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Spin noise spectroscopy, as a sort of magnetic resonance technique, uses, for detection of spin precession,
spontaneous fluctuations of magnetization revealed as a peak in the Faraday-rotation (FR) noise spectrum
at Larmor frequency. In the model of precessing magnetization, the FR noise signal should be the greatest
in the Voigt geometry (with magnetic field aligned across the light propagation), and should vanish in the
Faraday geometry (with the field along the probe beam). This reasoning employs, implicitly or explicitly, the
so-called Van Vleck theorem that establishes, within the limits of certain assumptions, a direct relation between
the FR and magnetization of the spin system. We show that violation of these assumptions in crystals with
anisotropic paramagnetic centers may qualitatively change the conventional laws of spin noise detection, making,
in particular, the FR noise detectable in the Faraday geometry. These conclusions are confirmed by experimental
studies of spin-noise spectra of CaF2 crystals with tetragonal centers of Nd3+ ions.
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I. INTRODUCTION

Spins in the external magnetic field exhibit spontaneous
precession which is accompanied by spontaneous oscillations
of transverse magnetization of the spin system. Detection of
these oscillations by means of the Faraday-rotation (FR) tech-
nique provides the basis of the spin noise spectroscopy (SNS)
that has been greatly developed during the last two decades
[1–5]. Conceptual novelty of the SNS has manifested itself in
a number of specific abilities inaccessible for the conventional
electron paramagnetic resonance spectroscopy. Initially, the
main peculiarity of the SNS technique was considered to be
its nonperturbative character [6]. To date, however, this exper-
imental approach has revealed many interesting and curious
features of other kind that have made it useful and informative
for studying both optical and spin-related properties of para-
magnets. In the general sense, most specific properties of the
SNS are related to the statistical, rather than coherent, summa-
tion of individual spin contributions into the total signal. Due
to this fact, the SNS revealed abilities more typical for nonlin-
ear optics [7], like applicability of the pump-probe technique
[8], realization of optical three-dimensional (3D) tomography
[9,10], sensitivity to the mechanism of broadening of optical
transitions [5], etc. Today, the SNS is widely applied to atomic
systems (mainly alkali metals) and semiconductor structures
([11–13]). Recently, the effect of the giant spin-noise gain has
been discovered that allowed us to successfully apply the SNS
technique to rare-earth-doped dielectric crystals [14]. Appli-
cation of polarization-noise spectroscopy to intrinsic emission
of the object allowed one to investigate specific features of
dynamics of the exciton-polariton condensate [15,16].

Conventional arrangement of the SNS experiment [6] im-
plies detection of the FR noise power of the laser beam
transmitted through the sample in magnetic field B aligned
across the light beam. This experimental arrangement is usu-
ally referred to as the Voigt geometry. The magnetic moment
(magnetization M) of each particle of the sample exhibits
stochastic precession around the magnetic field with the Lar-
mor frequency ωL = gμB/h̄ [17] [Fig. 1(a)]. The gyration
vector g, which is dual with the antisymmetric part of the
optical polarizability tensor α of each particle, αi j ∼ εi jkgk ,
and, in accordance with the Van Vleck theorem [18], is pro-
portional to the particle magnetization g ∼ M, also precesses
around the magnetic field. As seen from Fig. 1(a), in the Voigt
geometry, the projection gk = (g, k)/k ∼ Mk ≡ (M, k)/k
should oscillate on the Larmor frequency ωL, thus making a
spectrally localized contribution to the FR noise spectrum.

Let us rotate now the magnetic field by 90◦ to align it along
the probe beam direction B‖k [Fig. 1(b)]. In this configuration
(usually called Faraday geometry), magnetic moments of the
particles will precess as before, but projection of magnetiza-
tion Mk and proportional to it projection of the gyration vector
gk upon this direction will remain constant [Fig. 1(b)]. Thus,
in the Faraday geometry, the FR noise at the Larmor frequency
should be absent.

