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Long-range order in the XY model on the honeycomb lattice
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Using the reflection positivity method, we provide rigorous proof of the existence of long-range magnetic order
for the XY model on the honeycomb lattice for large spins S � 2. This is in contrast with the result obtained
using the same method but on the square lattice—which gives a stable long-range order for spins S � 1. We
suggest that the difference between these two cases stems from the enhanced quantum spin fluctuations on the
honeycomb lattice. Using linear spin-wave theory, we show that the enhanced fluctuations are due to the overall
much higher kinetic energy of the spin waves on the honeycomb lattice (with Dirac points) than on the square
lattice (with good nesting properties).
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I. INTRODUCTION

One of the main questions concerning the nature of a
quantum spin model is whether long-range order (LRO) of any
kind could stabilize in a certain range of parameters. Models
with finite magnetic anisotropies have discrete symmetries
and order more easily, which agrees with our intuition. An oc-
currence of phase transition in the two-dimensional (2D) Ising
model, established on the basis of exact solution of interacting
spins S at a square lattice is the most prominent example. The
LRO sets in the Ising model at positive temperature T < Tc,
where Tc is the critical temperature, though the order param-
eter is reduced by thermal fluctuations [1]. The spin-order
parameter becomes maximal in the ground state, i.e., 〈Sz〉 ≡ S
at T = 0. On the other hand, the one-dimensional (1D) Ising
model orders only at T = 0.

Models with continuous symmetries, such as the Heisen-
berg SU(2)-symmetric or the XY U(1)-symmetric one, are
quite different. In this case the Mermin-Wagner theorem pre-
vents the LRO at positive temperatures in all low dimensions,
i.e., not only in a 1D but also a 2D model [2–4]. This is due
to the proliferation of the Goldstone modes, i.e., gapless spin
waves, which enhances the thermal fluctuations and kills the
LRO. Moreover, the T = 0 version of the above theorem,
the Coleman theorem [4], states that at T = 0 the ground
state of such models typically [5] does not carry LRO in one
dimension, for the order parameter is completely destroyed
by quantum fluctuations triggered by the spin waves. This
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happens, for instance, in the 1D antiferromagnetic (AFM)
Heisenberg model [3,6].

This shows that 2D spin models with continuous symme-
tries are special, since they never order at positive temperature
but may order at T = 0. Note that the Coleman theorem
merely allows for the onset of the LRO but does not guarantee
it. This is probably best exemplified by the search for the spin-
liquid ground state of Heisenberg models on 2D frustrated
lattices [7,8]. But an intriguing situation arises already in the
2D AFM Heisenberg model on the square lattice. Here the lin-
ear spin-wave theory (LSWT) expansion suggests that at least
for a large-enough size of spin S, the quantum corrections to
the order parameter (�m) should be small enough to allow
for LRO. In fact, several numerical and analytical methods
suggest that the LRO exists (already) for spin S = 1/2 [9–13].
However, it is both an amusing and irritating circumstance
that its existence has not been rigorously confirmed: the proof
shows that the LRO can be stable only for spins S � 1 [14].
This fragility of the long-range spin order is further strength-
ened by the research on the low-lying excited states which
suggests that these may partially be better described in terms
of excitations from a spin liquid state (spinons) [15–17] than
from the symmetry-broken state with LRO (spin waves or
magnons) [18–20].

Experimentally, the 2D spin models with continuous sym-
metries can basically be realized in the van der Waals crystals
[21–23]. These materials are a subject of intensive research
and one of the main questions is whether the thermal fluc-
tuations kill the magnetic order. In principle, this should not
be the case, for the assumptions of the Mermin-Wagner theo-
rem are never strictly fulfilled in the materials that are solely
quasi-2D and always have finite magnetic anisotropies. Yet,
the applicability of the Mermin-Wagner theorem as well as
the potential onset of the large thermal corrections to the order
parameter are a subject of intensive discussion [21–23]. It is
thus natural to investigate what the role played by the quantum
fluctuations is in the onset of the LRO in the ground state of
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such a van der Waals spin model which is approximately 2D
and has continuous symmetry. Here the salient feature is that
the van der Waals materials support the honeycomb [21–29],
rather than the square, lattice. Although honeycomb lattice is
bipartite, just as the square lattice is, it is not obvious how the
LRO spin order would survive in the ground state of a spin
model with continuous symmetry on the honeycomb lattice at
T = 0—which is the main question of this paper.

Indeed, the spin LRO is likely to be less stable on the hon-
eycomb than for the square lattice as there are three outgoing
exchange bonds from each site and this may amplify the ef-
fects of quantum fluctuations which could destroy the ordered
state. (Notably, for the 1D Heisenberg model there are just two
exchange bonds outgoing from each site and the LRO is then
destroyed, as just discussed above.) In fact, for the Heisenberg
model on the honeycomb lattice, there is proof of the existence
of LRO for S � 3/2 [30], whereas for the square lattice case
the analogous proof applies already to spins S � 1 [14], see
above. Another argument in favor of diminished stability of
the ordered AFM state on the honeycomb lattice is provided
by the LSWT: Quantum corrections to the order parameter
�m for the Heisenberg model are substantially larger on the
honeycomb lattice than on the square lattice, (i.e., �m � 0.28
versus �m � 0.197 [31]).

