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Prediction of time-reversal-symmetry breaking fermionic quadrupling condensate
in twisted bilayer graphene
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Recent mean-field calculations suggest that the superconducting state of twisted bilayer graphene exhibits ei-
ther a nematic order or a spontaneous breakdown of the time-reversal symmetry. The two-dimensional character
of the material and the large critical temperature relative to the Fermi energy dictate that the material should have
significant fluctuations. We study the effects of these fluctuations using Monte Carlo simulations. We show that
in a model proposed earlier for twisted bilayer graphene there is a fluctuation-induced phase with quadrupling
fermionic order for all considered parameters. This four-electron condensate, instead of superconductivity, shows

a spontaneous breaking of time-reversal symmetry. Our results suggest that twisted bilayer graphene is an
especially promising platform to study different types of condensates, beyond the pair-condensate paradigm.
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I. INTRODUCTION

The recently discovered superconducting state which
emerges in magic-angle twisted bilayer graphene exhibits a
critical temperature that is exceptionally high compared to
the Fermi energy [1-5]. This, and the fact that the system
is two dimensional, implies the presence of strong pairing
fluctuations.

While superconductivity is a more than century-old state
of matter, which results from electron pairing, the presence
of strong fluctuations suggest the tantalizing possibility that
magic-angle twisted bilayer graphene can be an especially
promising system to realize different states of matter in the
form of condensates of electronic quadruplets. In princi-
ple, the standard Bardeen-Cooper-Schrieffer theory does not
allow fermionic quadrupling condensates. However, if the
low-temperature regime of twisted bilayer graphene exhibits
a superconducting ground state that breaks multiple symme-
tries, then, as we show below, it has the ideal ingredients
for the formation of fluctuation-induced electron quadrupling
states.

Multiple broken symmetries imply a multicomponent or-
der parameter. Hence, it is described by multiple complex
fields of the form |A;|e’®. Consider a system that is a
two-dimensional multicomponent superconductor: At finite
temperature, and for a finite magnetic field penetration length,
the only nonvanishing order parameter in the thermodynamic
limit has to be constructed out of at least four fermionic

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI. Funded
by Bibsam.

2469-9950/2023/107(6)/064501(5) 064501-1

fields [6-8]. This is based on the observation that composite
superconducting vortices, which have identical phase winding
in all components, have finite energy due to supercurrent
screening effects. Therefore, a fluctuating two-component
system is unstable to the proliferation of composite vortices
that disorder the superconducting phase, while preserving
the relative density or the phase difference between the
components of the order parameter. The phase difference
¢i — ¢; o< arccos Re A;A* is an order parameter proportional
to the product of two complex fields and hence represents
four-fermion correlations. Various other realizations of four-
fermion order were discussed in two-dimensional systems that
exhibit multicomponent superconductivity at zero tempera-
ture [6,9-12,12-15].

A recent microscopic study [16] derived an effective mean-
field description for twisted bilayer graphene (TBG) near
half filling of the valence band (n = —2). Upon particle dop-
ing, six Van Hove singularities give rise to as many Fermi
patches, which are the leading contribution to the density of
states. There are two interaction types that are permitted by
symmetry, and which contribute to pairing: intrapatch and
interpatch coupling. In this scenario, the resulting mean-field
theory features two complex order parameters A; = |A;|e/®
and A; = |A;|e’®, and a free-energy potential of the form

V(AL A2) = an(JAL + A2

+BIAL + 1022 + Bl AT+ AT, ()
where o o< (T — T,,), with T, being the mean-field critical
temperature, and 8; > 0 and B; + B, > O for stability. The
free-energy potential Eq. (1) permits two different ground
state manifolds, that are determined by the sign of the
coupling B,. For B, > 0, the ground state is a chiral su-
perconductor that breaks time-reversal symmetry, while for
B> < 0 the superconducting state develops a nematic order.
Finally, for 8, = 0, the potential exhibits an SU (2) symmetry.
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Note that the potential terms of the model are similar to
two-component models that appear in many other instances
of superconductors that break time-reversal symmetry [17],
hence our results apply to other models as well.

According to the Mermin-Wagner theorem [18], two-
dimensional systems with short-range interactions cannot
spontaneously break a continuous symmetry at finite temper-
atures. However, while for the SU(2) symmetry case (8, =
0), the system does not exhibit any phase transition, the
presence of a biquadratic term 8, > 0, that explicitly breaks
the SU(2) symmetry into a U (1) x Z, symmetry, allows for
the emergence at low temperatures of an algebraic-ordered
superconducting state that additionally breaks a Z, sym-
metry. When the magnetic field screening is negligible, a
two-dimensional system preserves a U(1) symmetry at any
finite temperature [18], while it exhibits a superconducting
(SC) phase transition belonging to the Berezinskii-Kosterlitz-
Thouless (BKT) universality class [19-21].

