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Linear response theory for the case of a uniaxially anisotropic superparamagnetic nanoparticle suspended in
a fluid is developed for the situations where, along with the probing field, a stationary bias field is present. The
built up description allows for both mechanisms of magnetic relaxation available to the particle: the internal
(relaxation of the magnetic moment inside the particle) and external (relaxation together with the particle
body due to its Brownian orientation diffusion in a fluid). In this framework, longitudinal dynamic magnetic
susceptibility of such a particle is considered. It is confirmed that at zero bias field, frequency dependence of
the out-of-phase component of the dynamic susceptibility (absorption spectrum) has two maxima if anisotropy
energy is only several times greater than thermal energy. The presence of these peaks is a direct consequence
of the bistability of uniaxial magnetic nanoparticles. The magnetizing field changes position and height of these
maxima. Moreover, it is shown that in a presence of the bias the spectrum can acquire a third maximum if the
Brownian rotation of the suspended particle is retarded with respect to establishment of the intrinsic magnetic
equilibrium in it. Necessary conditions for such a situation are analyzed, and criteria for the possible appearance
of the additional third absorption peak are indicated.

DOI: 10.1103/PhysRevB.107.064416

I. INTRODUCTION

The properties of magnetic particle ensembles dispersed
in various media are a subject of intense studies for several
decades. Despite that, the interest to these systems yet grows
since the prospects of their application do not stop to extend.
Just a very incomplete list of advanced trends comprises catal-
ysis, spintronics, flexible [1] and organic [2] electronics, and
diverse biomedical techniques [3–6].

An inherent property of magnetic nanoparticles is
superparamagnetism—spontaneous remagnetizing—caused
by thermal orientation fluctuations of the magnetic moment.
To date, the magnetic response of mechanically fixed
superparamagnetic nanoparticles has been well studied, see
for example Ref. [7].

The theory of the magnetic response of nanoparticles sus-
pended in a fluid is much less developed. This concerns
even a seemingly nonsophisticated situation where the par-
ticles are uniaxial, i.e., possess the simplest type of magnetic
anisotropy, and the exciting field is weak, so that the problem
may be solved in the linear response approximation. The
cornerstone of the modern theory of nanoparticle magnetody-
namics in a fluid is a Fokker-Planck-type kinetic equation for
the joint distribution function of two angle variables: the
directions of the particle magnetic moment and its easy-
magnetization axis. For the first time, this equation had been
derived in Ref. [8] from semiphenomenological considera-
tions in the framework of the so called “egg” model. Much
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later, in Refs. [9] and [10] the appropriate stochastic Langevin
equations for that model were formulated.

Finding a solution of the kinetic equation is a quite
complicated task due to the multidimensionality of the con-
figurational space one needs to deal with. An eligible method
to handle the problem was outlined in Ref. [11]. Its main idea
is to expand the sought-for distribution function over a full set
of functions defined in the phase space of the system and then
to transit to recurrence-differential relations for the functional
expansion coefficients. In Ref. [11] as the basis for that expan-
sion, a direct product of two sets of spherical harmonics has
been chosen: one of them is defined with respect to the angle
coordinates of the magnetic moment vector whereas the other
is with respect to the angle coordinates of the anisotropy axis.
This factorization enabled the authors to obtain numerically
the frequency dependence of dynamic magnetic susceptibility
of a superparamagnetic particle suspended in a fluid under
zero constant field. Later on, in Ref. [12] simple and handy
approximation formulas for this dependence were found.
Another way to solve the kinetic equation was presented in
Ref. [13]. Its essential distinction from that of Ref. [11] is the
change of representation for the kinetic operator. Indeed, in
Ref. [13] the basis for the functional space is built on the so-
called bipolar harmonics which realize an irreducible tensor
product of two spherical harmonics whose sets of arguments
are different.

An alternative equation for the joint distribution function
was proposed in Ref. [14]. Recently it was used in Ref. [15]
to study magnetic response of a particle suspended in a fluid
and subjected to a constant magnetizing field. By perform-
ing numerical calculations, authors of Ref. [15] inferred that
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at any bias field dynamic magnetic susceptibility of such a
particle could be described by a simple Debye-like formula.
Moreover, it was stressed that qualitatively the same finding
should follow from the kinetic equation derived in Ref. [8].

Nonetheless, very recent results of Ref. [16] do not cor-
respond to this conclusion. Based on the “egg” model, the
authors of Ref. [16] have analyzed both the relaxation spec-
trum and frequency dependences of the dynamic magnetic
susceptibility of an ensemble of nanoparticles suspended in
a fluid, and showed that absorption spectrum of such a system
can possess two maxima, and therefore, in general case, it
is not described by a single Lorentz-type function, as it was
stated in Ref. [15].

In this paper, within the framework of Ref. [13], a theory of
the linear response of superparamagnetic particles suspended
in a fluid in the presence of a constant magnetizing field
has been extended. The proposed description not only con-
firms results of Ref. [16] but also leads to another important
conclusion: application of the bias field to a suspension of
superparamagnetic nanoparticles may result in an additional,
third low-frequency absorption peak.