In what follows, we present experimental data showing that
rare-earth (RE) ions in a crystalline matrix, under conditions
of resonant probing, may reveal the FR noise at the Larmor
frequency even in the Faraday geometry. The goal of this
paper is to explain this effect that may seem either paradoxical
or trivial.
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FIG. 1. Precession of magnetic moment in the Voigt (denoted by
magnetic field vector BVoigt in the left part of the figure) and Faraday
(BFaraday in the right) geometry. It is seen that projection of magneti-
zation Mk upon the probe beam direction k, in the Voigt geometry,
oscillates. In the Faraday geometry, magnetization precesses around
the direction k‖B, and its projection upon the probe beam direction
k remains fixed.

The paper is organized as follows. In Sec. II we describe
the sample under study, the setup for measuring the FR
noise, and the experimental results thus obtained. Section III
contains a simplified analysis of these results showing that
magnetic anisotropy of the impurity centers by itself does not
allow to explain the FR noise signal at the Larmor frequency
in the Faraday geometry. We also make a conclusion here
about inapplicability of the Van Vleck theorem to the case of
resonant probing of the paramagnet. In Sec. IV, we calculate
the contribution of an axial center to the FR noise under con-
ditions of resonant probing and show that, in the presence of
magnetic and optical anisotropy, this contribution may reveal
a resonant feature at the Larmor frequency even in the Faraday
geometry. In the Conclusion, we briefly summarize the results
of the work.

II. EXPERIMENTAL

To verify our assumptions, we have chosen the sample of
CaF2:Nd3+ (0.1 mol%), similar to that used in our previous
work [19]. In this crystal, the neodymium ions occupy tetrag-
onal positions, with interstitial F− ions compensating excess
charge of the impurity and being aligned along the fourfold
symmetry axes of the crystal, thus forming three magneti-
cally nonequivalent groups. Correspondingly, the spin-noise
spectrum should reveal, at each magnetic field, three peaks
associated with three different precession frequencies of these
groups. The behavior of these peaks in rotating magnetic
field was studied in [19]. The structure of the tetragonal
impurity center in the CaF2 crystal is shown schematically
in Fig. 2. The probe beam was aligned along the threefold
symmetry axis of the crystal which was normal to the sam-
ple surface. One can see that, in this case, the symmetry
axes of all tetragonal centers appear to be tilted with respect
to the light propagation direction. To perform the measure-
ments, the magnetic field B of fixed magnitude was rotated
around the axis normal to the probe light wave vector k,
thus passing through both basic experimental configurations
(Faraday’s and Voigt’s). The schematic of the experimental
setup is shown in Fig. 3(a). The beam of a tunable continuous-
wave Ti:Sapphire laser, after passing through the sample, was

FIG. 2. Schematic representation of the Nd3+ center in the CaF2

crystal. The Nd3+ ion replacing the Ca2+ ion of the crystal lat-
tice brings an excess charge that is compensated by the interstitial
fluorine ion (F−

i ). As a result, the Nd3+ center acquires tetrago-
nal symmetry, with its principal axis (C4) aligned along the line
Nd3+ – F−

i .

directed to a conventional balanced polarimetric detector
which comprises a half-wave plate, a polarizing beamsplit-
ter (PBS), and a balanced photodetector (BPD). The digital

FIG. 3. (a) Schematic of the experimental setup. See notations
in the text. (b) The FR noise spectra for different orientations of
the magnetic field: φ = π/2 (Voigt geometry) and φ = 0 (Faraday
geometry). B ≈ 10 mT.
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real-time spectrum analyzer at the output of the detector pro-
vides the FR noise spectrum of the input beam.

It is important that measurements of the spin-noise spectra
were performed under conditions of resonant probing at one
of the crystal-field components of spin-orbit multiplet of the
Nd3+ ion. The FR noise spectra obtained for different orien-
tations of the magnetic field are shown in Fig. 3(b). We see
that the resonant features of the spectra do not disappear for
the magnetic field aligned along the probe beam (the Faraday
geometry) that, as was mentioned above, looks paradoxical.
Clarification of this paradox is the main content of the work.

