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The dynamical structure factor is an important observable of quantum magnets but due to numerical and
theoretical limitations, it remains a challenge to make predictions for Hubbard-like models beyond one di-
mension. In this work, we study the magnetic excitations of the triangular lattice Hubbard model including
next-nearest-neighbor hopping. Starting from the expected 120◦ and stripe magnetic orders, we compute the
magnon spectra within a self-consistent random phase approximation. In the stripe phase, we generically find
accidental zero modes related to a classical degeneracy known from the corresponding J1-J2 Heisenberg model.
We extend the order-by-disorder mechanism to Hubbard systems and show how quantum fluctuations stabilize
the stripe order. In addition, the frustration-induced condensation of magnon modes allows us to map out the
entire phase diagram which is in remarkable agreement with recent numerical works. We discuss connections
to experiments on triangular lattice compounds and the relation of our results to the proposed chiral spin liquid
phase.
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I. INTRODUCTION

The Hubbard model has played a central role in con-
densed matter research as one of the simplest effective
models describing interacting electrons [1,2]. It displays a
whole variety of fascinating many-body phenomena such
as high-temperature superconductivity, Mott metal-insulator
transitions, and different forms of quantum magnetism [3].
In one dimension, the ground state and excitations of the
Hubbard model have been understood in great detail [4–6].
However, in the absence of exact methods, in two dimen-
sion and beyond the ground state phase diagram remains a
challenge even for state-of-the-art numerical methods [7–9],
with access to the excitaion spectrum proving even more
difficult. In addition, on geometrically frustrated lattices the
complexity is even higher [10–13] since competing magnetic
interactions provide a potential for realizing quantum spin
liquid (QSL) phases [14–21]. In particular, the successful
synthesis of possible QSL candidates [22] on the triangu-
lar lattice, including organic compounds κ (ET)2Cu2(CN)3

and Me3EtSb[Pd(dmit)2]2 [23,24], or rare-earth compounds
YbMgGaO4 [25,26] and NaYbO2 [27] has triggered a lot
of activity. More recently, the rapid progress in the field of
twisted moiré materials [28–32] provides a versatile platform
for the study of Hubbard physics on various lattices and with
different band structures [33–35]. In particular, the triangular-
lattice Hubbard model can be realized in twisted bilayer
boron nitride [36,37], twisted WSe2/WS2 moiré superlattices
[38,39], and twisted double-bilayer WSe2 [40].

*joe.willsher@tum.de

Much progress has been made in the study of the Hub-
bard model on the triangular lattice by using combinations
of theory and numerics. In the large-U limit and with only
nearest-neighbor (NN) hopping t , the Hubbard model at half
filling is reduced to the antiferromagnetic Heisenberg model
for which the celebrated resonating valence bond (RVB) state
was proposed as a trial wave function by Anderson in 1973
[14]—nowadays considered to be the first QSL state. How-
ever, the following numerical studies provided clear evidence
for a long-range 120◦ antiferromagnetic (AFM) order in the
strong coupling limit [41–45]. Away from strong coupling,
a spin stiffness analysis based on a mean-field approxima-
tion indicates a loss of 120◦ magnetic order at U ∼ 6t [46].
An intermediate QSL phase (the so-called weak-Mott insu-
lator) might additionally be stabilized for moderate Hubbard
interaction U ∼ 8t , as indicated by the variational cluster ap-
proximation (VCA) [47], path-integral renormalization group
analysis [48], and series expansions [49]. Moreover, recent
density matrix renormalization group (DMRG) studies give
strong evidence for a gapped chiral QSL in this regime
[50–56].

The Hubbard model with additional next-nearest-neighbor
(NNN) hoppings t ′ is further frustrated and studies have
mostly been restricted to the large-U model, i.e., the J1–J2

AFM Heisenberg model on the triangular lattice. In the clas-
sical limit where the spins are treated as O(3) vectors, it
is predicted that the coplanar 120◦ order is destabilized and
a highly degenerate four-sublattice state appears between
1/8 � J2/J1 � 1 [57]; for larger values of J2/J1 > 1, spiral
states dominate. The intermediate regime has been one of the
paradigmatic examples of the order-by-disorder mechanism
[58,59] where quantum fluctuations treated within spin-wave
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FIG. 1. Model and Phases. (a) Triangular lattice with nearest-neighbor t (solid) and next-nearest-neighbor t ′ hoppings (dashed line)
highlighted. (b) Brillouin zone showing the highlighted magnetic Brillouin zones for each ordered phase. The path drawn is used to plot spectral
functions. (c) 120◦ (left) and stripe (right) ordered states. Unit cells highlighted in grey boxes and magnetic moments �α highlighted for each
order. (d) Phase diagram of the triangular lattice Hubbard model, calculated using meanfield theory plus fluctuations with on-site repulsion U .
The phases highlighted are: central 120◦ order (blue); peripheral stripe order (green); at low U a metallic phase (gray); intermediate insulating
spin-disordered phases (white); and a potential noncoplanar insulating state (pink). The solid boundaries of ordered phases highlight where
short-wavelength fluctuations lead to a transition into a spin-disordered phase. The dashed boundary of the 120◦ phase is a transition driven by
vanishing transverse spin-wave velocity; red boundary coloring shows the suppression of this quantity extends down to t ′ ≈ −0.1.

