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We show how to enhance the detection sensitivity of magnon Kerr nonlinearity (MKN) in cavity magnonics.
The considered cavity-magnon system consists of a three-dimensional microwave cavity containing two yttrium
iron garnet (YIG) spheres, where the two magnon modes (one has the MKN, while the other is linear) in
YIG spheres are simultaneously coupled to microwave photons. To obtain the effective gain of the cavity
mode, we feed two input fields into the cavity. By choosing appropriate parameters, the coherent perfect
absorption of the two input fields occurs, and the cavity-magnon system can be described by an effective
non-Hermitian Hamiltonian. Under the pseudo-Hermitian conditions, the effective Hamiltonian can host the
third-order exceptional point (EP3), where the three eigenvalues of the Hamiltonian coalesce into one. When
the magnon frequency shift �K induced by the MKN is much smaller than the linewidths � of the peaks in
the transmission spectrum of the cavity (i.e., �K � �), the magnon frequency shift can be amplified by the
EP3, which can be probed via the output spectrum of the cavity. The scheme we present provides an alternative
approach to measure the MKN in the region �K � � and has potential applications in designing low-power
nonlinear devices based on the MKN.
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I. INTRODUCTION

In the past decade, the progress in cavity-magnon sys-
tems has been impressive, where magnons (i.e., collective
spin excitations) in ferrimagnetic materials are strongly cou-
pled to photons in microwave cavities via the collective
magnetic-dipole interaction [1–3]. Experimentally, the most
widely used cavity-magnon system is composed of the
millimeter-scale yttrium iron garnet (Y3Fe5O12 or YIG) crys-
tal and the three-dimensional (3D) microwave cavity [4–7].
Up to now, various exotic phenomena have been exten-
sively investigated in cavity-magnon systems, such as magnon
dark modes [8], manipulating spin currents [9,10], steady-
state magnon-photon entanglement [11], magnon blockade
[12–14], non-Hermitian physics [15–17], cooperative polari-
ton dynamics [18], enhancing spin-photon coupling [19],
quantum states of magnons [20–23], microwave-to-optical
transduction [24,25], and dissipative coupling [26,27].

Based on the coherent perfect absorption (CPA), the
second-order exceptional point (EP2) was observed [28] and
the third-order EP (EP3) was subsequently predicted [29] in
cavity-magnon systems. The CPA refers to a phenomenon that
when two (or more) coherent electromagnetic waves are fed
into a medium, the waves are completely absorbed by the
medium due to both destructive interference between them
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and medium dissipation, and there are no output waves from
the medium [30,31]. Intriguing applications of CPA include,
e.g., engineering EPs [28,29,32,33], antilasing [34,35], optical
switches [36,37], and coherent polarization control [38,39].
The nth-order EP (EPn) refers to the degenerate point in
non-Hermitian systems, where n eigenvalues as well as corre-
sponding n eigenvectors coalesce simultaneously [40]. Owing
to its fundamental importance and potential applications, the
EPs have been explored in various physical systems (see, e.g.,
Refs. [41–49]). Contrary to the degenerate point in Hermitian
systems, the EPs have some unique features. For example,
the energy splitting follows a ε1/n dependence around the
EPn when the non-Hermitian systems are subjected to a weak
perturbation with strength ε (�1) [50,51], which makes it
possible to enhance the detection sensitivity [52–54].

It is worth noting that the cavity-magnon system also
has reached the nonlinear regime [55], where the magnon
Kerr nonlinearity (MKN) stems from the magnetocrys-
talline anisotropy in the YIG [56]. The MKN not only
results in cavity-magnon bistability [57–59] and tristabil-
ity [60–62], nonreciprocal microwave transmission [63], and
strong long-distance spin-spin coupling [64], but it also leads
to magnon-photon entanglement [65,66] as well as dynami-
cal quantum phase transition [67,68]. In experiments, many
phenomena induced by MKN can be detected by measuring
the transmission spectrum of the microwave cavity, where
the MKN is equivalent to the magnon frequency shift �K

dependent on the magnon population [55–63]. This probe
method works well only when the magnon frequency shift �K

is comparable to (or larger than) the linewidths � of the peaks
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FIG. 1. Schematic of the proposed setup for enhancing the de-
tection sensitivity of MKN in YIG 1. The cavity magnonic system
is composed of two YIG spheres coupled to a 3D microwave cavity,
where YIG 1 (YIG 2) is magnetized by a static magnetic field B1

(B2). To measure the weak MKN in YIG 1, one microwave field with
Rabi frequency �d is used to drive YIG 1. In addition, two input
fields a(in)

1 and a(in)
2 are fed into the microwave cavity via ports 1 and

2, respectively, and a(out)
1 and a(out)

2 denote the corresponding output
fields.

in the transmission spectrum of the cavity (i.e., �K � �),
while it is not valid in the region �K � � [18,69].