III. SIMPLIFIED TREATMENT

An important role in magneto-optics of impurity ions in
crystalline matrices is played by the Van Vleck theorem [18]
stating that the contribution δφ of the impurity ions into the
FR angle is proportional to the projection of magnetization M
of the impurity system onto the light beam direction k, i.e.,
δφ ∼ Mk = (M, k)/k.

In spite of the fact that the Van Vleck theorem was proved
for the case of essentially nonresonant probing, it is often used
for interpretation of experimental data in SNS, identifying the
FR noise with the magnetization noise of the spin system even
when the measurements are performed under conditions of
optical resonance. In many cases, this approximation appears
to be justified (at least for qualitative treatment), but, as will
be shown below, it cannot explain the spectral feature of the
FR noise observed at the Larmor frequency ωL in the Faraday
geometry.

Below we show that the noise spectrum of the impurity-ion
magnetization projection Mk upon the probe beam direction k
cannot reveal any feature at the Larmor frequency when the
magnetic field is aligned along the light beam (B‖k). The op-
erator of this projection can be presented as M̂k = (M̂, k)/k,
where M̂ is the operator of the magnetization of the ion.
The operator M̂k commutes with the Zeeman Hamiltonian
H = −h̄−1(B, M̂) [20] of the ion, since k ∼ B. We assume
the temperature of the sample to be so small that only the
lowest Kramers doublet of the ion appears to be populated. We
denote the wave functions of these states by |g1〉 and |g2〉. Let
h and m be two-dimensional matrices of the Zeeman Hamilto-
nian H and of the operator Mk , respectively: hαβ ≡ 〈gα|H |gβ〉
and mαβ ≡ 〈gα|M̂k|gβ〉, α, β = 1, 2. Dynamics of magneti-
zation of the ion is controlled, in our case, by the matrix h
that plays the role of Hamiltonian. Since H ∼ Mk , the com-
mutator [h, m] also vanishes. The noise power spectrum Mk

is given by the Fourier transform of the correlation function
〈m(t )m(0) + m(0)m(t )〉, for which, using the commutativity
[ĥ, m] = 0, we can write the following chain of equations:

〈m(t )m(0) + m(0)m(t )〉
= Sp ρeq[eıht me−ıht m + meıht me−ıht ]

= 2 Sp ρeq m2. (1)

Here, ρeq is the equilibrium density matrix of the ion. The rela-
tionship (1) shows that the correlation function 〈m(t )m(0) +
m(0)m(t )〉 does not depend on time. As a result, its Fourier
transform controlling the noise power spectrum cannot reveal
any feature at the Larmor frequency ωL. Thus, we come to

the conclusion that if, in the above Faraday configuration of
the SNS experiment, the detected signal corresponded to the
noise of the magnetization projection Mk , then no spectral
feature at the Larmor frequency ωL should have been ob-
served. It is noteworthy that this result does not depend on
possible magnetic anisotropy of the impurity ion. Since in our
experiments a spectral feature of the noise spectrum at the
frequency ωL has been observed, we come to a conclusion
about the inapplicability of the Van Vleck theorem even for
qualitative interpretation of the experimental results.

The most substantial violation of applicability of the Van
Vleck theorem, in our case, was related to resonant probing of
the Nd3+ ions with a significant and well-optically-resolved
crystal-field splitting of spin-orbit multiplets in the CaF2 ma-
trix. In the next section, we will calculate, in the framework of
the axial crystal-field model, correlators of the polarizability
tensor of the anisotropic paramagnetic center and will show
that this spectrum may show a feature at the frequency of
magnetic splitting (Larmor frequency ωL) even in the Faraday
geometry.

IV. OPTICAL SUSCEPTIBILITY OF THE AXIAL
PARAMAGNETIC CENTER AND POLARIZATION

FLUCTUATIONS OF THE PROBE BEAM

Calculation of the optical polarizability tensor of the
paramagnetic center will be performed under the following
simplifying assumptions:

(1) Optical susceptibility of the ion is related to transitions
between two spin-orbit multiplets, ground and excited. The
total momenta F of these multiplets are assumed to be the
same and half-integer.