theory lift the classical degeneracy such that a collinear stripe
ordered phase is stabilized [57,60]. Near the classical critical
point at J2/J1 = 1/8 an exciting possibility is the emergence
of a magnetically disordered phase, such as the U (1) Dirac
QSL state which has been proposed within the variational
Monte Carlo (VMC) approach [61,62]. DMRG works have
suggested gapped [63,64] and more recently gapless [65–67]
QSL ground states.

Only few works have studied the full Hubbard model with
both the NN and NNN hopping at finite U including charge
and spin fluctuations. A ground-state phase diagram has been
obtained in the t ′-U plane by using a VCA method with
a 12-site cluster [68] and VMC [69], which together point
to a rich phase diagram including insulating spin disordered
phases, similar to other extensions of the Hubbard model
including e.g. anisotropic hopping [53,70–74]. However, the-
oretical studies of the dynamical spin excitations as well as
an understanding of the metal-insulator and magnetic phase
transitions are missing, despite being of particular importance
in light of the recent above-mentioned candidate materials.

Despite recent breakthroughs in numerical techniques
which allow ever more detailed studies of Hubbard-like mod-
els, strong limitations on system size and frequency resolution
remain for the calculation of dynamical properties in two
dimensions. Specifically, DMRG studies of two-dimensional
magnets are limited in their prediction of dynamical corre-
lation functions due to entanglement growth in time. Recent
effort has begun to shine light on the dynamical properties
of the strong coupling Heisenberg limits [67,75], but it re-
mains challenging to probe Hubbard physics in the full t/U
regime [76]. In this work, we provide calculations of dy-
namical properties of the triangular lattice t–t ′–U Hubbard
model. Working within a self-consistent meanfield theory
we are able to calculate the dynamical spin-spin correlation
function within the random phase approximation (RPA). Our

method, which includes harmonic spin and charge fluctuations
around the magnetically ordered states, has been pioneered for
the square lattice Hubbard model [77–79] and successfully
applied to describe inelastic neutron scattering experiments
for cuprates [80,81] and iron-based superconductor [82–85]
parent compounds.

We find a large region with self-consistent solutions for
both the 120◦- and stripe-ordered phases. Indeed, both com-
peting solutions are allowed for much of the area above
the metallic phase marked in Fig. 1(d) (including all t ′ for
U � 10). Instead of comparing the respective ground state
energies to produce a pure mean-field phase diagram, we use
the calculation of spin excitations to examine the stability of
the mean-field magnetization in the presence of fluctuations.
Most of the phase boundaries of the 120◦ and stripe phases can
be mapped out by observing the condensation of accidental
soft modes when the magnon spectrum comes down to zero-
energy at a wave vector incommensurate with the existing
magnetic order. We additionally find a novel phase boundary
at small positive t ′ and U where magnetic order is instead
destabilized directly by a vanishing of the spin wave velocity.
From the components of the structure factor, we observe that
the corresponding fluctuations are out-of-plane indicating an
instability to a phase with noncollinear spin correlations. Of
course, our method is only able to describe excitations within
a long-range magnetically ordered phase but we argue that the
unusual out-of-plane instability is an indication of the nearby
chiral spin liquid phase.

In addition to the phase diagram, we provide a detailed
understanding of the magnetic excitations in the stripe phase.
Similar to the corresponding J1-J2 model, for a stripe state
with wave vector M, we find within our Hubbard model ap-
proach accidental soft modes at M ′ as a direct signature of the
underlying magnetic degeneracy for sizable t ′. We then show
that the inclusion of quantum fluctuations via an approximate
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treatment of self-energy effects gaps out the accidental mode
at M ′ stabilizing the collinear stripe phase. Thus we extend the
order-by-disorder mechanism to the triangular lattice Hubbard
model.

Our manuscript is structured as follows. In Sec. II, we
present the model and its mean-field solution. In Sec. III, we
explain the calculation of the magnetic phases’ spin fluctu-
ations in the RPA scheme. In Sec. IV, we discuss in detail
the stability of the stripe ordered phase beyond harmonic
fluctuations; and in Sec. V, we discuss how phase transitions
of the model are diagnosed and used to map out the phase
diagram. We conclude with a discussion of our results and
open questions.