In this paper, we propose a scheme to enhance the detection
sensitivity of MKN around an EP in cavity magnonics when
�K � �. Here, the considered hybrid system consists of a 3D
microwave cavity with two YIG spheres (YIG 1 and YIG 2)
embedded (cf. Fig. 1), where the magnon mode in YIG 1 has
the MKN, while the auxiliary magnon mode in YIG 2 is linear.
By feeding two input fields with the same frequency into the
3D microwave cavity via its two ports, an effective pseudo-
Hermitian Hamiltonian of the cavity-magnon system can be
obtained, where the effective gain of the cavity mode results
from the CPA of the two input fields. In the absence of the
MKN (corresponding to �K = 0), we analyze the eigenvalues
of the pseudo-Hermitian Hamiltonian and find the EP3 in the
parameter space. Further, we show that the magnon frequency
shift �K (��) induced by the MKN can be amplified by the
EP3. Finally, we derive the output spectrum of the 3D cavity
and display how the amplification effect can be probed via the
output spectrum.

Recently, Ref. [70] has proposed to enhance the sensitivity
of the magnon-population response to the coefficient of MKN
via the anti-parity-time-symmetric phase transition, where the
strength of the drive field on the system is fixed. In contrast to
Ref. [70], we show that the EP3 can enhance the sensitivity of
the eigenvalue response to the small magnon frequency shift
induced by MKN in the present work. Our study provides a
possibility to detect the MKN in the region �K � �, which
is a complement to the existing approach (i.e., measuring

the transmission spectrum of the microwave cavity) [55–63]
and may find promising applications in designing low-power
nonlinear devices in cavity magnonics. In addition to MKN,
other weak signals (such as a weak magnetic field), which
can result in the changes of system parameters, can also be
detected using our scheme.

II. MODEL

As shown in Fig. 1, the considered cavity-magnon system
consists of two YIG spheres (YIG 1 and YIG 2) and a 3D
microwave cavity, where YIG 1 and YIG 2 are uniformly
magnetized to saturation by the bias magnetic fields B1 and
B2, respectively. Here, to enhance the detection sensitivity of
MKN in YIG 1, the YIG 2 provides a magnon mode serving as
an ancilla. Now the entire cavity-magnon system is described
by the Hamiltonian [56,57]

H = ωca†a +
∑
j=1,2

[ω jb
†
jb j + Kjb

†
jb jb

†
jb j + g j (a

†b j + ab†
j )]

+ �d (b†
1e−iωdt + b1eiωdt ), (1)

where a and a† (b j and b†
j with j = 1, 2) are the annihilation

and creation operators of the cavity mode (magnon mode
in YIG j) at frequency ωc (ω j), g j is the coupling strength
between the cavity mode a and the magnon mode b j , and �d

(ωd ) is the strength (frequency) of the drive field on YIG 1.
In the two YIG spheres, the magnetocrystalline anisotropy
results in the MKN term Kjb

†
jb jb

†
jb j , where the nonlinear

coefficient Kj can be continuously tuned from negative values
to positive values by adjusting the angle between the crystal-
lographic axis of YIG j and the bias magnetic field Bj [71,72].
Without loss of generality, we assume K1 > 0 and K2 = 0 in
our scheme. When macroscopic magnons are excited in YIG
1 (i.e., 〈b†

1b1〉 � 1), the system Hamiltonian in Eq. (1) can be
linearized as

H = ωca†a +
∑
j=1,2

[ω jb
†
jb j + g j (a

†b j + ab†
j )] + �K b†

1b1

+ �d (b†
1e−iωdt + b1eiωdt ), (2)

with the frequency shift �K = 2K1〈b†
1b1〉 of the magnon

mode b1, where the mean-field approximation b†
1b1b†

1b1 ≈
2〈b†

1b1〉b†
1b1 has been used [56,57].