(2) The crystal field of the host matrix is assumed axially
symmetric, with the axis C∞ setting orientation of the center.

(3) The axial crystal field splits the spin-orbit multi-
plets into doublets |α, J,±M〉, M = 1/2, 3/2, ..., F , where
α = 1(2) for the excited (ground) multiplet, J = F ′(F ) is
the total moment of the excited (ground) multiplet, and M
determines projection of the moment upon the quantization
axis (chosen along the direction C∞). Since our goal is to
analyze polarization noise under the condition of resonant
probing, we will assume that the probe light frequency is close
to that of the transition between the doublets |2, F,±1/2〉 →
|1, F ′,±1/2〉, with the ground doublet |2, F,±1/2〉 being the
only populated.

(4) The magnetic (Zeeman) splitting, in the optical spec-
trum, is assumed to be unresolved, i.e., ωL < δ, where δ is the
width of the optical transition.

Note that, in our magneto-optical experiments, we detect
polarization fluctuations of the probe light, created by para-
magnetic ions, rather than fluctuations of magnetization of
these ions, calculated in the previous section. If concentration
of the ions is not too high and their effect upon the probe
beam polarizations can be considered in the approximation
of single scattering, then the contribution of each ion into
the polarization signal is additive and is described by the
following relationship (see, e.g., Ref. [21]):

δu ≡ δue + ıδur

=|A0|2πk[αzx−αxz−(αxz+αzx ) cos 2θ+(αzz−αxx ) sin 2θ]. (2)
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The sense of the symbols entering this relationship is the
following. The imaginary part δu describes the signal de-
tected by the balanced polarimetric detector, while the real
part describes the signal of ellipticity detected by the same
polarimetric detector but with a quarter-wave plate placed in
front of it. The axes of the plate λ/4 make the angle 45◦ with
respect to the axes of the detector (Fig. 3); k ≡ ω/c is the wave
number of the probe light; α is the tensor of polarizability of
the ion, with the tensor components αik taken in the coordinate
system where the components of the probe light field have
the form A0x = A0 sin θ and A0z = A0 cos θ . In this system
(hereafter called the K system), the linearly polarized probe
beam evidently has only x and z components and propagates
along the y axis, with the angle θ specifying azimuth of its
polarization plane. Variation of the probe beam polarization
after passing through the paramagnet is presented by a sum
of contributions (2) from each of the ions. The probe beam
polarization noise observed in our experiments is related to
fluctuations of the tensor α of each of the ions. Our immediate
goal is to calculate these fluctuations.

Let us denote by |1〉 and |2〉 (|11〉 and |22〉) the wave
functions of the excited (ground) doublet in the magnetic field
and introduce special notations for these functions at B = 0:
|gj〉 ≡ | j〉|B=0 and |e j〉 ≡ | j j〉|B=0, j = 1, 2.

Since the wave functions of the excited and ground dou-
blets (|gj〉 and |e j〉, j = 1, 2) are characterized by the same
projections of the momentum ±1/2 (i.e., are transformed by
the same representation of the point group of the crystal),
the vector columns of coefficients of decomposition of the
functions | j〉 and | j j〉, j = 1, 2 over states of the ground and
excited multiplets (|2, F, M〉 and |1, F, M〉, M = −F, ..., F ,
respectively, will be the same. If for the above column vec-
tors we retain the notations used for the corresponding wave
functions, then, for the vector columns of the ground and
excited doublets, in our case, we have the following relations
| j〉 = | j j〉, j = 1, 2, with dimensions of these columns equal
to 2F + 1.

In terms of the above definitions and with allowance for
the assumptions made above, the results of the standard cal-
culation of the polarizability tensor α, in the framework of the
theory of linear response, can be presented in the form

αik (�ω) = h̄−1d2

�ω + ıδ

2∑
p, j,q=1

〈p|ρ| j〉〈 j|Jk|q〉〈q|Ji|p〉. (3)

Here, �ω is the detuning of the probe beam from the fre-
quency of transition between the ground and excited doublets;
δ and d are the width and dipole moment of the optical
transition; | j〉, j = 1, 2 and Jk are the vector columns of
the wave functions of the ground doublet and matrix of the
kth projection of the angular momentum, respectively; and
〈i|ρ| j〉, i, j = 1, 2 are the elements of the density matrix of
the ion on the basis of the ground doublet.