In the limit of strong symmetry breaking, one may consider
the London limit and the model can then be mapped onto
effective models considered in Refs. [11,22-24]. However, for
small K, i.e., in the vicinity of the SU(2) point, fluctuation
effects in the density sector may impact the resulting phase
diagram.

In this paper, we focus on the effect of fluctuations in the
microscopic model [16] in the scenario 8, > 0. Starting with
the free-energy functional proposed in Ref. [16], we employ
large-scale Monte Carlo simulations to obtain the phase dia-
gram of the system beyond the mean-field approximation.

II. THE MODEL

The Ginzburg-Landau free-energy density of the system
reads

1 -
f=> [EIVA,-IZ +a1|Ai|2}

i=1,2

2
FHUAP AP + B|aT+ 8. @

When coupled to a gauge field, this model only exhibits a
quartic order in the thermodynamic limit [6]. However, for the
case of TBG, the screening is negligible. Hence, we consider
the problem of computing the phase diagram in the extreme
type-II limit. The resulting description is characterized by an
SU (2) symmetry that is explicitly broken down to U (1) x Z,
by the 8, term. The symmetry-breaking term renders fluctua-
tions of the relative density massive. These fluctuations can be
important in this model for the statistical problem of assessing
the SC and the Z, critical temperatures. Correspondingly, we
retain them as part of our description, while taking the total
density to be constant, |A; |2 + |A|? = | Aol

Rescaling the free energy by the total density |Ag]? =
la1|/(B1 + B2), one can express Eq. (2) as a function of a
single parameter K,

f=31VAIP+1VA

+2K| A *| Az [cos2(¢pr — ¢2)] — 11, 3)

B2

given by K = ik 0. Next, by collecting the phase-
difference gradient terms we obtain the free energy,

f— |A1| Vo + 182> V]

AP AL
"'z#wum "

1 - 2 Vi 2
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+2K| A7) As Pleos[2(¢1 — ¢2)] — 11, “

with p2 = |A]> + Ay = 1.

For finite values of K, at low but finite temperatures,
the system exhibits an algebraic-ordered SC state, that is
destroyed at higher temperatures. However, a spontaneous
symmetry breaking does occur in the Z, sector, which is as-
sociated with the twofold degeneracy of the phase difference
¢12 = ¢ — ¢ = £m /2, resulting from the presence of the
biquadratic Josephson term.

To obtain the phase diagram of the model (4), and in
particular identify the presence of a fermionic quadrupling
condensate, it is necessary to assess, as a function of the
parameter K, the two critical temperatures Tkt and TCZZ.
For (i) Tsxr > T2, there arises a superconducting phase
that preserves time-reversal symmetry, while for (i) 77> >
Tskr, a metallic state that breaks the time-reversal symmetry
forms as a result of the condensation of fermion quadruplets
[11,22,25,26]. The observation of a quadrupling-fermionic
condensate was recently reported in the three-dimensional
material Ba;_,K,Fe,As, [25].

The problem of whether a multicomponent system has a
single transition or a four-fermion order is very complicated
to assess, and most of the progress on such systems to date
comes from large-scale numerical simulations [11,22,27,28].
Indeed, these nonsuperconducting phases are large and di-
rectly amenable for analytical arguments only in a few cases,
such as two-dimensional superconductors with a finite mag-
netic field penetration length [29] or systems where such order
can be induced and tuned by an external magnetic field [7].

The reason why the problem is that challenging is that
beyond the mean-field approximation, the physics of the sys-
tem, and therefore its phase diagram, are governed by the
proliferation of topological phase excitations that mutually
interact with each other. These can be elementary vortex
excitations, resulting from a phase winding in each con-
densate individually; composite vortices, resulting from the
phase winding of both condensates around the same core;
and domain walls separating regions with opposite phase dif-
ferences. The elementary vortices (A¢; = £27, A¢, = 0) =
(£1,0) or (A¢; =0, Ay = £27) = (0, =1) have a phase
winding in the intercomponent phase difference and hence
emit a domain wall. Consequently, their proliferation restores
the Z, symmetry and simultaneously destroys the supercon-
ducting state leading to the BKT superfluid-stiffness jump
to zero at the critical point. On the other hand, the prolif-
eration of composite vortices of the kind £(1, 1) can only
affect the superconducting sector, leaving the Z, symmetry
broken. Likewise, the proliferation of domain-wall excita-
tions alone can only restore the Z, symmetry, leaving the
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superfluid stiffness associated with the SC phase finite. The
key problem is that the defects in the U(1) and Z, sectors
are not decoupled. First, in contrast to the ordinary vortices
[30], the composite vortices in this model consist of two
spatially separated fractional vortices because of the condition
02 =|A1]?> 4+ |Az> = 1. Such defects carry a skyrmionic
topological charge and exist also when one softens the p? = 1
density constraint [31]. That implies that, in contrast to con-
ventional vortices, thermal excitations in the U (1) sector also
generate local defects in the phase-difference sector. Likewise,
a thermally induced Ising domain wall interacts with vortices
by splitting them into two half-quanta vortices [31], hence
disorder in the Z, sector may induce disorder in the U(1)
sector as well. As a consequence, it would in principle be
incorrect assess the critical temperatures of these two sectors
by treating them separately, as there are several correlation
lengths and their interplay is highly nontrivial.