II. SOLUTION OF THE KINETIC EQUATION

A. Kinetic equation (gyration-free approximation)

Consider a single-domain ferromagnetic (or ferrite)
nanoparticle with magnetic moment μ whose value at the
given temperature is constant. It is assumed that the parti-
cle possesses uniaxial magnetic anisotropy with the energy
density K and direction defined by a unit vector n. As the
easy-magnetization axis is fixed with respect to the particle
body, vector n may be taken as a marker indicating orientation
of the particle as a mechanical object.

In a nanosuspension the direction of the particle magnetic
moment—it is convenient to describe it by a unit vector e =
μ/μ—changes randomly due to two reasons. First, vector
e, as well as n, rotate chaotically together with the particle
under collisions with molecules of the fluid environment.
Second, provided that thermal energy is comparable with the
anisotropy one, vector e deviates spontaneously from the easy
axis, so that the angle between e and n is a fluctuating quantity.

In such a situation, a full account of the particle state
is delivered by the joint distribution function W (t, e, n) that
depends on the orientations of both reference unit vectors.
This distribution function evolves according to a closed equa-
tion that has the form

∂W

∂t
= ŜW, (1)

where Ŝ is the operator that determines the behavior of the
system out of equilibrium (kinetic operator). All the observ-
able magnetic and orientation characteristics of an assembly
of noninteracting particles at any given time instant can
be found by averaging the respective phase variable with
W (t, e, n).

In Refs. [8] and [13] it is shown that, provided the reference
time of the magnetic field variation is far greater than the
period of magnetic moment precession, the kinetic operator

may be presented in the gyration-free approximation as

ŜW = 1

2τB
(Ĵe + Ĵn) · W (Ĵe + Ĵn)

(
U

T
+ ln W

)

+ 1

2τD
Ĵe · W Ĵe

(
U

T
+ ln W

)
, (2)

where U is the orientation-dependent part of the magnetic
energy of the particle, T is the temperature of the system, and
vector operators Ĵe and Ĵn are defined as

Ĵe = e × ∂

∂e
, Ĵn = n × ∂

∂n
. (3)

Solution of equation ŜW0 = 0 renders the equilibrium distri-
bution function of the system:

W0(e, n) = 1

Z
exp (−U/T ), Z =

∫
dn

∫
de exp (−U/T ),

(4)
which means that the kernel of the kinetic operator has the
Boltzmann form.

The times τB and τD in Eq. (2) are expressed in terms of the
material parameters of the particle and its environment:

τB = 3ηV/T, τD = (1 + α2)μ/2αγ T, (5)

where η is the dynamic viscosity of the fluid, V is the particle
volume, α is the damping parameter of Larmor precession,
and γ is the gyromagnetic ratio. Physically, τB defines the
reference time of Brownian rotary diffusion of the particle
body, whereas τD sets the time scale of the internal superpara-
magnetic relaxation of the magnetic moment (e with respect
to n) for the case where thermal energy is far greater than the
anisotropy one.

In the presence of external field H , the particle energy U
comprises the Zeeman and anisotropy contributions:

U = −μ · H − KV (e · n)2. (6)

In units of thermal energy, function Eq. (6) takes the form

U

T
= −ξ (e · q) − σ (e · n)2, (7)

where nondimensional parameters for the magnetic field
strength and anisotropy energy are introduced as

ξ = μH
/

T, σ = KV/T, (8)

and q = H/H is a unit vector in the direction of applied field.

B. Matrix form of the kinetic equation

To solve Eq. (1), the distribution function W (t, e, n) is
expanded, following the scheme of Ref. [13], in a series of
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bipolar harmonics Y LM
l1l2

:

W (t, e, n) =
∞∑

l ′1=0

∞∑
l ′2=0

l ′1+l ′2∑
L′=|l ′1−l ′2|

L′∑
M ′=−L′

bL′M ′
l ′1l ′2

(t )Y L′M ′
l ′1l ′2

(e, n), (9)

with the explicit expressions for the harmonics, see Ref. [17]:

Y LM
l1l2 (e, n) =

l1∑
m1=−l1

l2∑
m2=−l2

CLM
l1m1l2m2

Yl1m1 (e)Yl2m2 (n),

m2 = M − m1, (10)

where Ylm, defined on a sphere of unit radius, are

Ylm(ϑ, ϕ) = (−1)m

√
(2l + 1)(l − m)!