A. Calculation of the optical susceptibility

Let us denote by ±Eg the energy of the ground-state dou-
blet in magnetic field (at zero field Eg = 0). Then, the density

matrix of the ground doublet can be presented in the form

ρ =
(

|C1|2 |C1C2|eı[2Egt+φ1−φ2]

|C1C2|e−ı[2Egt+φ1−φ2] |C2|2
)

. (4)

Here, the phases φ1,2 are random and uniformly distributed
over the interval [0, 2π ], while the average populations |C1|2
and |C2|2 of the states |1〉 will be considered in thermody-
namic equilibrium:

〈|C1|2〉 = Z−1e−Eg/kBT ,

〈|C2|2〉 = Z−1eEg/kBT ,

Z = e−Eg/kBT + eEg/kBT . (5)

The time dependence of elements of the tensor α is seen to
be determined by nondiagonal elements of the density matrix
(4) and represents oscillations with random phase at the fre-
quency 2Eg, evidently corresponding to the Larmor frequency
ωL = 2Eg mentioned in the previous section. Interaction of the
paramagnetic center with phonons of the crystal lattice, which
we neglected, may lead to random dephasing of oscillations of
nondiagonal elements of the density matrix (4), which in turn
leads to decay of the correlation functions calculated using
Eq. (4). This decay will be taken into account phenomenolog-
ically at the final stage of the calculation.

Magnetic anisotropy of the paramagnetic center under
consideration is determined by a specific form of the wave
functions of the doublets |g1〉, |g2〉, |e1〉, |e2〉, arisen from the
ground and excited multiplets under the action of the crystal
field. Let us perform a corresponding calculation following
Eq. [22] for the ground doublet and introduce quantities we
will need later.

The Hamiltonian of interaction with the magnetic field in
the representation of functions of the ground multiplet is given
by the matrix −gLμ(J, B) [23]. The matrix of this Hamil-
tonian, in the representation of the functions of the ground
doublet |g1〉, |g2〉 (we denote it by Hg), has the elements

Hg
αβ = −gLμBi〈gα|Ji|gβ〉 α, β = 1, 2. (6)

Using orthogonality of the Pauli matrices σ i: Sp σ i =
0, Sp σ iσ k = 1

2δik, i, k = 1, 2, 3, the matrices gL〈gα|Ji|
gβ〉 can be represented by a linear combination of the ma-
trices σ k, k = 1, 2, 3, after which the Hamiltonian matrix Hg

acquires the form

Hg = −μBigikσ
k (7)

where the so-called g tensors [24] have elements determined
by the relationship

gik = 2gL

∑
αβ

〈gα|Ji|gβ〉σ k
βα. (8)

For the known g tensor of the ground doublet, direct di-
agonalization of the two-dimensional matrix (7) yields two
eigenvalues with opposite signs ±Eg [see Eq. (4)] and two
two-dimensional orthonormal vector columns a±, such that

Hg

(
a±

1

a±
2

)
= ±Eg

(
a±

1

a±
2

)
. (9)
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Then the wave functions | j〉, j = 1, 2 of the ground dou-
blet in the magnetic field B can be expressed through the
functions |gj〉, j = 1, 2 (in zero field) using the matrix a,
defined in the following way:

|1〉 = a+
1 |g1〉 + a+

2 |g2〉
|2〉 = a−

1 |g1〉 + a−
2 |g2〉 ⇒

(
|1〉
|2〉

)
= a

(
|g1〉
|g2〉

)
,

a =
(

a+
1 a+

2

a−
1 a−

2

)
. (10)