III. MONTE CARLO SIMULATIONS

In this paper, we address this phase transition via large-
scale Monte Carlo simulations of the two-dimensional model
(4). The discrete Hamiltonian reads

H=- Z Z |Aa,i||Aa,i+u| COs (¢a,i+u - ¢ot,i)

inw a=1,2

+ Y KIALP|AgilPleos[2(¢i — ¢2.)] — 11, (5)

where u=2%,9 and |A1;]>+|A2;>=1Vie[0,L xL).
Further details of the numerical simulations are discussed in
the Supplemental Material [32].

The BKT superconducting transition is associated with
the emergence of a finite stiffness of the phase sum. Within
the Ginzburg-Landau model Eq. (3), this can be assessed by
computing the helicity-modulus sum Y, defined as the linear
response of the system to an infinitesimal twist of the two
phase condensates along the direction p,

1 92F{¢})
Tﬁ:l? 352 =1+ 275, ©)
n 8,=0
where
o _A[[EHN _1[ceH | oH |\
=127 720\ 982 | T\\3s,; \d5,. ’
i ot Mt 8,=0
@)

on | 3*H oH \| 0H ®
127 T2 [\ 96,105, 98,1 [\98.2 /15,0

Here, §,,; denotes the phase-twist parameter with respect to
the ith phase component. Here, L is the linear size of the
two-dimensional system. The expectation value (---) is the
thermal average, evaluated stochastically by the Monte Carlo
Metropolis algorithm. In our simulations, we compute the
helicity-modulus sum along u = . In what follows, we will
simply write Y, = 1.

Ordinary U(1) systems in two dimensions exhibit a
topological phase transition driven by the unbinding of

K =95
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FIG. 1. (a) Helicity-modulus sum 7Y, rescaled according to
Eq. (9) with Ly = 3 and (b) Binder cumulant U as a function of the
temperature 7' for the case K = 5. We plot different values of the
linear system size L so as to show the two crossing points.

vortex-antivortex pairs [20,21,33], which becomes entropi-
cally favorable at a finite temperature Tggt. The proliferation
of free vortices leads to a discontinuous vanishing of the
phase stiffness, that drops to zero at Tgxr according to the
Kosterlitz-Nelson universal relation [30].

When a system undergoes a BKT phase transition
[20,21,33], the critical point can be located by finite-size
scaling of the quantity [34],

Y (L, Texr)
1+ [2log(L/Ly)17! ’

where L is a free parameter giving the best crossing point
at finite temperature (see also Supplemental Material and
Fig. S1 [32]). For K =5, the best crossing point is obtained
for Ly = 3, as shown in Fig. 1(a). Varying K, the value of L,
varies as well. In particular, we find that Ly increases with
decreasing K (see Figs. S2 and S3 [32]), leading to very
pronounced finite-size effects at small K. This finding stems
from the multicomponent nature of the system. Indeed, in

(€]

Y1 (oo, Tgkr) =
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contrast to the single-component case, the BKT transition is in
this case driven by the proliferation of free composite vortices,
resulting from the unbinding of a pair formed by a (1,1) and a
(—1, —1) vortex. For large values of K, the superconducting
phases of the two condensates are essentially locked, and the
model (3) can effectively be described by a single component.
In this limit, the two elementary vortices (1, 0) and (0, 1)
that constitute £(1, 1) composite vortices are tightly bound.
However, for smaller values of K, this is no longer the case. In-
deed, alongside the density-density interaction that promotes
the separation of the composite vortices into their elementary
constituents, in the limit K — O the model approaches the
SU (2) symmetry where the composite vortices are unstable
in a conventional sense. The finite size of these composite
vortices results in an increase of the finite-size effects of
the whole system leading to a larger value of Lj. That also
suggests that standard conventional-vortex-based estimate for
the BKT transition are not accurate in this limit.