4π (l + m)!
Plm(cos ϑ )eimϕ,

− l � m � l. (11)

Here Plm denotes the associated Legendre polynomials. The
employed bipolar harmonics make a full set in the functional
space whose elements depend on the angular coordinates of
vectors e and n and are orthonormalized:

〈
Y LM

l1l2

∣∣Y L′M ′
l ′1l ′2

〉 =
∫

de
∫

dn
(
Y LM

l1l2 (e, n)
)∗ · Y L′M ′

l ′1l ′2
(e, n) = δl1l ′1δl2l ′2δLL′δMM ′ ,

∫
de =

∫ 2π

0
dϕe

∫ π

0
dϑe sin ϑe,

∫
dn =

∫ 2π

0
dϕn

∫ π

0
dϑn sin ϑn. (12)

The specific advantage of functions Y LM
l1l2

is that they are eigenfunctions of the kinetic operator in situations where the magnetic
energy is far lower than thermal one [13]:

ŜY LM
l1l2 = −λLM

l1l2 · Y LM
l1l2 , λLM

l1l2 = L(L + 1)

2τB
+ l1(l1 + 1)

2τD
, at

U

T
→ 0. (13)

In other words, in this limit the kinetic operator matrix is diagonal.
In a general case U/T is not constant and depends on the orientations of e and n, and the matrix of operator Ŝ loses diagonality.

The essential advantage of bipolar harmonic basis is that the resulting matrix comes out quite sparse. As it is shown in Ref. [13],
under arbitrary ξ and σ the matrix elements of the kinetic operator are

〈l1, l2, L, M|Ŝ|l ′
1, l ′

2, L′, M ′〉 =
∫

de
∫

dn
(
Y LM

l1l2 (e, n)
)∗ · ŜY L′M ′

l ′1l ′2
(e, n)

= 1

2τB

{
−L(L + 1) · δl1l ′1δl2l ′2δLL′δMM ′ − ξ

2π√
3

[L′(L′ + 1) − L(L + 1) − 2]Bl1l2L
l ′1l ′2L′ 1 0 1

}

+ 1

2τD

{
−l ′

1(l ′
1 + 1) · δl1l ′1δl2l ′2δLL′δMM ′ − ξ

2π√
3

CL M ′
L′ M ′ 1 0[l ′

1(l ′ + 1) − l1(l1 + 1) − 2] Bl1l2L
l ′1l ′2L′ 1 0 1

− σ
4π√

45
CL M ′

L′ M ′ 1 0[l ′
1(l ′ + 1) − l1(l1 + 1) − 6] Bl1l2L

l ′1l ′2L′ 2 2 0

}
. (14)

The coefficients of Eq. (14) expand as

B
l ′′1 l ′′2 L′′

l ′1l ′2L′l1l2L =
√

(2l ′
1 + 1)(2l ′

2 + 1)(2L′ + 1)(2l1 + 1)(2l2 + 1)(2L + 1)

4π
C

l ′′1 0
l ′10 l1 0 C

l ′′2 0
l ′20 l20

⎧⎪⎨
⎪⎩

l ′
1 l1 l ′′

1

l ′
2 l2 l ′′

2

L′ L L′′

⎫⎪⎬
⎪⎭, (15)

where braces denote the Wigner 9 j symbol [17].

Substituting series Eq. (9) in Eq. (1), one gets a set of linear
equations for coefficients bL′M ′

l ′1l ′2
(t ):

dbL,M
l1l2

(t )

dt
=

∞∑
l ′1=0

∞∑
l ′2=0

l ′1+l ′2∑
L′=|l ′1−l ′2|

L′∑
M ′=−L′

× 〈l1, l2, L, M|Ŝ|l ′
1, l ′

2, L′, M ′〉 bL′M ′
l ′1l ′2

(t ), (16)

which is nonuniform as its right-hand part includes the terms
proportional to time-independent coefficient b00

00 = 1/4π . By
introducing a column vector X whose components consist of
the ordered in a certain way coefficients bLM

l1l2
(t ), one casts the

set of equations in Eq. (16) in a compact matrix form:

2τD
dX
dt

= ÂX + B. (17)

The ordering of coefficients is performed as follows. Each
element of vector X is associated with four numbers (‘mul-
tiindex’) in such a way that X [l1, l2, L, M] = bLM

l1l2
. The

elements of matrix Â are obtained by multiplying Eq. (14)
by 2τD whereas the numbers constituting column vector B
are proportional to b00

00. After these rearrangements, numerical
integration of the set in Eq. (17) may be carried out by any
conventional method.
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C. High-anisotropy approximation

Provided the anisotropy energy is much higher than
thermal energy σ = KV /T 	 1, one may neglect the non-
collinearity of vectors e and n, and use the so-called
‘rigid-dipole’ approximation. In this limit, the magnetic
energy in Eq. (7) reduces to U/T = −ξ (n · h), and the dis-
tribution function depends only on the angle coordinates of
vector n and time, W = W (t, n). As a result, the kinetic oper-
ator simplifies:

ŜW = 1

2τB
Ĵn · W Ĵn

(
U

T
+ ln W

)
, (18)

so that appropriate basis may be constructed of plain spherical
harmonics Ylm, and the distribution function expands as

W (t, n) =
∞∑

l ′=0

l ′∑
m′=−l ′

bl ′m′ (t )Yl ′m′ (n). (19)