When the magnon frequency shift �K is comparable to (or
larger than) the linewidths � of the peaks in the transmis-
sion spectrum of the cavity (i.e., �K � �), the MKN can be
probed by measuring the transmission spectrum of the cavity
[55–63], where the linewidths are comparable to the decay
rates of cavity mode and magnon modes. However, in the
case of �K � �, it is difficult to probe the MKN in this way
[18,69]. For measuring the magnon frequency shift �K in this
circumstance, we feed two weak input fields a(in)

1 and a(in)
2

with same frequency ωp into the microwave cavity via ports
1 and 2, respectively. Using the input-output formalism [73],
we get the equations of motion of the cavity-magnon system
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as follows:

ȧ = −i(ωc − iκc)a −
∑
j=1,2

(
ig jb j −

√
2κ j a(in)

j e−iωpt
)

+
√

2κc f (in)
a ,

ḃ1 = −i(ω1 + �K − iγ1)b1 − ig1a − i�de−iωdt +
√

2γ1 f (in)
b1 ,

ḃ2 = −i(ω2 − iγ2)b2 − ig2a +
√

2γ2 f (in)
b2 , (3)

where γ1 (γ2) is the decay rate of the magnon mode b1 (b2),
the total decay rate κc = κint + κ1 + κ2 of the cavity mode is
composed of the intrinsic decay rate κint and the decay rates κ1

and κ2 induced by the ports 1 and 2, and f (in)
a ( f (in)

bj ) with zero

mean value 〈 f (in)
a 〉 = 0 (〈 f (in)

bj 〉 = 0) describes the quantum
noise from the environment related to the cavity mode (the
magnon mode b j). Following the above equations of motion,
the expected values 〈a〉 and 〈b j〉 satisfy

〈ȧ〉 = −i(ωc − iκc)〈a〉 −
∑
j=1,2

(ig j〈b j〉 − √
2κ j

〈
a(in)

j

〉
e−iωpt ),

〈ḃ1〉 = −i(ω1 + �K − iγ1)〈b1〉 − ig1〈a〉 − i�de−iωdt ,

〈ḃ2〉 = −i(ω2 − iγ2)〈b2〉 − ig2〈a〉. (4)

In the absence of the two input fields (corresponding to
〈a(in)

1 〉 = 〈a(in)
2 〉 = 0), we denote 〈a〉 = A e−iωd t and 〈b j〉 =

B je−iωd t . When the input fields are considered, we assume
that the changes of 〈a〉 and 〈b j〉 can be expressed as A e−iωpt

and Bje−iωpt , i.e.,

〈a〉 = A e−iωdt + A e−iωpt ,
(5)

〈b j〉 = B je
−iωdt + Bje

−iωpt ,

where |A| � |A| and |B j | � |Bj | [56]. This assumption is
reasonable because, compared with the drive field, the input
fields are very weak and can be treated as a perturbation.
Now the magnon frequency shift becomes �K = 2K1|B1|2.
Substituting Eq. (5) into Eq. (4), we have

Ȧ = −i(δcd − iκc)A− ig1B1 − ig2B2,

Ḃ1 = −i(δ1d + �K − iγ1)B1 − ig1A− i�d, (6)

Ḃ2 = −i(δ2d − iγ2)B2 − ig2A,

and

Ȧ = −i(δcp − iκc)A −
∑
j=1,2

(
ig jB j − √

2κ j
〈
a(in)

j

〉)
,

Ḃ1 = −i(δ1p + �K − iγ1)B1 − ig1A, (7)

Ḃ2 = −i(δ2p − iγ2)B2 − ig2A,

where δcd = ωc − ωd (δjd = ω j − ωd ) is the frequency detun-
ing between the cavity mode (magnon mode j) and the drive
field and δcp = ωc − ωp (δjp = ω j − ωp) is the frequency de-
tuning between the cavity mode (magnon mode j) and the two
input fields. Equation (6) determines the magnon frequency
shift �K , while Eq. (7) determines the output spectrum of the
cavity.