II. MEAN-FIELD THEORY

The Hubbard model Hamiltonian is given by

H = −
∑
i,δ

tδ a†
iσ ai+δσ + U

∑
i

a†
i↑ai↑ a†

i↓ai↓, (1)

where δ is a nearest or next-nearest-neighbor displacement
vector on the triangular lattice, as shown in Fig. 1(a), and a†

iσ
is a creation operator of a fermion with spin σ at site i. The
(next) nearest-neighbor hopping is henceforth referred to as t
(t ′). The on-site repulsion is U and the chemical potential is
fixed to half filling.

First, we review the standard self-consistent mean-field
theory for the two different magnetic orderings on the triangu-
lar lattice: 120◦ order at the K point in the Brillouin zone (BZ);
and stripe order at the M point. Figure 1(b) shows the first
BZ of a triangular lattice with the ordering vectors K and M
highlighted, alongside other high-symmetry points and a path
between them which is used for our analysis of dynamical
spectral functions across the BZ. In the presence of sym-
metry breaking and magnetic order formation, the magnetic
unit cell is enlarged; it contains NUC = 3 sites for the 120◦
and NUC = 2 sites for stripe order with the magnetic order-
ing pattern highlighted in Fig. 1(c). The respective magnetic
BZ (MBZ) is shrunk covering 1/3 and 1/2 of the BZ area
[Fig. 1(b)]. One may consider equivalent stripe orderings at
the other midpoints of the BZ edge (labeled M ′), which are
related by a sublattice-dependent spin rotation and are part of
the underlying classical manifold of magnetic states [60].

With these magnetic states we perform a Hartree–Fock
(HF) decoupling of Hamiltonian (1) which is implemented
by introducing sublattice fermions aα , where the sublattice
index α = A, B,C for the 120◦ ansatz and α = A, B for the
stripe ansatz. The mean-field Hamiltonian elements are hence
labeled by sublattice index α in addition to spin indices
σ =↑,↓.

The ordering is encoded in this formalism with the sublat-
tice vectors ��α (components (�α )μ, for μ = x, y, z). In our
calculations, we choose the following basis for mean-field
vectors as highlighted in real space in Fig. 1(c): the 120◦ state
has ��A = (0,�, 0) with ��B,C rotated clockwise by 120◦ and
240◦; the stripe state has ��A,B = ±(0, 0,�), where we have
used the fact that the mean-field collinear state is independent
of the choice of ordering direction to fix it out of the plane.

Written in this compact form, the decoupled Hamiltonian is

HMF =
∑
i,α

a†
i,ασ [−(�α )μ(σμ)σσ ′]ai,ασ ′ +

∑
i,δ

tδ a†
i,σ ai+δ,σ ,

(2)

where the repeated spin indices are implicitly summed over. In
addition to this, the sublattice magnetization vector is defined
self-consistently

�α,μ = U 〈(Sα )μ〉GS = U

2
〈a†

ασ (σμ)σσ ′aασ 〉GS (3)

where �Sα is the sublattice spin vector and expectation value
〈 · 〉GS is with respect to the ground state. The sublattice mag-
netization m = 2�/U is calculated self-consistently for each
state.

We next diagonalize the system by Fourier-
transformation; introducing the sublattice spinor �k =
([ak]↑,A, [ak]↓,A, . . . )T with 6 (or 4) compound indices
m = (α, σ ) for 120◦ (stripe) sublattice fermions, we can
rewrite the Hamiltonian as HMF = ∑

k �
†
kH (k)�k. Explicitly

the mean-field Hamiltonian in the stripe phase is therefore

Hstripe(k) =
(

ζkI − σ · �A δkI
δ∗

kI ζkI − σ · �B

)
, (4)

with I the identity matrix and AA, BB and AB, BA hoppings
written as ζk and δk, respectively. These are calculated by
summing over all AA or AB hopping vectors δ for both NN
and NNN bonds, defined in the following way:

δk =
∑

δ=A→B

tδeik·δ, ζk =
∑

δ=A→A

tδeik·δ. (5)

Explicit expressions for these matrix elements are given in
Appendix alongside the equivalent formulation for the 120◦
mean-field Hamiltonian.

Diagonalizing the HF Hamiltonian produces eigenstates
|k, m〉 of the Hamiltonian with spectrum εm(k), where m =
1, . . . , 2NUC. Meanfield expectation values can be computed
in this basis, including the ordering vector via Eq. (3); in a
system of linear dimension L, its expectation value is given

�α,μ = U

2

〈
�†σμ

α �
〉
GS

= U

2N

∑
k,m

n f [εm(k) − μ]〈k, m|σμ
α |k, m〉, (6)

where N = L2NUC is the number of sites and n f [εm(k) −
μ] is the Fermi-Dirac distribution at zero temperature. The
sublattice-α Pauli matrix σμ

α is defined as acting on a �σ ′
β

object through the Pauli matrix (σμ)σσ ′ on its spin index
and on its sublattice index diagonally via δαβ . At half filling,
the chemical potential μ(U,�) is always fixed such that the
fermion occupation

n = 〈�†�〉GS = 1

N

∑
k,m

n f [εm(k) − μ] (7)

is equal to 1 per site.
Numerically, the magnetic order � is computed self-

consistently as follows: for a given choice �, the mean-field
Hamiltonian is found, then the chemical potential μ is fixed
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by minimizing n − 1 numerically, and finally the expectation
of magnetic ordering [found via Eq. (6)] is computed. The dif-
ference 〈�†σμ

α �〉GS − 2�/U is then minimized numerically
to self-consistently compute �.

