to a 20-nm
uncertainty in the junction length [30].

Another method of accounting for the influence of the
notches is modifying the Fourier relation between the critical
current density distribution J (y) and the magnetic interference
pattern Ic(B), which will be discussed in the next section.

IV. FOURIER ANALYSIS OF THIN-FILM
PLANAR JUNCTIONS

In their 1971 paper, Dynes and Fulton found a Fourier
relation between the current density distribution of a Joseph-
son junction and its magnetic interference pattern [16]. This
method has been used widely in the last years in analyzing su-
percurrents in planar Josephson junctions [1,2,6–9,13,14,31–
33]. However, the original Fourier relation is developed
for macroscopic junctions where the screening currents are
Meissner based. This section will give a brief review of the
Dynes and Fulton method and will adapt the Fourier relation
for use in thin-film planar junctions, which is essential for
correctly interpreting interference patterns obtained on such
junctions.

First we write the current phase relation in Eq. (11) as
a complex expression and extend the integration bounds to
infinity, since Jc(y) = 0, for y > |WJJ/2|:

I (B) = Im

(
eiϕ(0)

∫ ∞

−∞
Jc(y)eiϕB dy

)
. (19)

Here, ϕB is the gauge-invariant phase difference over the
junction due to the magnetic induction. The critical current is
given by the absolute value of the complex expression. Note
that this is equal to setting ϕ(0) = π/2 in Eq. (12):

Ic(B) =
∣∣∣∣
∫ ∞

−∞
Jc(y)eiϕB (B,y) dy

∣∣∣∣. (20)

From this equation a general expression for a Fourier trans-
form can be recognized. For a junction with macroscopic
leads discussed above, we have ϕB(B, y) = 2π (2λ+d )B

�0
y and

therefore

Ic(β ) =
∣∣∣∣
∫ ∞

−∞
Jc(y)e2π iβy dy

∣∣∣∣. (21)

Here, we have defined the reduced field β = (2λ+d )B
�0

, such
that the position along the junctions y and β form conjugate
variables. For the mesoscopic devices discussed here, this
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FIG. 6. Calculated periodicity �B of the fifth lobe of the interfer-
ence pattern Ic(B) obtained for the ellipse-shaped samples, compared
with experimentally obtained values. We plot the dimensionless
measure �BW 2

�0
vs the aspect ratio L/W . The blue star indicates the

periodicity of the cobalt-based disk junctions discussed in Ref. [14].
Although we predicted the L/W dependence, we find a constant
offset between the experimental values and the simulations. This is
due to the notches visible in Figs. 5(a) and 5(c), which makes the
actual junction width (WJJ) shorter than the width of the electrodes

(W ). To further illustrate this, we plot
�BW 2

JJ
�0

(open green star).

quantity needs to be replaced by Eq. (10), yielding

Ic(B) =
∣∣∣∣
∫ ∞

−∞
Jc(y)ei2γ ( d

2 ,y) dy

∣∣∣∣, (22)

where we omitted the contribution from the weak link,
as its magnitude is negligible. Specifying γ ( d

2 , y) us-
ing Eq. (14), we can define a new pair of conjugate
variables—the length ỹ = W f ( y

W ) and the reduced field β̃ =
7 ζ (3)

π3
BW
�0

tanh ( π3

28 ζ (3)
A

W 2 ) [34]—to arrive at

Ic(β̃ ) =
∣∣∣∣
∫ ∞

−∞
J̃c(ỹ)ei2πβ̃ ỹ dỹ

∣∣∣∣, (23)

where we made a change of coordinates and J̃c is defined as

J̃c

(
ỹ

W

)
= dg

dỹ

(
ỹ

W

)
Jc

[
W g

(
ỹ

W

)]
. (24)

Here, the function g( ỹ
W ) is the inverse of f ( y

W ), or g( ỹ
W ) =

f −1( y
W ). Equation (24) is a Fourier transform that includes

a rescaling of the axes to retrieve the actual current density
distribution Jc(y).

In Fig. 7 we compare three different methods of obtain-
ing the current density distribution extracted by the Fourier
analysis from the data obtained on the disk-shaped sample
shown in Fig. 5(b). Specifically, Fig. 7(a) shows the current
density distribution obtained using the method for macro-
scopic junctions [i.e., following Eq. (21), using Leff = 2λ + d]
and Fig. 7(b) shows the Fourier transform based on our phase
difference calculations [Eq. (22)]. The solid reference lines
indicate the width of the electrodes (i.e., the disk diameter
W ), and the dashed reference lines indicate the width of the