According to the input-output theory [73], the output field
〈a(out)

j 〉 from the port j of the cavity is given by〈
a(out)

j

〉 = √
2κ j A − 〈

a(in)
j

〉
. (8)

Under the pseudo-Hermitian conditions [cf. Eq. (12) in
Sec. III], the CPA may occur by carefully choosing appro-
priate parameters of the two input fields [cf. Eqs. (16) and
(17) in Sec. III] [29]. The CPA means that the two input fields
are nonzero but there are no output fields, i.e., 〈a(in)

1 〉 �= 0
and 〈a(in)

2 〉 �= 0 but 〈a(out)
1 〉 = 〈a(out)

2 〉 = 0 [28,32,33]. When
〈a(out)

1 〉 = 〈a(out)
2 〉 = 0, 〈

a(in)
j

〉 = √
2κ j A. (9)

Inserting the above relation into Eq. (7) to eliminate 〈a(in)
j 〉,

Eq. (7) can be rewritten as⎛
⎝ Ȧ

Ḃ1

Ḃ2

⎞
⎠ = −iHeff

⎛
⎝ A

B1

B2

⎞
⎠, (10)

where

Heff =
⎛
⎝δcp + iκg g1 g2

g1 δ1p + �K − iγ1 0
g2 0 δ2p − iγ2

⎞
⎠ (11)

is the effective non-Hermitian Hamiltonian of the cavity-
magnon system. Due to the occurrence of CPA, the cavity
mode has an effective gain κg = κ1 + κ2 − κint (> 0) [28,29].

III. ENHANCING THE DETECTION SENSITIVITY
OF MKN

A. EP3 in the cavity-magnon system

In this section, we study the EP3 in the cavity-
magnon system when �K = 0. Usually, the eigenvalues
of a non-Hermitian Hamiltonian are complex. However,
when the system parameters satisfy the pseudo-Hermitian
conditions [29],

κg = (1 + η)γ2,

�2 = −η�1, (12)

�2
1 = 1 + ηk2

(1 + η)η
g2

1 − γ 2
2 , g1 � gmin,

the effective non-Hermitian Hamiltonian Heff in Eq. (11) has
the pseudo-Hermiticity and thus can also own either three real
eigenvalues or one real and two complex-conjugate eigenval-
ues [74–76]. The parameter η = γ1/γ2 (k = g2/g1) denotes
the ratio between the decay rates γ1 and γ2 (coupling strengths
g1 and g2), � j = ω j − ωc is the frequency detuning of the
magnon mode j relative to the cavity mode, and gmin =
[(1 + η)η/(1 + ηk2)]1/2γ2 is the allowed minimal value of the
coupling strength g1 for ensuring �2

1 � 0.
For engineering the EP3 under the pseudo-Hermitian con-

ditions in Eq. (12), the parameters η and k must satisfy the
following constraint [29]:

k =
(

1 + 2η

2η + η2

)3/2

. (13)

In the symmetric case of η = k = 1, the non-Hermitian
Hamiltonian Heff has three eigenvalues, �0 = δcp and �± =
δcp ±

√
3g2

1 − 4γ 2
2 [29]. Obviously, �0 is real and indepen-

dent of the coupling strength g1 and the decay rate γ2, while
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�± are functions of g1 and γ2. To have three real eigenvalues,
the coupling strength g1 should be in the region g1 > gEP3,
where gEP3 = 2γ2/

√
3. For g1 = gEP3 in particular, the three

eigenvalues �± and �0 coalesce to �± = �0 = �EP3 = δcp

and the corresponding three eigenvectors of Heff also coalesce
to |α〉± = |α〉0 = |α〉EP3 = 1√

3
(1,− 1+√

3i
2 , 1−√

3i
2 )T . This co-

alescent point at g1 = gEP3 is referred to as the EP3. While
gmin � g1 < gEP3, �± become complex. For the asymmet-
ric case with η �= 1 and k �= 1, the expressions of �± and
�0 are cumbersome and not shown here, and we only give
the coalesced eigenvalues �± = �0 = �EP3 at g1 = gEP3 =
[2η(η2 + 2η)1/2/(1 + 2η)]γ2, where [29]

�EP3 = δcp −
√

3(η − 1)η

2η2 + 5η + 2
γ2. (14)

At the EP3, the three eigenvectors of Heff coalesce to

|α〉EP3 = 1√
N

(
1,− 2

√
η2 + 2η√

3 − i(1 + 2η)
,

2
√

2η + 1√
3η + i(2 + η)

)T

,

(15)
with the normalization factor N = (2η2 + 5η + 2)/(η2 +
η + 1), i.e., |α〉± = |α〉0 = |α〉EP3. Note that the results in
Eqs. (14) and (15) are also valid for the symmetric case of
η = k = 1.