III. SPIN FLUCTUATIONS

The spin susceptibility is one of the prime observables for
understanding the physics of Hubbard systems: this quantity
gives access to the dynamical structure factor, an experi-
mentally observable quantity which is routinely probed in
inelastic neutron scattering experiments [86]. As Goldstone
modes in an AFM system, the spin waves extend down to low
energy with linear dispersion, and understanding the velocity
of these modes at low energy allows the prediction of quan-
tum corrections to the sublattice magnetization. Access to the
dynamical spin susceptibility will hereby provide information
about phase boundaries beyond the basic mean-field approxi-
mation. The high-energy spectrum of spin excitations may in
particular show strong deviations from Heisenberg-like spin-
only physics, due to the effect of charge fluctuations especially
in the intermediate-U regime.

The dynamical spin susceptibility χ (q, ω) can be ex-
pressed in terms of the momentum-space spin-spin correlation
function [87],

[χ (q, ω)]μν

αβ = i

2N

∫
dt eiωt

〈
T Sμ

q,α (t )Sν
−q,β (0)

〉
GS

, (8)

defined with sublattice indices α, β and spin indices μ, ν.
Explicitly, the spin operators can be written as Sμ

q,α =∑
k �

†
k+q[σμ

α ]�k.
In order to calculate this susceptibility, we focus on the

magnetic interaction channel and apply the RPA formalism
[77,78,85]. The susceptibility tensor is defined through the
Dyson equation

[χ ]μν

αβ = [χ ]μρ
αγ U ρσ

γλ [χ (0)]σν
λβ + [χ (0)]μν

αβ, (9)

where the interactions are contained in the tensor U . This is
diagrammatically expressed as

(10)

in terms of the noninteracting correlation function χ (0)(q, ω).
The interaction vertex is taken to be diagonal in both indices

(11)

The solution to the equation can be conveniently written by
summing up all bubble diagrams [79,88]; in matrix form this
is

χ (q, ω) = [I − Uχ (0)(q, ω)]−1χ (0)(q, ω). (12)

Our task therefore becomes to evaluate this bare correla-
tion function using the mean-field state; it can be expressed

as

[χ (q, ω)(0)]μν
αβ = 1

N

∑
k

2NUC∑
m,l

{n f [εm(k)] − n f [εl (k + q)]}

× [Vml (k)]να[V∗
lm(k + q)]μβ

ω + εm(k) − εl (k + q) − iδ
, (13)

where [Vml (q)]μα is the following matrix element of the spin
operator:

[Vml (q)]μα = 〈q, m|σμ
α |q, l〉. (14)

The effect of increasing N is to improve the resolution in the
MBZ by reducing the finite-size level spacing. The divergence
of the susceptibility is regulated by a width iδ, which we taken
proportional to t2/(NU ) so as to scale with the level spacing
in a finite system and to smoothly take the thermodynamic and
strong coupling limits.

The bare correlation function has poles corresponding to
particle-hole excitations, which are gapped for half filling in
all magnetic phases. The collective modes are contained in
the zeros of [1 − Uχ (0)(q, ω)] corresponding to the spin wave
excitations in a fully self-consistent treatment. In order to
reproduce the dynamical spectral function, we calculate the
full matrix χ (q, ω) and then evaluate the following sum over
spins and sublattices

S(q, ω) = Im
NUC∑
α,β

e−iq·(rα−rβ )
∑

μ,ν=x,y,z

[χ (q, ω)]μν
αβ. (15)

Moreover, the eigenvalues of 1 − Uχ (0)(q, ω) are evaluated
for each wave vector q, the zeros of which define the spin-
wave dispersion ωk.

Figure 2(a) shows a typical structure factor S(q, ω) eval-
uated in the 120◦ ordered phase away from the phase
boundaries. The ordering wave vector is at the K points in
the BZ, and spectral weight vanishes at the � point. This is in
agreement with previous RPA results [46] (in which only the
t ′ = 0 case was studied), as well as recent numerical studies
of the 120◦-ordered phase of the Heisenberg limit [67,75].
This coplanar but noncollinear state has three spin excitation
modes, corresponding to eigenvectors of the susceptibility
matrix; at low energies, these can be characterized as either
purely in-plane (Sx, Sy) or out-of-plane (Sz). Note that magnon
excitations encoded in the susceptibility are still transverse to
the local ordering vector on each sublattice. We distinguish
their nature by calculating Im χ zz for out-of-plane modes and
Im χ+− for in-plane modes (with 〈S+S−〉 containing fluctu-
ations in Sx and Sy). These Goldstone modes have a linear
dispersion at low ω, where the single in-plane mode has a
higher velocity than the two degenerate transverse modes
c‖ > c⊥.