Upon substituting this expression in the kinetic equation, one
arrives at the set

dblm

dt
=

∞∑
l ′=0

l∑
m′=−l

〈l, m|Ŝ|l ′, m′〉bl ′m′ (t ), (20)

where the operator matrix elements are

〈l, m|Ŝ|l ′, m′〉 =
∫

dnY ∗
l,m · ŜYl,m = 1

2τB

{
−ξ

√
l ′2 − m′2

4l ′2 − 1
(l ′ − 1)δl ′−1,l · δm′,m + ξ

√
((l ′ + 1)2 − m′2

4(l ′ + 1)2 − 1
(l ′ + 2)δl ′+1,l · δm′m

− l ′(l ′ + 1)δll ′ · δmm′

}
. (21)

To arrange this set to the same form Eq. (17), as in the afore
considered case of finite σ ′s, it suffices to introduce a column
vector X with components blm and include in vector B all the
terms proportional to b00 = 1/

√
4π .

III. LINEAR APPROXIMATION AND LONGITUDINAL
DYNAMIC SUSCEPTIBILITY

In general, the developed approach enables one to eval-
uate the magnetic response of a superparamagnetic particle
suspended in a fluid for any time dependence of external
field. Hereby the case where the system is subjected to a
combination of a stationary bias field H0 and low-amplitude
linearly polarized AC field, h(t ) is considered. It is assumed
that those fields are collinear, so that the net nondimensional
field acting on a particle is ξ0 + ξ (t ), with ξ0 = μH0/T and
ξ (t ) = μh(t )/T . Given that, matrix Â and column vector B of
Eq. (17) are presented as

Â = Â0 + ξ (t )Â1, B = B0 + ξ (t )B1,

Â0 = Â(ξ0), B0 = B(ξ0),

and the solution is constructed as a sum of a stationary equi-
librium and a time-dependent perturbed parts:

X = X 0 + X 1. (22)

Assuming that the probing field is weak (ξ (t ) 
 1), vector
X (t ) may be evaluated in the first order in ξ (t ). The equi-
librium contribution X 0 is, evidently, determined from the
zero-order equation

Â0X 0 + B0 = 0,

whereas the nonequilibrium part is obtained from equation

2τD
dX 1

dt
= Â0X 1 + ξ (t )(Â1X 0 + B1). (23)

By performing Fourier transformation over time, one can
transform Eq. (23) to the algebraic form:

(2iωτDÎ − Â0)Xω
1 = (Â1X 0 + B1)ξω. (24)

Here Î is a unit matrix whereas ξω and Xω
1 are the Fourier

transforms of the perturbation and response, respectively.
Therefore, in the frequency domain the nonequilibrium part
of the solution of the kinetic equation is

Xω
1 = Rω · ξω, (25)

where

Rω = (2iωτDÎ − Â0)−1 · (Â1X 0 + B1). (26)

The resulting solution enables one to find the dynamic
magnetic susceptibility of the suspended nanoparticle. Denot-
ing the angle between vectors e and H0 as ϑe, the expression
for the average projection of the system magnetization on the
direction of H0 comes out as

M(t ) = μ

V
〈cos ϑe〉 = 4π√

3

μ

V

〈
Y 10

10

〉 = 4π√
3

μ

V

〈
W

∣∣Y 10
10

〉
= 4π√

3

μ

V
· b10

10(t ) = 4π√
3

μ

V
· X (t )

[l1 = 1, l2 = 0, L = 1, M = 0]. (27)

Here it is taken into account that scalar product 〈W |Y10〉 equals
bLM

l1l2
(t ) due to orthonormality of bipolar harmonics.

Using vector of state in Eq. (22) to evaluate magnetization
M(t ), the Fourier transform of the latter may be cast as

Mω = χ (ω)hω, (28)

so that explicit form of the linear dynamic susceptibility is

χ (ω) = 4π√
3

· μ2

V T
· Rω[l1 = 1, l2 = 0, L = 1, M = 0].

(29)
In what follows, in order to facilitate tracing of the frequency
and bias-field dependences, instead of full χ rendered by
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Eq. (29) its normalized form is used:

χ̃ (ω) = χ̃ ′(ω) − iχ̃ ′′(ω) = 4π√
3

· Rω

[l1 = 1, l2 = 0, L = 1, M = 0]. (30)

In the rigid-dipole limit (σ 	 1), vector Rω is also deter-
mined by Eq. (26) but the matrix elements are calculated not
via general formula [Eq. (14)] but with the aid of the simpli-
fied one, viz., Eq. (21). The corresponding susceptibility is

χ (ω) =
√

4π

3

μ2

V T
Rω[l = 1, m = 0], (31)

or, in the normalized form,

χ̃ (ω) =
√

4π

3
Rω[l = 1, m = 0]. (32)

The dynamic magnetic susceptibility of a superparamag-
netic nanoparticle suspended in a fluid depends on the ratio
ζ = τD/τB, which is inversely proportional to the dynamic
viscosity η. A simple estimate of possible values of the pa-
rameter ζ was made in Ref. [11]. For typical ferrite particles
dispersed in water (the dynamic viscosity is about η ∼ 0.01
P), the parameter is ζ ∼ 10−2 − 10−3; if the medium is glyc-
erin with viscosity η ∼ 10 P, then the value decreases to
ζ ∼ 10−5 − 10−6.