As stated in Sec. II, the effective non-Hermitian Hamil-
tonian Heff in Eq. (11) is obtained in the presence of CPA.
For engineering the CPA in the pseudo-Hermitian conditions
in Eq. (12), the strengths of the two input fields should
satisfy [29] 〈

a(in)
2

〉
〈
a(in)

1

〉 =
√

κ2

κ1
. (16)

In addition, the same frequency of the two input fields need to
be equal to the real eigenvalues of Heff [29], i.e.,

ω(CPA)
p = �±,0 when Im[�±,0] = 0. (17)

Therefore, the eigenvalues and the EP3 of the pseudo-
Hermitian cavity-magnon system can be probed by measuring
the CPA via the output spectrum of the cavity in experiments
[28,32,33].

B. Eigenvalue response to the MKN near the EP3

Here we investigate the eigenvalue response to the MKN in
YIG 1 near the EP3. Considering the magnon frequency shift
�K ( �= 0), the three eigenvalues of the cavity-magnon system
can be obtained by solving the corresponding characteristic
equation

|Heff − �I| = 0, (18)

with an identity matrix I . Because the magnon frequency
shift �K is much smaller than other parameters of the cavity-
magnon system, we can perturbatively expand the eigenvalue
� near the EP3 as

� = �EP3 + λ1ξ
1/3γ2 + λ2ξ

2/3γ2 (19)

using a Newton-Puiseux series [77–79], where only the first
two terms are considered, and �EP3 is given in Eq. (14). The
coefficients λ1 and λ2 are complex, while ξ = �K/γ2 (� 1)

is real. With Eq. (19), the characteristic equation of the cavity-
magnon system in Eq. (18) can be expressed as

f1ξ + f4/3ξ
4/3 + f5/3ξ

5/3 + f2ξ
2 + f7/3ξ

7/3 = 0, (20)

where the coefficients are

f1 = λ3
1 − 4η2(1 − √

3i)

1 + 2η
,

f4/3 = 3λ2
1λ2 − 2η[

√
3 − i(1 + 2η)]

1 + 2η
λ1,

f5/3 = 3λ1λ
2
2 − 2λ2

1 − 2η[
√

3 − i(1 + 2η)]

1 + 2η
λ2,

f2 = λ3
2 − 4λ1λ2,

f7/3 = −2λ2
2. (21)

Since ξ � ξ 4/3 � ξ 5/3 � ξ 2 � ξ 7/3, we can ignore the con-
tributions from the last three terms in Eq. (20), and Eq. (20)
is reduced to f1ξ + f4/3ξ

4/3 = 0. To ensure the relation f1ξ +
f4/3ξ

4/3 = 0 is valid for any ξ , the coefficients f1 and f4/3

must be zero, i.e., f1 = f4/3 = 0. Solving f1 = f4/3 = 0, we
obtain three sets of solutions for the coefficients λ1 and λ2,

λ
(l )
1 =

(
8η2

1 + 2η

)1/3

eiθl ,

λ
(l )
2 = 2η[

√
3 − i(1 + 2η)]

3(1 + 2η)λ(l )
1

, (22)

with l = ±, 0, where θ+ = 17π/9, θ− = 11π/9, and θ0 =
5π/9. Now the three complex eigenvalues of the cavity-
magnon system read

�+ = �EP3 + λ
(+)
1 ξ 1/3γ2 + λ

(+)
2 ξ 2/3γ2,

�0 = �EP3 + λ
(0)
1 ξ 1/3γ2 + λ

(0)
2 ξ 2/3γ2,

�− = �EP3 + λ
(−)
1 ξ 1/3γ2 + λ

(−)
2 ξ 2/3γ2. (23)

Clearly, the changes of the eigenvalues, �±,0 − �EP3, are
proportional to ξ 1/3 in the case of ξ � 1, i.e., �±,0 − �EP3 ≈
λ

(±,0)
1 ξ 1/3γ2.