Looking to the high-energy behavior, the in- and out-of-
plane modes generally mix character but remain degenerate
across the M → Y → � line and at the other high-symmetry
points Y1, M ′ where the highest-energy bands meet and where
the fluctuations are predominantly in-plane.

Turning to the stripe ordered phase, Fig. 2(b) shows a typ-
ical structure factor S(q, ω) away from the phase boundaries.
The ordering wave vector here is at the M point in the BZ with
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FIG. 2. Dynamical structure factor S(q, ω) of (a) the 120◦ and (b) stripe magnetic ordered phases, taken along the path in the Brillouin
zone highlighted in the text. White lines represent the zeros of [1 − Uχ (0)(q, ω)], solid lines highlight doubly degenerate modes. Systems
U = 30, linear size L = 720 (N = NUCL2 sites), with (a) t ′ = 0 and (b) 0.6.

linear dispersion; a similar linear mode also appears at the �

point but with vanishing spectral weight. There is only one
excitation mode in this collinear state which is twofold de-
generate everywhere in the BZ. The ordering vector is chosen
out of plane, and so Im χ+− contains all information about the
magnon dispersion.

A further advantage of the self-consistent RPA approach is
that it allows the calculation of dynamical response functions
away from half filling. The method naturally includes charge
fluctuations from particle-hole excitations which cannot be
captured within a spin-only treatment. We have checked that
both the 120◦ and stripe phases are stable against hole doping;
the two-particle continuum is visible as weak spectral weight,
and there is an increase in the spin-wave velocity for low
doping. We also confirmed a strong particle-hole asymmetry,
as was seen for the t ′ = 0 model in Ref. [46], but since a full
study of the doping dependent phase diagram is beyond the
scope of this work we concentrate on the case of half filling
for the remainder.

IV. ORDER-BY-DISORDER IN THE STRIPE PHASE

Turning back to the stripe phase spectrum in Fig. 2(b),
one can observe a peculiar mode at the point M ′ which goes
quadratically to zero despite the magnetic ordering wave vec-
tor being at the inequivalent M point. In the large-U limit,
the t, t ′ Hubbard model becomes the corresponding frustrated
Heisenberg J1-J2 model, whose stripe order has an exact
accidental zero mode according to linear spin wave theory
(LSWT) [57,60]. Taken at face value, the zero-energy spin
excitations at this point with zero stiffness would produce a
divergent quantum correction to the sublattice magnetization,
destroying the stripe state, thus, at the harmonic level no
long-range order is selected. However, this is an artifact of the
quadratic-fluctuation approximation; in the Heisenberg model
it is known that quantum fluctuations generically gap the acci-
dental zero mode at M ′ to higher energies—the gap becomes
of the order J ∼ t2/U—leading to a stable phase while the
Goldstone modes at the M point remain gapless [60]. The gen-
eral scenario that quantum (or thermal or quenched disorder)
fluctuations stabilize a long-range ordered state is known as
order-by-disorder.

Turning back to the Hubbard model’s stripe phase in the
RPA approximation, we find that reducing U actually tends
to lower the minimum of the mode ωM ′ below zero energy,

clearly indicating a failure of the random phase approxi-
mation. Figures 3(a)–3(c) plots the transverse susceptibility
Im χ+− for varying U , showing that the minimum is signif-
icantly below zero energy at U ≈ 15 with positive t ′ (and
happens sooner for negative t ′). In Fig. 3(d), this is put
quantitatively, showing the U −3 dependence of this minimum
energy. This becomes of equal magnitude to the Heisenberg-
limit’s fluctuation-induced gap for negative t ′ around U ≈ 20.
Here, one may expect that spin-only fluctuations may not
restore stripe-order even beyond the RPA scheme.

The presence of the accidental zero mode at M ′ is an arti-
fact of the harmonic fluctuation approximation scheme (here
the RPA), and will not hold up in the presence of quantum
fluctuations. Indeed, the square lattice antiferromagnetic and
ferromagnetic phases were studied in Refs. [88,89], where
quantum fluctuations were calculated systematically for the
Hubbard model by extending it to contain N orbitals. By
evaluating the fermion self-energy to order 1/N , the effect on

FIG. 3. Stripe phase instability in the RPA scheme of the acci-
dental zero mode around the M ′ point. (a)–(c) plot the transverse
susceptibility Im χ+−(q, ω) for U = 30, 20, and 10. The white line
is the doubly degenerate mode ωq calculated from the zeros of
[1 − Uχ (0)]. (a)–(c) show data calculated with parameter t ′ = 0.8
and linear size L = 720 (N = 2L2 sites). (d) shows the negative
energy of the mode minimum ωM ′ for varying values of t ′ across
the phase diagram, indicating a failure of the RPA. The red/blue
lines are positive/negative values of t ′, with darker lines having a
higher |t ′|. The dashed line shows the (negative) magnitude to the
Heisenberg-limit’s fluctuation-induced gap J ∼ t2/U .