The results of numerical evaluation of the normalized func-
tion χ̃ (ω) for viscosity parameter ζ = 10−3 in the case of zero
bias field are presented in Fig. 1; different curves correspond
to different values of the anisotropy parameter σ . As it is seen,
at H0 = 0 the imaginary part of the susceptibility χ̃ ′′(ω) in
a general case possesses not one, but two maxima, to which
correspond sharp depressions at the plots of the real (in-phase)
part χ̃ ′(ω).

The low-frequency (ωτD < 1) regions of the curves in
Fig. 1 are well described by equations

χ (ω) = μ2

3V T
·
[

B(σ )

1 + iωτ
+ 1 − B(σ )

]
,

χ̃ (ω) = 1

3
·
[

B(σ )

1 + iωτ
+ 1 − B(σ )

]
, (33)

proposed in Ref. [12]. Here function B(σ ) increases monoton-
ically from 1/3 to 1 while the anisotropy parameter σ grows
from 0 to ∞, and effective relaxation time is defined as

τ = τNτB

τN + τB
, (34)

where τN could be found using the interpolation expression
[18]

τN = τD · eσ − 1

2σ

[
1

1 + 1/σ

√
σ

π
+ 2−σ−1

]−1

. (35)

Thus, at zero bias field, inside the interval ωτD < 1 the mag-
netic response of the system can be considered as a result of
the joint rotary diffusion of the particle body (reference time
τB) and internal Néel relaxation (reference time τN ). As Fig. 1
shows, under the increase of the anisotropy parameter σ the
low-frequency peak shifts leftward. This is an evident conse-
quence of the fact that the growth of σ entails augmentation of

10−7 10−5 10−3 10−1 101
0.00

0.05

0.10

0.15

0.20

0.25

0.30
χ̃′

ωτD

(a)

ξ0 = 0

ζ = 10−3

σ = 5
σ = 10
σ = 20
rigid dip.

10−7 10−5 10−3 10−1 101
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

χ̃′′

ωτD

(b)

FIG. 1. Frequency dependences of real (a) and imaginary (b)
components of the dynamic magnetic susceptibility in zero bias field
(ξ0 = 0) for different values of anisotropy parameter σ : 5 (dots), 10
(dot-dashes), 20 (dashes). Solid lines render the predictions of the
rigid-dipole model. Parameter ζ = 10−3.

τN and, thus, the enhancement of the total time τ of magnetic
relaxation of the particle. In σ → ∞ limit, the Néel relaxation
‘freezes’ (τN → ∞), and the peak sets at ω = 1/τB, so that
ωτD = ζ for it. The curves for that case are plotted in Fig. 1
by solid lines.

The second maximum of the frequency dependence of
χ̃ ′′ (absorption spectrum) is located in the range ωτD � 1
where formulas in Eq. (33) are no longer valid. As seen from
Fig. 1, in this range the magnetic response also depends on
the anisotropy parameter: both components of the dynamic
susceptibility fall down with σ growth and tend to zero as
σ → ∞. Thus, one can conclude that in this range the
magnetic response is solely controlled by internal (super-
paramagnetic) diffusion of the magnetic moment: the limit
σ → ∞ implies its total cessation. It should be noted that the
high-frequency peak in Fig. 1 is not related to ferromagnetic
resonance since in the adopted gyration-free approximation
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10−7 10−5 10−3 10−1 101
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0.05

0.10

0.15
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0.30 χ̃′

ωτD

(a)

ξ0 = 1

ζ = 10−3

σ = 5
σ = 10
σ = 20
rigid dip.
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0.14 χ̃′′

ωτD
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FIG. 2. Frequency dependences of real (a) and imaginary (b)
components of the dynamic magnetic susceptibility under a moderate
bias field (ξ0 = 1) for different values of anisotropy parameter σ : 5
(dots), 10 (dot-dashes), 20 (dashes). Solid lines render the predictions
of the rigid-dipole model. Parameter ζ = 10−3.

the system does not at all have eigenfrequencies (all eigen-
values of the kinetic operator are real). The abrupt growth of
susceptibility χ̃ ′′(ω) at ωτD ∼ 1 merely indicates the presence
of relaxation modes with reference times ∼τD in the particle
spectrum. Those are the processes of intrawell kind: stochas-
tic wandering of the magnetic moment in the vicinities of
the energy minima [19]. As to the resonance properties of
nanosuspensions of anisotropic superparamagnetic particles,
some relevant results one can find in Refs. [20] and [21].