FIG. 7. Fourier analysis of the interference pattern shown in
Fig. 5(b), carried out using three different methods. In (a) we use
the formalism for macroscopic junctions [following Eq. (21), where
Leff = 2λ + d], whereas in (b), we make use of the simulation data
shown in Fig. 2(b) [following Eq. (22)]. We indicate the boundaries
of the electrodes (−W/2 and W/2) by solid reference lines and the
boundaries of the actual weak link (−WJJ/2 and WJJ/2) by dashed
reference lines. Only the method based on the simulations of the
shielding currents correctly predicts the uniform current density dis-
tribution, which is limited to the actual junction only. Finally, in (c),
we carry out the Fourier analysis using a linear approximation of
fdisk( y

W ), circumventing the need for rescaling the axes, yet retaining
the correct Jc(y).
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actual junction as measured from the scanning electron mi-
crograph (WJJ). We only observe a constant distribution of
critical current throughout the full width of the junction (ex-
pected for uniform S-N-S junctions) when we incorporate the
calculations presented in this paper. In contrast, the analysis
based on Leff = 2λ + d yields an unphysical concentration of
critical current in the middle of the junction. Finally, note that
the current is confined to the actual junction (WJJ), not the
full width of the superconducting film (W ). This explains the
constant offset in Fig. 6.

Alternatively, we can use a linear approximation of γ ( d
2 , y)

to mitigate the need for rescaling the axes. Figure 7(c) shows
the same Fourier analysis based on a linear approximation
of f ( y

W ). Since the linear approximation of fdisk( y
W ) breaks

down near the edges, it yields less precise results at the
junction boundaries. However, in the middle of the junction,
the linear approximation of f ( y

W ) is well suited for correctly
analyzing Jc(y). For the technical details of carrying out the
Fourier transform, the reader is referred to the Supplemental
Material [26].

V. CONCLUSION

In conclusion, we analyzed the periodicity �B of the in-
terference pattern Ic(B) for thin-film planar S-N-S Josephson
junctions, both theoretically and experimentally. Specifically,
we examine junctions separating rectangular, ellipsoid, and
rhomboid films of width W and length L. By mapping the
second Ginzburg-Landau equation to the two-dimensional
Laplace equation, we solve Ic(B) for different ratios L/W . We
show that �B has two universal limits for L � W and L �
W , independent of the sample geometry. The first corresponds
to an infinite superconducting strip, and the latter is caused by
an emerging universal dependence of the phase difference on
the junction electrode surface area. By fabricating elliptically
shaped S-N-S junctions, having different ratios L/W , we ex-
perimentally verify the geometry dependence of �B. Lastly,
we adapt the Fourier relation between Ic(B) and the critical
current density distribution to suit planar junctions in the thin-
film limit. This proves to be vital in correctly predicting the
location of current channels in topological planar Josephson
junctions.
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APPENDIX: DERIVATION OF THE
BOUNDARY CONDITIONS

As discussed in the main text, the Neumann boundary
conditions for the gauge-invariant phase are given by

(∇γ ) · n̂R = −2π

�0
A · n̂R. (A1)

In this Appendix, we will derive the results presented in Ta-
ble I.

Combining the choice of the gauge A = −yBx̂ with n̂R = x̂
for boundary 1, we find

(∇γ ) · n̂R =
(

−2π

�0

)
(−yB) x̂ · x̂ = 2πB

�0
y. (A2)

For boundary 2 we obtain the same result, yet with a minus
sign since n̂R = −x̂. For boundary 3, n̂R = ±ŷ, which yields
(∇γ ) · n̂R ∼ x̂ · ŷ = 0.

Next, for boundary 4, parametrize the ellipse as L
2 cos t x̂ +

W
2 sin t ŷ. The tangent is then given by the derivative to t ,

which is − L
2 sin t x̂ + W

2 cos t ŷ = − Ly
W x̂ W x

L ŷ. Here, in the
second step, we transformed back to Cartesian coordinates
lying on the ellipse. A vector perpendicular to the tangent,
pointing inwards to the ellipse, is then given by −W x

L x̂ − Ly
W ŷ.

Normalizing yields n̂R:

n̂R = − 1√(
W x
L

)2 + ( Ly
W

)2

(
W x

L
x̂ + Ly

W
ŷ

)
. (A3)

Taking the inner product with A, as in Eq. (A2), yields the
boundary condition in Table I. Finally, for boundary 5, define
the angle α as arctan(W/L). In that case, for y > 0, we find
n̂R = − sin α x̂ + − cos α ŷ, such that

n̂R = − 1√
W 2 + L2

(W x̂ + Lŷ), (A4)

again yielding the boundary condition in Table I. Note that the
boundary condition is unchanged for y < 0, even though the y
component of n̂R acquires a minus sign. This results from the
choice of gauge (Ay = 0).
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