064425-5



WILLSHER, JIN, AND KNOLLE PHYSICAL REVIEW B 107, 064425 (2023)

FIG. 4. Stripe phase stability including quantum fluctuations of
the accidental zero mode around the M ′ point. (a) plots the transverse
susceptibility Im χ+−(q, ω) for U = 20. The white dashed line is
the mode ωk calculated from the zeros of [1 − Uφ] and shows data
calculated with parameter t ′ = 0.8 and linear size L = 720 (N = 2L2

sites). (b) shows the energy of the mode minimum ωM ′ for varying
values of t ′ including the phenomenological self-energy correction.
The red/blue lines are positive/negative values of t ′, with darker
lines having a higher |t ′|. Scaling at high U is linear, with the dashed
line ∝ t2/U .

the susceptibility was shown to be a shifted pole with renor-
malized weight. In the following, we provide an approximate
treatment of quantum fluctuations around the M ′ point on the
triangular lattice stripe phase and show that the accidental
mode remains gapped down to low U . We use the fact that
the effect of quantum fluctuations on χ can be calculated by
replacing χ (0) in Eq. (12) with φ = χ (0) + δφ, where the addi-
tional term originates from diagrams which appear alongside
the free loop χ (0) in the Dyson equation [88].

We can calculate an approximate form of φ, generally
given by

δφ(k, ω) = 1

N
t2

U 3

(
Kk + Jk Uω/2t2 Kkγk

Kkγk Kk − Jk Uω/2t2

)
,

(16)

where Kk, Jk are factors coming from loop diagrams [88].
These are momentum dependent and of the order 1/N in
the controlled expansion parameter. The term γk is the off-
diagonal element of χ (0), which is zero when evaluated at the
M ′ point in the RPA. The loop functions Kk, Jk are not able to
be constrained in this way and therefore are expected to be or-
der one. We may now form an approximation of Eq. 16, valid
for momenta close to M ′, by approximating these functions as
constants: γk = 0 and Kk = Jk ∼ 1. In Fig. 4(a), we show that
indeed the spectrum is corrected to be gapped at the M ′ point
(for concreteness we used U = 20, t = 0.8). Thus we find that
similar to the Heisenberg limit, fluctuations also stabilize the
triangular lattice Hubbard model’s stripe phase.

In this corrected picture and for large on-site repulsion
U , we find that the gap magnitude scales as ωM ′ ∝ t2/U in
agreement with the Heisenberg limit [60] (the exact constant
relating the gap to J in this limit depends on the values JM ′ ,
KM ′ ). For positive t ′ this stability extends down to below the
phase transition to a spin-disordered phase, suggesting the
order-by-disorder effect stabilizes the whole stripe phase here.

For negative t ′, the ωM ′ gap appears to vanish again at
around U ≈ 20, where the fluctuation-correction ∝ t2/U be-
comes comparable to the ωM ′ of the quadratic RPA-theory,
see Fig. 4 [and the dashed line in Fig. 3(d)]. We suspect that
in this regime either the phase becomes disordered, or that di-
agrams involving charge fluctuations become significant and

may further stabilize the phase. One could further improve our
approximate treatment by including higher-order self-energy
corrections and by calculating these self-consistently [90]
which comes at a considerable numerical cost. This is beyond
the scope of our work but we argue that our results provide
good evidence that for much of the coupling regime U � 10
supporting stripe ordering, the magnon spectrum at the M ′
point is gapped. In the following, we will therefore ignore
the artificial zero mode at the M ′ point within the harmonic
approximation and instead focus on the softening of collective
modes at other points in the BZ for mapping out the phase
diagram.

V. PHASE TRANSITIONS AND DISCUSSION

We can now map out the phase diagram of the next-nearest-
neighbor triangular lattice Hubbard model, going beyond
mean-field theory by requiring stability against fluctuations.
Our main result is shown in Fig. 1(d) which is in remarkable
in agreement with numerical works based on the variational
cluster approximation [68] and more recently on the varia-
tional Monte Carlo method [69]. We find the presence of 120◦
order at low |t ′|, stripe order for increased |t ′|, and instabilities
towards spin-disordered phases in the intermediate-U regime.
At sufficiently low U , there is a metallic phase characterized
by no self-consistent magnetic order and a gapless spectrum.