By numerically solving the characteristic equation in
Eq. (18), we further study the eigenvalue response to the MKN
near the EP3 when �K/γ2 < 0.3. In the symmetric case of
η = 1, we plot the changes of the real and imaginary parts of
�± and �0, (Re[�±,0] − �EP3)/γ2 and Im[�±,0]/γ2, as func-
tions of magnon frequency shift �K/γ2 (i.e., ξ ) in Figs. 2(a)
and 2(b), where the thick curves correspond to the numerical
results and the thin curves correspond to the analytical results
in Eq. (23). The analytical results and the numerical results
are almost consistent for �K/γ2 < 0.1, while the analytical
results deviate from the numerical results when �K/γ2 > 0.1
because the condition �K/γ2 � 1 has been used in deriving
Eq. (23). Obviously, (Re[�±,0] − �EP3)/γ2 and Im[�±,0]/γ2

versus �K/γ2 sharply change. This is because the small fre-
quency shift �K is amplified by the EP3 [50,51]. In the region
ξ � 1, (Re[�±,0] − �EP3)/γ2 and Im[�±,0]/γ2 follow the
cube root of ξ , i.e., (Re[�±,0] − �EP3)/γ2 ≈ Re[λ(±,0)

1 ]ξ 1/3

and Im[�±,0]/γ2 ≈ Im[λ(±,0)
1 ]ξ 1/3. It is very different from

the existing approach of measuring MKN, where the energy
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FIG. 2. Changes of the real and imaginary parts of the eigenval-
ues �± and �0, (Re[�±,0] − �EP3)/γ2 and Im[�±,0]/γ2, versus the
magnon frequency shift �K/γ2 near the EP3, where η = 1 in (a), (b),
while η = 2 in (c), (d). In (a)–(d), the thick curves correspond to the
numerical results obtained by numerically solving the characteristic
equation in Eq. (18) and the thin curves correspond to the analytical
results in Eq. (23). Note that the thick curves almost overlap the thin
curves in (b), (d).

splitting follows a ξ dependence [55–57]. Further, we find
that the amplification effect is more significant for a larger
value of η [cf. Figs. 2(a) and 2(c); Figs. 2(b) and 2(d)], which
results from the monotonous increase of |λ(l )

1 | = [8η2/(1 +
2η)]1/3 versus η. Considering the experimentally accessible
parameters, we choose 1 � η � 3 in our study [1,28,29]. This
amplification effect of the EP3 can be used to measure the
MKN in the case of �K/γ2 < 1 (cf. Sec. IV).

IV. MEASURING THE MKN VIA THE OUTPUT
SPECTRUM OF THE CAVITY

In the cavity-magnon system, we can measure the eigen-
value response to the MKN via the output spectrum of
the cavity [28,29]. In the theory, the output spectrum can
be derived using Eqs. (7) and (8). At the steady state, we solve
Eq. (7) with Ȧ = Ḃ1 = Ḃ2 = 0 and obtain the change A of the
cavity field 〈a〉 due to the two input fields,

A =
√

2κ1
〈
a(in)

1

〉 + √
2κ2

〈
a(in)

2

〉
κc + iδcp + ∑

(ωp)
, (24)

where ∑
(ωp) = g2

1

γ1 + i(δ1p + �K )
+ g2

2

γ2 + iδ2p
(25)

is the self-energy. Correspondingly, the two output fields
〈a(out)

1 〉 and 〈a(out)
2 〉 in Eq. (8) can be expressed as

〈
a(out)

1

〉 = 2κ1
〈
a(in)

1

〉 + 2
√

κ1κ2
〈
a(in)

2

〉
κc + iδcp + ∑

(ωp)
− 〈

a(in)
1

〉
,

〈
a(out)

2

〉 = 2
√

κ1κ2
〈
a(in)

1

〉 + 2κ2
〈
a(in)

2

〉
κc + iδcp + ∑

(ωp)
− 〈

a(in)
2

〉
. (26)
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FIG. 3. (a) Output spectrum |S(ωp)|2 of the cavity at the EP3,
where �K = 0. (b) The output spectrum |S(ωp)|2 of the cavity near
the EP3 when �K �= 0 (e.g., �K/γ2 = 0.01). The (red) dashed ver-
tical lines in (b) highlight the locations of the two dips in the output
spectrum. Other parameters are chosen to be γ1/γ2 = 1, κint/γ2 = 1,
and κ1/γ2 = κ2/γ2 = 1.5.