In Figs. 2 and 3 frequency dependences of the dynamic
susceptibility components are shown under finite bias fields.
In the first case (Fig. 2), the Zeeman energy of the particles
equals to thermal energy (ξ0 = 1) whereas in the second case
(Fig. 3) the magnetic energy is ten times greater (ξ0 = 10).
Comparison of the curves evidences that application of a
stationary bias field reduces the magnetic response. Indeed,
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FIG. 3. Frequency dependences of real (a) and imaginary (b)
components of the dynamic magnetic susceptibility under a strong
bias field (ξ0 = 10) for different values of anisotropy parameter σ : 5
(dots), 10 (dot-dashes), 20 (dashes). Solid lines render the predictions
of rigid-dipole model. Parameter ζ = 10−3.

a perturbation of the magnetic state of a particle on the part
of probing field is the more significant the greater the angle
between vectors n and h. Meanwhile, application of a bias
field induces orientation ordering of the particles: their easy
axes by and large align with the direction of H0, and due to
that the angle between n and h goes down on the average.
Besides that, the magnetic relaxation times decrease as the
bias field strength grows, and this induces a certain shift of the
dispersion regions of both χ ′(ω) and χ ′′(ω) to higher frequen-
cies. The seeming exception is dotted curves that correspond
to σ = 5: the left peak at ξ0 = 10 (Fig. 3) is located to the
right of that at ξ0 = 0 (Fig. 1). The reasons for such an effect
are discussed below.

Remarkably, as Fig. 2(b) shows, at certain values of the
anisotropy parameter σ the bias field might give birth to an
additional, third peak of the absorption line. This is indicated
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by dotted curve for σ = 5: its inflection at ωτD ∼ 5 · 10−3 is
quite clear.

IV. DISCUSSION

In the case of zero bias field the presence of two peaks on
the absorption spectrum is a direct consequence of the bista-
bility of a uniaxial magnetic nanoparticle: its energy profile
has two minima separated by a potential barrier if an applied
field does not exceed a critical value 2KV/μ · (sin2/3 ψ +
cos2/3 ψ )−3/2, where ψ is the angle between easy magnetiza-
tion axis and the field direction. This fact enables one to divide
the magnetic relaxation processes in a mechanically fixed
uniaxial nanoparticle in two qualitatively different families
[19,22,23]. The first one comprises a countable number of the
already mentioned intrawell modes which are due to thermal
motion of the magnetic moment around the energy minima
and cause an absorption maximum of relaxation origin at
ωτD ∼ 1. The second set consists of a single (Néel, inter-
well) mode which originates from random transitions of the
magnetic moment over the energy barrier. The respective re-
laxation time grows exponentially with the barrier height and
yet at σ ∼ 5 exceeds the reference time scale of the intrawell
processes by an order of magnitude. Brownian motion of the
particle body in a fluid evidently entails the overall changes
of the relaxation spectrum in comparison with the case of a
solid matrix, this may be seen from Eq. (34). However, the
essential feature holds: the difference between the reference
times still counts more than order of magnitude for σ � 5.
The direct consequence of the large distinction between the
basic relaxation times are the two well-resolved peaks on the
absorption line.

If the anisotropy energy does not exceed the thermal energy
σ � 1, the differences between inter- and intrawell modes
are erased: all reference relaxation times of an immobilized
particle are ∼τD in this case (for example, τN = 1.5 · τD for
σ = 1). In accordance with Eq. (34), this means that without
the magnetizing field any reference time of the joint rotational
diffusion of the particle body and its magnetic moment is
close to τD provided σ � 1. In this situation the dynamic
magnetic susceptibility of the particle follows a simple Debye
expression χ̃ (ω) ≈ 1/3 · (1 + iωτD)−1 (for σ = 0 this equal-
ity is exact). Thus, its out-of-phase part has the only maximum
at the frequency ωτD ≈ 1. Height of this maximum as well
as the corresponding value of the in-phase component are
approximately equal to half of the static susceptibility. This
is demonstrated by dotted lines in Fig. 4, where frequency
dependences of the functions χ̃ ′(ω) and χ̃ ′′(ω) are shown for
σ = 1 and ζ = 10−3.

Application of the bias field may, however, lead to ap-
pearance of an additional low-frequency absorption peak, see
solid lines in Fig. 4(b). It is obviously impossible to explain
this maximum only by the magnetic bistability of a uniax-
ial nanoparticle because at σ = 1 it does not play any role.
This implies that the additional peak is inherently related to
the Brownian rotation of the particle. Indeed, for σ = 1 a
magnetic equilibrium state inside the particle is established
over a time ∼τD. Therefore, the absorption peak in the fre-
quency range ωτD 
 1 corresponds to the rotational diffusion
of the body of the particle, whose intrinsic (with respect to
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FIG. 4. Frequency dependences of real (a) and imaginary (b)
components of the dynamic magnetic susceptibility under anisotropy
parameter σ = 1 for different bias field magnitudes: ξ0 = 0 (dots),
1 (dashes), 5 (solid lines); parameter ζ = 10−3. The inset shows
the line for ξ0 = 5 in the frequency range from ωτD = 5 · 10−4

to 10−2.