Despite only considering quadratic fluctuations in the RPA
scheme, we observe two types of phase transition out of the
ordered phases: Firstly, the magnon modes come down to zero
energy with a linear dispersion around some incommensurate
critical wave vector; Secondly, the spin-wave velocity around
the ordering wave vector vanishes. We will discuss the phys-
ical implications of these two transitions in the following.
These two types of transitions can be easily characterized,
in contrast to the descending accidental zero mode at M ′
discussed in the previous section, which does not show any
critical behavior (remaining quadratic as it descends down in
energy at the RPA level).

The first type of transition occurs when the ordered phase
is destabilized by a magnon branch reaching zero energy at
a wave vector incommensurate with the ordering vector. In
this regime, despite a self-consistent mean-field solution, the
Ansatz is not stable against fluctuations. We find that the 120◦
phase has a transition of this type whereby a transverse spin
fluctuation mode closes at the M point (and equivalently the
Y1 point in the MBZ) see Figs. 5(a) and 5(b). This is shown
as solid lines in Fig. 1(d). This was previously observed along
the t ′ = 0 line for varying U [46], but we find the behavior
persists along the whole extent of the phase boundary.

Numerically the boundary is ascertained by examining two
features, which happen simultaneously: the diverging matrix
elements χ (qclosing, 0) at zero energy which become larger
than the same elements at the ordering wave vector, as well
as the lowest zero eigenvalue of [1 − Uχ (qclosing, ω)(0)] (the
mode energy) reaching zero ωclosing = 0. Passing through
the phase boundary, these modes become linear and then
square-root like, with no pole in the imaginary part of the
susceptibility matrix at the critical closing point.

The RPA scheme can easily be extended to the U → ∞
limit where it predicts the direct transition between 120◦ and
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FIG. 5. Critical modes closing for U = 30 with [(a) and (b)]
t ′ = 0.358 in the 120◦ phase and [(c) and (d)] t ′ = 0.365 in the
stripe ordered phase. (a) and (c) show the dynamical structure factor
S(q, ω) along the paths from � to the respective ordering wave
vector. White lines represent the zeros of [1 − Uχ (0)(q, ω)], solid
lines highlight doubly degenerate modes. The static structure factor
S(q) is plotted in (b) and (d). Linear size L = 720 (N = NUCL2 sites)
for spectral functions and L = 72 for static structure factor.

stripe ordered phases at t ′
c ≈ 0.35. At strong coupling, the

system also appears symmetric in t ′, and from the 120◦ phase
the closing wave vector is at the M point. In connection to the
classical results for the J1-J2 Heisenberg model, the exchanges
to leading order in perturbation theory are J1 = 4t2/U and
J2 = 4t ′2/U . Our results predict in this limit J2,c ≈ 0.123, in
good agreement with the classical J2,c = 1/8 [57,60].

From the stripe ordered phase, however, the closing wave
vector in the RPA scheme is dependent on the position along
the phase boundary; at high U , the closing wave vector is at
the corner of the three-site 120◦ unit cell MBZ, see Figs. 5(c)
and 5(d). At reduced U towards the bottom of the lobe of
stripe order in the phase diagram Fig. 1(d), the closing vector
moves towards Y and then to K . This is in the region where
the RPA scheme results in a negative-energy accidental mode,
and we expect that the position of this closing vector could
be moved in a self-consistent calculation which considers
higher-order fluctuations.

The second type of transition is triggered by long-
wavelength spin excitations. When the spin-wave velocity
of excitations about the ordering wave vector goes to zero,
the quantum correction to the sublattice magnetization are
expected to diverge [60]. This is shown as dashed lines in
Fig. 1(d), where we find that the transverse velocity going to
zero preempts the closing of the mode at M for finite t ′ ≈
0.15–0.4 in the 120◦ ordered phase. Therefore the order is di-
rectly destroyed by long-wavelength transverse fluctuations in
this regime, marked as a red line in Fig. 1(d). Figure 6 shows
the transverse susceptibility components, and highlights the
massless out-of-plane Goldstone excitations at this transition.
We also observe for even lower t ′ down to approximately −0.1
that the spin-wave velocity at the transition point is strongly
suppressed, as indicated by the red-coloured boundary region
in Fig. 1(d). This could indicate the presence of a transverse-
fluctuation-driven transition over a wider range of the colored
phase boundary at low U [46].

FIG. 6. Vanishing of the spin wave velocity along the red tran-
sition line of the phase diagram. (a) The transverse susceptibility
Im χ zz(q, ω). The dashed line represents the lowest zero of [1 −
Uχ (0)(q, ω)]. (b) The static structure factor S(q). Calculations for
U = 4.6, t ′ = 0.289; linear size L = 720 (N = 3L2 sites) for dynam-
ical susceptibility and L = 72 for static structure factor.