It follows from Eq. (26) that 〈a(out)
1 〉 = S(ωp)〈a(in)

1 〉 and
〈a(out)

2 〉 = S(ωp)〈a(in)
2 〉 under the constraint in Eq. (16), where

S(ωp) = 2κ1 + 2κ2

κc + iδcp + ∑
(ωp)

− 1 (27)

is the output spectrum of the microwave cavity. It can be easily
verified that, in the case of �K = 0, the output spectrum S(ωp)
is zero [i.e., S(ωp) = 0] when the system parameters satisfy
the pseudo-Hermitian conditions in Eq. (12) and the same
frequency of the two input fields is given in Eq. (17) [29].

At the EP3, the three eigenvalues �± and �0 of the
cavity-magnon system coalesce to �EP3, and the CPA oc-
curs at ω(CPA)

p = �EP3, i.e., there is only one CPA point with
|S(ωp)| = 0 in the output spectrum [see Fig. 3(a)]. In the
presence of the MKN (i.e., �K �= 0), the CPA disappears, and
there are two dips in the output spectrum highlighted by the
two (red) dashed vertical lines in Fig. 3(b). The locations and
linewidths of the dips in the output spectrum are determined
by the real and imaginary parts of the complex eigenvalues of
the cavity-magnon system given in Eq. (23). The left dip at
ω

(dip1)
p ≈ Re[�−] (right dip at ω

(dip2)
p ≈ Re[�+]) corresponds

to the eigenvalue �− (�+). Note that because |Im[�0]| >

|Im[�±]| [cf. Figs. 2(b) and 2(d)], there is no dip in the output
spectrum corresponding to the eigenvalue �0. Therefore, we
can measure the MKN via the output spectrum of the cavity.

To characterize the detection sensitivity enhancement of
MKN near the EP3, we introduce an experimentally measur-
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FIG. 4. (a) Distance δωp/γ2 between the two dips in the output
spectrum of the cavity versus the magnon frequency shift �K/γ2 for
different η. The inset displays the logarithmic relationship between
δωp/γ2 and �K/γ2 for different η, where the three (violet) thin
curves with a same slope of 1/3 serve as guides to the eyes. (b) De-
tection sensitivity enhancement factor δωp/�K versus the magnon
frequency shift �K/γ2 for different η. Here η = 1 for the (black)
solid curve, η = 2 for the (red) dashed curve, and η = 3 for the
(blue) dotted curve. Other parameters are chosen to be γ1/γ2 = η,
κint/γ2 = 1, and κ1/γ2 = κ2/γ2 = 1 + 0.5η.

able quantity

δωp = ω(dip2)
p − ω(dip1)

p , (28)

which presents the distance between the two dips in the output
spectrum of the cavity. By numerically solving the output
spectrum S(ωp) in Eq. (27), we plot the frequency difference
δωp/γ2 as a function of the magnon frequency shift �K/γ2

for different values of η in Fig. 4(a), where δωp/γ2 increases
monotonically with �K/γ2. Obviously, for a given value of
�K/γ2, the corresponding frequency difference δωp/γ2 be-
tween the two dips is far larger than the magnon frequency
shift �K/γ2, i.e., δωp � �K . In contrast, the frequency dif-
ference induced by �K is approximately equal to �K in the
existing approach of measuring MKN [55–57]. This means
that the magnon frequency shift �K is amplified by the EP3.
For sufficiently small �K/γ2, δωp follows a (�K/γ2)1/3 de-
pendence [see the inset in Fig. 4(a)]. Especially, for a larger
value of η, the amplification effect of the EP3 is more sig-
nificant. Moreover, we also display the detection sensitivity
enhancement factor δωp/�K versus the magnon frequency
shift �K/γ2 in Fig. 4(b), where δωp/�K monotonically de-
creases for different η. In the region �K/γ2 � 1, δωp/�K

is proportional to (�K/γ2)−2/3. When �K/γ2 tends to 0, the
sensitivity enhancement factor δωp/�K tends to infinity, i.e.,
δωp/�K diverges at �K/γ2 = 0.