Let us turn now to Eq. (3), which shows that to calculate the
optical susceptibility tensor αik we need two-dimensional ma-
trices of the angular-momentum projections operators in the
representation of the ground doublet of the ion. By denoting
these matrices by symbols Jc

k ,

Jc
k ≡

(〈1|Jk|1〉 〈1|Jk|2〉
〈2|Jk|1〉 〈2|Jk|2〉

)
, (11)

relationship (3) can be presented in a compact form:

αik (�ω) = h̄−1d2

�ω + ıδ
Sp ρJc

k Jc
i . (12)

Let us denote by Jg
k the matrices Jc

k in zero magnetic field Jg
k =

Jc
k |B=0. Using Eqs. (6)–(8), the matrices Jg

k can be expressed
through the Pauli matrices σ j, j = 1, 2, 3:

Jg
k ≡

(〈g1|Jk|g1〉 〈g1|Jk|g2〉
〈g2|Jk|g1〉 〈g2|Jk|g2〉

)
=

3∑
j=1

gk j

gL
σ j . (13)

By expressing | j〉 through |gj〉, j = 1, 2 with the aid of
Eq. (10), we obtain

Jc
k = a−1T Jg

k aT . (14)

By combining Eqs. (12)–(14), we can express the polariz-
ability tensor of the ion through its density matrix (4) and g
tensor (8):

αik (�ω) = h̄−1g−2
L d2

�ω + ıδ

∑
j j′

gk jgi j′ Sp aT ρa−1T σ jσ j′ . (15)

Recall again that time dependence of the tensor α arises
due to the fact that generally the ion is in a superposition state
with the density matrix whose nondiagonal elements oscillate
at the Larmor frequency ωL = 2Eg.

B. Calculation of the FR noise correlator for axial center

Let the axis C∞ of the paramagnetic center be aligned
along the z axis of our laboratory K system. Then, in accor-
dance with the third assumption presented in the beginning of
this section, |g1〉 = |2, F, 1/2〉 and |g2〉 = |2, F,−1/2〉 (here,
F is the total momentum of the ground multiplet of the ion).
Now, using Eq. (8) and known formulas for the matrices of

FIG. 4. On the determination of the experiment geometry which
leads to vanishing of the signal at Larmor frequency for an
anisotropic center. See text for details.

angular momenta [25], we can calculate the g tensor:

g =
⎛
⎝g⊥ 0 0

0 g⊥ 0
0 0 g‖

⎞
⎠, (16)

where g⊥ ≡ gL
√

F (F + 1) + 1/4, g‖ ≡ gL. Further stages of
calculating contribution of the paramagnetic ion into polariza-
tion fluctuations of the probe beam are as follows:

(1) Calculating the matrix of the eigenvectors a (10) and
eigenvalues ±Eg of the Hamiltonian (7).

(2) Substituting the density matrix (4) into Eq. (15) and
getting the time-dependent polarizability tensor α as a func-
tion of random complex amplitudes C1,2 [see Eq. (4)].

(3) Using (2), finding the time-dependent contribution of
the center under consideration into the FR δur (t ). Averaging
over random complex amplitudes C1,2 and calculating the
correlator 〈ur (t )ur (0)〉, where the factor e−|t/T2| takes into
account phenomenologically the spin-precession decay time
T2, related to spin-phonon interaction.

(4) Under assumption of independent contributions of
all N paramagnetic centers inside the probe beam, cal-
culating the gyrotropy noise power spectrum as N (ν) =
N

∫
dt〈ur (t )ur (0)〉e−ıνt .

Consider now the case when the axis of the paramagnetic
center is tilted by the angle −η around the x axis of the
laboratory K system (Fig. 4). The difference between this
case and the one considered above is that the wave function
of the ground doublet of the center should be “rotated” by
the angle η around the x axis of the laboratory K system
using the operator eıJxη: |g1〉 = eıJxη|2, F, 1/2〉 and |g2〉 =
eıJxη|2, F,−1/2〉. Calculation by Eq. (8) shows that such a
transformation corresponds to the following matrix of the g
tensor:

gη =
⎛
⎝g⊥ 0 0

0 g⊥ cos η g‖ sin η

0 −g⊥ sin η g‖ cos η

⎞
⎠. (17)