It is tempting to relate this transition to the recent numerical
works observing a chiral QSL for t ′ = 0 and small U [50–52].
Indeed, the strong out-of plane fluctuations would be naturally
related to an instability towards a noncoplanar magnetically
ordered state, which has been proposed as the parent state
of the chiral QSL [65,91,92] and the soft structure factor at
this point is also observed numerically in the CSL phase [56].
Of course, we cannot make definite claims about the nature
of the disordered phases because our RPA scheme assumes
the presence of a magnetic state. Nevertheless, our results
certainly highlight the different nature of the order-disorder
transition from the 120◦ phase along the bottom and sides of
the phase boundary. At higher U , there is a clear tendency to
melting because of short-wavelength fluctuations. At lower U ,
there is a regime where out-of-plane fluctuations destabilize
the order directly (for 0.15 � t ′ � 0.4), as well as a larger
region encompassing the t ′ = 0 line where the transverse spin
stiffness may also be sufficiently suppressed to destroy the
sublattice magnetization.

VI. CONCLUSION

We have studied the spin fluctuations of the t-t ′-U Hubbard
model on the triangular lattice and mapped out the phase
diagram at half filling. Employing a self-consistent mean-field
plus RPA approximation allowed us to calculate the spin struc-
ture factor in the thermodynamic limit. Therefore the method
is ideally suited to provide predictions for inelastic neutron
scattering experiments complementary to the usual spin wave
calculations applicable only in the insulating large interaction
limit.

Despite its limitations, we have shown that the method
provides a comprehensive picture of the spin fluctuations in
the ordered stripe and 120◦ phases. Thereby, it allows the
delineation of phase boundaries according to the stability of
magnon modes. We find that the phase diagram shown in
Fig. 1(d) is in remarkable agreement with recent numerical
works. In general, the self-consistent RPA theory is well
suited to the study of itinerant magnetic systems, including
away from half filling. In the future it would be worthwhile to
explore the entire doping dependence of the triangular lattice
Hubbard model.

We have provided a first study of spin excitations within
the stripe magnetically ordered phase. We showed how the
inclusion of quantum fluctuations removes an accidental zero
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mode from the underlying magnetic degeneracy, which pro-
vides an extension of the order-by-disorder mechanism to the
finite-U regime [57,60]. This was done by modifying the bare
susceptibility to account for a fluctuation-renormalized self-
energy [88,89]. In the future it would be interesting to include
higher-order corrections and perform a fully self-consistent
calculation. While technically and numerically challenging,
this would provide a more complete picture of the effect of
charge fluctuations and the stability of magnetic phases for
hole and electron doping.

The phase boundaries in the large U limit are in agree-
ment with a classical transition between ordered phases at
J2/J1 = 1/8 [57,60]. In the finite U regime, we also find spin
disordered regimes which have been at the center of recent
numerical works both for the corresponding Heisenberg limit
[44,62,64] and for the Hubbard model [50–52]. Given the
difficulty of accessing with purely numerical methods the dy-
namical behavior of two-dimensional frustrated models with
QSL ground states, a complementary approach is provided
by the self-consistent RPA method which has been extended
to parton-mean-field descriptions of Heisenberg models with
fractionalized excitations [93,94]. An exciting direction for
future research is to explore similar schemes for QSL phases
of Hubbard models in order to understand the nature of spin
excitations in the presence of spin fractionalization and charge
fluctuations.
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APPENDIX

The stripe Hamiltonian is

Hstripe(k) =
(

ζkI − σ · �A δkI
δ∗

kI ζkI − σ · �B

)
. (A1)

In order to define and work with this matrix as a function
of momentum, we take the inverse lattice as a basis of mo-
mentum (k1, k2) such that if ri are the lattice unit vectors,
k · ri = ki. Written as a function of k1,2, the AB hopping
element is explicitly given by

δk = t
[
1 + e−ik1 + e−ik2 + e−i(k1+k2 )]

+ t ′[eik1 + ei(k1−k2 ) + e−i(2k1+k2 ) + e−2ik1
]

(A2)

and the diagonal AA/BB hopping is given by

ζk = 2t cos(k1) + 2t ′ cos(k2). (A3)
Now for the 120◦ phase, the 6 × 6 Hamiltonian reads

H120(k) =

⎛
⎜⎝

ζkI − σ · �A δAB
k I δAC

k I

δ∗ AB
k I ζkI − σ · �B δBC

k I

δ∗ AC
k I δ∗ BC

k I ζkI − σ · �C

⎞
⎟⎠,

(A4)

with off-diagonal elements given by

δAB
k = t[1 + e−ik2 + ei(k1−k2 )], δAC

k = t[1 + e−ik2 + e−ik1 ],

δBC
k = t[1 + e−ik1 + ei(k2−k1)], (A5)

and diagonal elements given by

ζk = 2t ′[cos(k1) + cos(k2) + cos(k1 − k2)]. (A6)
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