To assess the Z, phase transition, we define an effective
Ising order parameter m, related to the two possible values of
1o € [—m;m) via

m=+l1, ¢122=>0,

¢12 <O. (10)

Finally, we extract the Z, critical temperature by means of a
finite-size crossing analysis of the Binder cumulant U of m:

m=—1,

Y

In the thermodynamic limit, U tends to 1 in the high-
temperature phase and to 1/3 in the low-temperature limit.
The resulting crossing point for the case K = 5 is shown in
Fig. 1(b).

The phase diagram obtained via this numerical study is
shown in Fig. 2. Details on the finite-size scaling of the
two critical temperatures can be found in the Supplemental
Material, Figs. S4-S6 [32]. Our results reveal that for any
finite value of K we considered, the system has a fermionic
quadrupling state that breaks time-reversal symmetry. The
range of temperatures where this phase appears (see the inset
of Fig. 2) is larger for large values of K and saturates to a finite
value in the limit K — oo. The presence of a lattice provides
a minimum size for the domain wall between two different
chiralities. Consequently, the energy cost of such topologi-
cal defects saturates to a finite value in the limit K — oo,
resulting in a saturation of the critical temperature associated
with the Z, transition. In contrast to the previously studied
conventional multiband models, in the limit of a very small
intercomponent coupling K, the two transitions do not merge
and we observe a relative increase of AT, for K < 1. We argue
that this increase is related to the symmetry of the model in
the limit K — O that, for the model derived in Ref. [16], is
SU(2), rather than U (1) x U(1) symmetry as for the case of
s + is superconductors. In two dimensions, SU (2)-symmetric
systems exhibit no long-range or quasi-long-range order.

Obtaining a significant fermion quadrupling phase in
the case when U (1) x U(1) symmetry is explicitly broken
to U(1) x Z, generally requires a very strong symmetry-
breaking Josephson term [11]. By contrast, in the TBG model

0.6

0.4 VT w0
K
0 20 40
K

- TUZy) TBKT}

FIG. 2. Phase diagram of the model Eq. (3) as a function of the
coupling K. For any finite value of K, the BKT and Z, transitions are
found to be separated, with Tgxr > T(,Z2. In the inset, the size of the
observed splitting AT, = Tgxt — TCZz is reported as a function of K.
The largest splitting is found for smaller values of K, while in the
limit of K — oo it saturates to a finite value.

considered in this paper, a noticeable quadrupling phase re-
mains even if the term that breaks the Z, symmetry is small.
In all the considered cases, however, the positions of the
critical points are very correlated, and the difference in critical
temperatures is of the order of 1%, signaling that fluctuations
in the U(1) and Z, sectors are nontrivially coupled. There-
fore, the phase diagram of this or similar models cannot be
accurately determined by treating the U(1) and Z, sectors
separately.

IV. CONCLUSIONS

In conclusion, we studied a Ginzburg-Landau model de-
rived in connection with twisted bilayer graphene [16] at
low temperatures. We have shown that this class of models
can host a fermion quadrupling phase above the critical tem-
perature of the superconducting phase. This phase is more
robust than its counterpart in the previously studied class
of models [11,22-24] and extends to all finite values of
the coupling parameter K considered but is still relatively
small. Nonetheless, these findings indicate that magic-angle
twisted bilayer graphene can be an especially promising
platform for realizing and observing fermion quadrupling
order.

While the temperature range associated with fermion qua-
drupling is small, it is likely to be larger in real systems.
The coupling to a vector potential—omitted in this work—
reduces the energy of composite vortices, thus reducing the
temperature of the onset of superconductivity so that a finite
diamagnetism could lead to a significant fermion quadrupling
phase. More importantly, the robustness of this phase in the
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model we studied suggests that its size can be amplified by
applying a transverse magnetic field [7,25].

The fermion quadrupling state can be identified via a com-
bination of thermal and electrical transport measurements,
analogous to those performed in Ref. [25]. The effective
model of the Z, quadrupling state [35] suggests that signatures
of a Z, broken symmetry above the critical temperature can
be detected via magnetic probes. Skyrmion excitations [35] or
spontaneous magnetic fields can indeed appear in the presence
of local strain, obtained by imposing local pressure or by local
heating [36,37] in combination with local magnetic probes.
Another route to probe this state in twisted bilayer graphene
is through collective modes [38—41]. The intercomponent col-
lective modes, indeed, only depend on the relative phases
and relative densities of the two components and thus they

should survive in the nonsuperconducting state with broken
time-reversal symmetry.
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