Taking it into account and moving over stages 1–3 presented
above, we can obtain the following expression for the correla-
tion function of the FR noise (ellipticity):〈
δur

L(t )δur
L(0)

〉 = |A0|4〈|C1C2|2〉g2
⊥g2

‖[Re ( Im )P (�ω)]2C(t ),

(18)
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where

C(t ) ≡ e−|t |/T2 cos[ωLt]

2
{cos2 η cos2 ε+

+ [ξ cos η sin ε + æ
√

1 − ξ 2 sin η]2},

tan ε ≡ − B̃y

B̃x
, ξ ≡ B̃z√

B̃2
z + æ2

[
B̃2

x + B̃2
y

] , æ ≡ g⊥
g‖

,

ωL ≡ μg‖
√

B̃2
z + [

B̃2
y + B̃2

x

]
æ2

⎛
⎝B̃x

B̃y

B̃z

⎞
⎠ =

⎛
⎝1 0 0

0 cos η − sin η

0 sin η cos η

⎞
⎠

⎛
⎝Bx

By

Bz

⎞
⎠,

P (�ω) ≡ πk
h̄−1g−2

L d2

�ω + ıδ
. (19)

To calculate the correlation function of the ellipticity noise,
in Eq. (18) one should replace Re with Im. The mean val-
ues 〈|C1C2|2〉 can be evaluated using Eq. (5) as 〈|C1C2|2〉 ∼
Z−2. The frequency spectrum of the noise power N (ν) can
be obtained from the above expressions by the replacement
e−|t |/T2 cos[ωLt] → 1/T2 [T −2

2 + (ν − ωL )2]−1 in (19). Note
that the correlators thus obtained do not depend on the po-
larization azimuth θ of the probe beam.

C. Discussion

Expressions (18) and (19) allow one to calculate the polar-
ization noise spectrum for arbitrary relative orientations of the
axis of paramagnetic center, magnetic field, and probe beam
direction. For this purpose, (i) the y axis of the laboratory
K system is chosen parallel to the probe beam direction, (ii)
the z axis is chosen orthogonal to the y axis and lying in the
plane containing the axis of the center and the axis y, and (iii)
the x axis is chosen orthogonal to the axes y and z. In the
coordinate system obtained in this way we find components
of the magnetic field Bx,y,z and substitute them into Eq. (19).

Now we can make sure that in the Faraday geometry (Bx =
Bz = 0, By �= 0, ε = −π/2), in the absence of the magnetic
anisotropy (æ = 1), C(t ) is always zero. In addition, Eqs. (18)
and (19) allow us to explain the FR noise at the Larmor
frequency observed in our experiment in the Faraday geom-
etry. As is seen from these expressions, this spectral feature
arises in the noise spectrum only in the presence of magnetic
anisotropy (æ �= 1) at η �= 0, π/2. In our experiments, these
conditions were satisfied for all three groups of the Nd3+

centers.
It is interesting that the considered simplest model of an

anisotropic paramagnetic center predicts vanishing of the FR
noise signal upon rotation of the magnetic field in the zy
plane (i.e., in the plane of the probe beam and of the axis
of the center, when Bz = B sin φ, By = B cos φ, Fig. 3), in
some intermediate (neither Voigt’s nor Faraday’s) geometry
at φ = φc, where

tan φc = Bz

By
= (æ2 − 1) tan η

1 + (æ tan η)2
. (20)

As an example of application of the relationships obtained
in the previous section, we present in Fig. 5 the calculated

FIG. 5. The calculated angular dependencies of the noise spec-
trum for the considered system of three groups of anisotropic centers.
Amplitude of the noise signal is indicated by the line brightness. The
dependencies were calculated for the magnetic field rotating around
an axis perpendicular to the probe beam direction. The Faraday
geometry corresponds to the angles 0 (or π ). (a) A special case when
the noise signal of one of the groups, at some point (shown by red
arrow), vanishes (see Eq.(20)). (b) Angular dependence of the noise
spectrum for a more general case.