V. DISCUSSIONS AND CONCLUSIONS

In our study, all results are based on the equations of
motion in Eq. (4), which describes the average behavior
of the cavity-magnon system in the mean-field approxima-
tion by neglecting the impacts of noises [including classical
noise related to fluctuations of system parameters and quan-
tum noise related to terms

√
2κc f (in)

a and
√

2γ j f (in)
bj in

Eq. (3)] and quantum fluctuations (related to δa = a − 〈a〉 and
δb j = b j − 〈b j〉). Using Eq. (4), we investigate the detection
sensitivity enhancement of MKN by deriving the effective
non-Hermitian Hamiltonian Heff of the cavity-magnon system
in Eq. (11) and the output spectrum S(ωp) of the microwave
cavity in Eq. (27). This procedure is widely applied in study-
ing EP-based sensors [50–54], and the related theoretical
predictions have been demonstrated experimentally in various
physical systems [80]. For example, the detection sensitivity
enhancement factor of 23 has been realized experimentally in
a ternary microring system [77].

However, in the region with the signal being comparable
to the noises and quantum fluctuations, the impacts of noises
and quantum fluctuations on the EP-based sensor should be
considered [80]. The classical noise caused by the technical
limitation can reduce the resolvability of frequency differ-
ence δωp by broadening the linewidth of the output spectrum
S(ωp) [81,82]. In principle, the classical noise can be made
arbitrarily small in the cavity-magnon system. Different from
the classical noise, the quantum noise cannot be made arbi-
trarily small owing to the vacuum noise. Due to the quantum
noise and quantum fluctuations, the diverging sensitivity en-
hancement factor [cf. Fig. 4(b) and related discussions] does
not necessarily lead to arbitrary high measurement preci-
sion, where the measurement precision refers to the smallest
measurable change of signal [83–86]. This is because the
EP-based sensor is sensitive to not only the signal but also
the quantum noise, and thus the quantum-limited signal-to-
noise ratio cannot be improved [80]. Following the procedures
in Refs. [84–86], one can derive the upper bound of the
signal-to-noise ratio by calculating the quantum Fisher infor-
mation based on Heisenberg-Langevin equations in Eq. (3).
For the MKN term K1b†

1b1b†
1b1, the corresponding effective

Hamiltonian for quantum fluctuations can be expressed as
Hflu = 2�Kδb†

1δb1 + χδb†
1δb†

1 + χ∗δb1δb1 with χ = K1〈b1〉2

[64–66]. The two-magnon terms χδb†
1δb†

1 and χ∗δb1δb1 can
squeeze the quantum fluctuations of magnon mode b1, which
can be transferred to cavity mode a and magnon mode b2

via their interactions and leads to the squeezing of cavity
mode a and magnon mode b2 [66]. The squeezing of quantum
fluctuations induced by MKN may be helpful for improving
the measurement precision [87,88].

Before concluding, we briefly analyze the experimental
feasibility of the present scheme. In cavity magnonics, both
the intrinsic decay rate of the 3D microwave cavity as well as
the decay rate of the magnon mode are of the order 1 MHz
(i.e., κint/2π ∼ 1 MHz and γ1,2/2π ∼ 1 MHz) [1], while the
decay rates κ1,2 due to the two ports of the cavity can be
tuned from 0 to 8 MHz [28]. Since the frequency of the
magnon mode in the YIG is proportional to the bias magnetic
field, the frequencies ω1,2 can be easily controlled [8,60]. In
Ref. [28], the EP2 based on CPA has been observed, where
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the cavity-magnon coupling can be adjusted (ranging from
0 to 9 MHz) via moving the YIG sphere, and the relative
amplitudes (relative phases) of the two input fields, 〈a(in)

1 〉
and 〈a(in)

2 〉, are also tunable via a variable attenuator (a phase
shifter). In addition, the magnon frequency shift �K caused
by the MKN is dependent on the strength of the drive field
on the magnon mode [55,57,58]. These available conditions
ensure that our scheme in the present work is experimentally
accessible.

In conclusion, we have presented a feasible scheme to
enhance the detection sensitivity of MKN via the CPA around
an EP3. In the proposed scheme, the cavity-magnon system
consists of a 3D microwave cavity and two YIG spheres.
With the assistance of the CPA, an effective pseudo-Hermitian

Hamiltonian of the cavity-magnon system can be obtained,
which makes it possible to engineer the EP3 in the parameter
space. Considering the magnon frequency shift caused by the
MKN, we find that it can be amplified by the EP3. Moreover,
we show that this amplification effect can be measured using
the output spectrum of the 3D cavity. Our proposal paves a
way to measure the MKN in the case of �K � �.
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