anisotropy axis) magnetic relaxation is accomplished. The
reference time for this case can be estimated using Eq. (13). In
this formula values l1 = l2 = L = 0 correspond to statistical
equilibrium of the system: the appropriate eigenvalue of the
kinetic operator is equal to zero (the equilibrium distribution
function is its kernel). The state of partial equilibrium, when
the internal diffusion of the particle’s magnetic moment is
completed, but the diffusion of the body is not, is character-
ized by the values l1 = 0, L = l2 = 0. Since the anisotropy
energy for a uniaxial particle does not change by substitution
n → −n, the smallest nonzero value l2 should be chosen
equal to two. Then it follows from Eq. (13) that the low-
frequency peak on the solid line in Fig. 4(b) corresponds
to a process when the reference value of inverse relaxation
time is equal to λ · τD = 3τD/τB = 3ζ . The position of the
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low-frequency maximum near the point ωτD = 3ζ in the inset
in Fig. 4 confirms this result.

Similarly, the presence of the third peak in Fig. 2 can-
not be attributed to just magnetic bistability of the particle.
Otherwise, it would have revealed itself in mechanically
fixed nanoparticles as well. Meanwhile, as already mentioned,
far below the ferromagnetic resonance range, the magnetic
response of quiescent superparamagnetic nanoparticles is de-
termined solely by the Néel mode, which produces just a
single peak on the absorption line. From the numerical analy-
sis it follows that the third maximum turns up if the anisotropy
is not too high; for example, Fig. 2 shows that for viscosity
parameter ζ = 10−3 it is present at σ = 5 but is absent at
σ = 10. Given that, one may encounter a situation where the
thermofluctuation interwell hopping rate is yet so high that
the magnetic equilibrium inside the particle settles before the
rotary diffusion of its body is accomplished.

Thus, the additional peak appears in the case when the
Brownian relaxation of a suspended particle is retarded with
respect to establishment of the intrinsic magnetic equilibrium
in it. Note that this peak of absorption may occur only for the
particle with nonzero equilibrium magnetic moment, that it
exists only in the presence of a constant bias field. An increase
of this field should lead to a better distinguishability of the
third additional maximum. Indeed, the Néel relaxation time
goes down exponentially as the applied field increases [24,25].
However, the dependence of the Brownian relaxation time on
external field of even a particle whose magnetic moment is
“frozen” into the body is much more weak (∼1/ξ0), see Refs.
[26–28]. In a situation where magnetic moment of the particle
is not coaligned with anisotropy axis, but distributed accord-
ing to Boltzmann function, one should expect an even smaller
effect of the field because orientation thermal fluctuations of
the magnetic moment effectively demagnetize the particle.
Actually, according to Ref. [16], the smallest eigenvalue of
the kinetic operator is almost independent on the bias field and
≈3/τB in a wide range of values of the parameter ξ . Thus, a
growth of the magnetizing field should lead to a relatively fast
shift of the central (“Néel–Brownian”) absorption maximum
to the right—to higher frequencies, but almost not change
position of the left (“Brownian”) one. As a consequence, the
frequency interval between the two peaks increases, and their
resolution improves. The results of numerical calculations are
in agreement with this reasoning, see Fig. 5, where absorption
lines of the particle with parameters σ = 5 and ζ = 10−3

are shown for bias fields ξ0 > 1; the corresponding curve for
ξ0 = 1 is plotted by dots in Fig. 2.

Nevertheless, Fig. 3 shows that if the Zeeman energy sig-
nificantly exceeds the thermal one, then the absorption line
has no more than two maxima, as in the case of a zero bias
field. This is due to the fact that position of the high-frequency
absorption maximum, as well as of the “Brownian” one, rel-
atively weakly depends on the magnitude of the bias field.
Therefore, as ξ0 increases, the central peak moves away from
the left (low-frequency) maximum, but approaches the right
(high-frequency) one and eventually merges with it. Accord-
ing to Fig. 5, in the case of σ = 5 and ζ = 10−3 they cannot
be resolved already at ξ0 � 4.

These considerations clarify why the left maximum on the
dotted curve for σ = 5 in Fig. 3 (the bias field ξ0 = 10) is
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FIG. 5. Absorption spectra of a particle with σ = 5 for different
values of bias field: ξ0 = 1.5 (solid lines), 2 (dashes), 3 (dot-dashes),
4 (dots); parameter ζ = 10−3.

in the region of lower frequencies than the one in Fig. 1 (no
bias field). At first glance, from this fact one could conclude
that the relaxation time of the particle paradoxically decreases
with the growth of the applied field. But in fact, the low-
frequency maxima in these figures correspond to essentially
different diffusion processes. At ξ0 = 0, the left peak char-
acterizes the joint Néel-Brownian relaxation: nonequilibrium
transitions of the magnetic moment over the potential barrier
together with the rotation of the particle body. However, for
ξ = 10 it corresponds to rotational diffusion (in a magnetizing
field) of a particle, whose intrinsic magnetic state is equilib-
rium. So, the relative position of the low-frequency maximum
in the zero and strong bias field in this case does not mean at
all that an increase in the external field slows down magnetic
relaxation.