angular dependencies of the noise spectrum for the system
comprised of three groups of anisotropic centers with their
axes aligned along the fourth-order axis of a cube. The probe
beam is assumed to propagate along the third-order axis of the
cube. Amplitude of the noise signal is indicated by the line
brightness. The dependencies were calculated for the mag-
netic field rotating around an axis perpendicular to the probe
beam direction. Under this condition, the Faraday geometry is
necessarily realized at some moment, denoted in the figure by
the angle 0 (or π ). Figure 5(a) shows the angular dependence
of the noise spectrum for the magnetic field rotating in the
plane containing the light beam and the axis of centers of
one of the groups. As was shown above, the noise signal of
this group, at certain orientation of the magnetic field, would
vanish [see Eq. (20)]. This point is indicated in the figure by
a red arrow. The spectrum in Fig. 5(a) shows only two curves
of three, because in this orientation two of them coincide. An
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example of the noise spectrum for a more general case of the
rotating field orientation is shown in Fig. 5(b). The calcula-
tions were performed for æ = 2. The relationship between
the Larmor frequencies and the dephasing time was chosen
sufficiently large to provide good resolution of the resonances
of different groups.

The above theoretical treatment, as a whole, even for
the simplest crystal-field model, is rather cumbersome. So,
to make physical content of the results more transparent, it
makes sense to present the following semiclassical comment.
The FR δφ of the probe beam propagating along the axis
2 (y axis in Fig. 3) is controlled mainly by the antisym-
metric part of the tensor α (2): δφ ∼ α13 − α31. It is seen
from Eq. (15) that α13 − α31 ∼ 〈[m1, m3]〉, where mk ≡ gk jσ

j

are the two-dimensional matrices of the operator of the kth
component of magnetic moment in the representation of the
ground crystal-field doublet [see Eq. (7)]. In the case of
the magnetically isotropic sample gk j ∼ δk j , the commutator
[m1, m3] ∼ [σ 1, σ 3] = −ıσ 2 ∼ m2, and we come to the result
of Van Vleck δφ ∼ 〈m2〉, when, in accordance with the results
of Sec. III, observation of the noise signal at the Larmor fre-
quency ωL, in the Faraday geometry, appears to be forbidden.
In the presence of magnetic anisotropy (as in our case), the
above commutation relations are violated, and observation of
the FR noise resonance in the Faraday geometry becomes
possible. This conclusion agrees well with our experimental
results.

V. CONCLUSIONS

We studied the FR noise of the CaF2:Nd3+ crystal in the
Faraday geometry. We have found the FR noise localized at
the Larmor frequency forbidden from the viewpoint of con-
ventional SNS, which identifies the FR noise with the noise of
magnetization. Calculation of the FR noise of the crystal in the
framework of the axial crystal field shows that the presence of

magnetic and optical anisotropy of the paramagnetic centers
in the crystal matrix lifts the above restriction.

At first glance, this result may look trivial. Indeed, it
seems evident that a magnetic field that “sees” the anisotropic
paramagnetic center differs by its direction from the exter-
nal field, and therefore the “effective” magnetic field in the
Faraday geometry may contain transverse components. But
this reasoning contains two errors. First, the spin precession
of the anisotropic center occurs around the external (rather
than effective) magnetic field, and longitudinal magnetization
of the anisotropic center does not reveal any oscillation at the
Larmor frequency. Second, when measuring the FR noise, we
detect fluctuations of optical susceptibility of the medium,
rather than direct fluctuations of spin magnetization, as is
often implied in literature. In this paper, we attract attention
to the fact that identification of the FR noise with the noise
of magnetization is not universally correct. Such a relation
between the FR and magnetization, which was initially for-
mulated by Van Vleck [18], was based on certain assumptions
that are often ignored in the present-day magneto-optics. In
our case in particular, violation of the Van Vleck theorem
was related to smallness of detuning of the probe beam from
the optical resonance. In this paper, we show that, gener-
ally, the assumptions underlying the Van Vleck theorem are
not necessarily fulfilled, and ignoring this fact may be es-
sential even for qualitative interpretation of magneto-optical
experiments.
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