The time of intrinsic (interwell) relaxation of a particle
grows exponentially with the increase of the anisotropy pa-
rameter σ at any angle between the anisotropy axis and
direction of the applied field [7,24]. For sufficiently large
σ , the necessary condition for the appearance of the third
peak—relatively fast establishment of magnetic equilibrium
inside the particle—may be unachievable. In this case, the
two low-frequency peaks are not resolved. This situation is
illustrated by Fig. 6(a), where absorption lines are shown for
a system with the viscosity parameter ζ = 10−4 and the bias
field ξ0 = 3. As can be seen, the growth of σ leads to the
convergence of two maxima, and at σ∗ ≈ 11.5 they merge.
The value of σ∗, in general, depends on the magnitude of
the magnetizing field. For ξ0 < 3 it will be less than the
specified one; however, an enhancement of the bias above
ξ0 = 3 almost does not change σ∗, mainly due to the rapid
decrease in the height of the central peak with the field growth,
compare Figs. 6(a) and 6(b) that differ only in the value of ξ0.
Numerical analysis shows that for other values of ζ it is also
enough to choose ξ0 = 3 for estimation of σ∗.

It can be seen in Fig. 7 that the value of σ∗ increases with
the growth of dynamic viscosity η of a fluid, in which the
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FIG. 6. Absorption spectra under bias field ξ0 = 3 (a) and ξ0 = 4
(b) for different values of anisotropy parameter: σ = 10 (solid lines),
11 (dashes), 11.5 (dots); parameter ζ = 10−4.

particle is suspended. This result is quite clear because the
ratio between internal (Néel) and Brownian relaxation times is
proportional to ζ exp(σ ) ∝ η−1 exp(σ ). Therefore, the larger
the viscosity of the fluid (the smaller the ζ parameter), the
wider the range of values of σ , for which the Néel time is
less than ∼τB/3, the time that determines the position of
the low-frequency “Brownian” peak. For the same reason,
the dependence of σ∗ on the parameter ζ is predominantly
logarithmic, draw attention to logarithmic scale on the hor-
izontal axis in Fig. 7. The absence of strict linearity is due
to the fact that the pre-exponential factor in the expression
for the Néel relaxation time also depends on σ . Note that
the third maximum on the absorption line is possible even at
ζ = 10−2, i.e., relatively low viscosity of the carrier fluid, if
σ � 5.5. Results of numerical calculations in Fig. 8 illustrate
this situation.

At last, point out that the lowest magnitude of the bias field,
at which the absorption spectrum is three-peak, decreases as
the viscosity parameter ζ goes down. For example, Fig. 9
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FIG. 7. Dependence of the upper limit σ∗ of anisotropy param-
eter values, at which three-peak absorption spectrum is possible, on
ζ−1 ∝ η, where η is the dynamic viscosity of a fluid.

shows that for ζ = 10−4 and σ = 5 the additional maximum is
already distinct at ξ0 = 0.5; for ζ = 10−3 and ζ = 10−2 this
threshold is ξ0 ≈ 1 and ξ0 ≈ 2 correspondingly, see Figs. 2
and 8.

V. CONCLUSION

A consistent theory of linear magnetic response of a
uniaxial single-domain nanoparticle suspended in a fluid is
developed. The theory is based on the kinetic equation that
takes into account the orientation diffusionlike motion of
both the particle magnetic moment and its anisotropy axis.
Under appropriate mathematical treatment, the multi-variable
kinetic equation may be transformed to an infinite set of
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FIG. 8. Absorption spectra of a particle with σ = 5 for different
values of bias field: ξ0 = 2 (solid lines), 2.5 (dashes), 3 (dot-dashes),
3.5 (dots); parameter ζ = 10−2.
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FIG. 9. Absorption spectra of a particle with σ = 5 for different
values of bias field: ξ0 = 0 (solid lines), 0.5 (dashes), 3 (dot-dashes),
4 (dots); parameter ζ = 10−4.

differential-recurrence equations of first order for the statis-
tical moments of the pertinent distribution function. Upon

solving this set, the frequency dependences of the compo-
nents of linear magnetic susceptibility of a superparamagnetic
particle suspended in a fluid are evaluated for the situa-
tions where the system, along with a weak probing field,
is subjected to a stationary bias field of arbitrary strength.
It is shown that the imaginary (out-of-phase) component of
the dynamic susceptibility—it defines the intensity of en-
ergy absorption—at a pronounced particle anisotropy should
have two well-separated maxima. The heights and positions
of these maxima are affected by the bias field. Also, in the
presence of the magnetizing field the spectrum may acquire a
third peak if the ratio between anisotropy energy and thermal
one does not exceed some threshold, which grows mostly
logarithmically with increasing fluid viscosity. The presented
theoretical model does not impose any special restrictions on
the material parameters of nanoparticles, viscosity of the sus-
pending fluid and temperature, and may be used, in particular,
for establishing validity ranges of various approximations.
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