In this paper, we shall investigate the existence of LRO on
the honeycomb lattice in the spin model and discuss why the
order may be less stable than on the square lattice. To this
end, we choose to work with the XY model. While this model
has a lower symmetry than the Heisenberg model [32] and
one expects that it orders more easily, there is no proof of
the existence of the LRO using the same method as the one
used for its square lattice counterpart and yielding LRO for
S � 1 [33] either [34]. It is thus of crucial importance to verify
whether the LRO is stable in this model for the same or for the
higher spin S value than on the square lattice. Moreover, the
LSWT corrections calculated to the order parameter of the XY
model for the honeycomb lattice are also larger than for the
square lattice (i.e., �m � 0.08 versus �m � 0.06 [32,35]),
making it an ideal case to compare the stability of the LRO on
these two distinct 2D lattices.

The paper is organized as follows. We shall start from
the reflection positivity (RP) method applied to the XY spin
model on the honeycomb lattice in Sec. II. Next we use the
LSWT method to intuitively understand why the LRO on the
honeycomb lattice is less stable than on the square lattice,
see Sec. III. The summary and conclusions are presented in
Sec. IV.

II. RESULTS: REFLECTION POSITIVITY METHOD

In this section, we rigorously prove that Néel order exists
in the ground state of the XY model on the honeycomb lattice
with AFM interactions, for a large enough value of spins.
The proof is based on the RP technique. Note that, while we
consider below solely the AFM case, the proof is valid for the
ferromagnetic XY model as well—since these models are in
fact isomorphic, unlike in the Heisenberg case.

For quantum spin systems, the RP technique originated
in a seminal paper [36]. This paper treated spin systems in
three dimensions at positive temperature. In two dimensions,

there is no LRO at positive temperature in systems with
continuous symmetry group due to Mermin-Wagner theorem
[2], but there remains non-trivial question of the ground-state
ordering. In Ref. [37], authors have shown that technique
of Ref. [36] can be adapted to prove the existence of Néel
order in the ground state of an AFM Heisenberg model on the
square lattice provided S � 3/2. Later on, it was noticed that
the authors of Ref. [37] made a numerical error and in fact
LRO exists for all spins S � 1 [14]. Similarly, the LRO in the
Heisenberg model on the honeycomb lattice was proven for
spins S � 3/2 [30].

For reasons presented in the previous section, it would be
desirable to settle the question of ground-state ordering for the
XY model on the honeycomb lattice. This problem has been
answered in a positive manner for the square lattice: Whereas
using an analogous method as presented below it was shown
that the LRO exists in the ground state for spins S � 1 [33], a
distinct calculation showed that the ground state is ordered for
an arbitrary value of spin [38]. However, we are not aware of
such a result for the honeycomb lattice, and this opportunity
encouraged us to undertake attempts to prove this. Below we
supply such a proof. The calculation is based on an adaptation
of the AKLT technique [30], with heavy use of results given
in Ref. [36], as well as in Ref. [37], so we do not include here
all the details.

We write the Hamiltonian as

H� =
∑
〈m,n〉

hYZ
〈mn〉, (1)

where m and n are two connected sites, 〈m, n〉 is a bond
between nearest neighbors, and the summation is performed
over such bonds on the honeycomb lattice, and we define

hYZ
〈mn〉 = S2

mS2
n + S3

mS3
n. (2)

Note that we take for convenience exchange couplings be-
tween components 2 and 3 (or {Y, Z}, respectively) instead of
conventional 1 and 2 (or {X, Y}). Both models are, of course,
physically equivalent. Our choice is dictated by an easier
comparison with results for an isotropic Heisenberg model.
In particular, we define as the order parameter the average of
the third (or Zth) component, in analogy to Ref. [30].

The first step of calculation is to compute eigenvalues and
eigenvectors of the Laplacian −� on the honeycomb lattice.
It is defined as

(−�ψ )(m) = 3ψ (m) −
∑

n:||m−n||=1

ψ (n), (3)

where ||m − n|| = 1 means that {m, n} are nearest-neighbor
sites. The honeycomb lattice is periodic with period 2, so
eigenvectors cannot be found by ordinary Fourier transform.
Instead, observe that the honeycomb lattice is bipartite, i.e., it
can be represented as a disjoint union of two sublattices, with
any nearest neighbors belonging to different sublattices. We
will refer to these sublattices as even and odd ones; yet they
are strictly periodic. One performs two Fourier transforms
associated with these sublattices.

Let δi, for i = 1, 2, 3, be unit lattice vectors such that
for every even site m, the nearest neighbors are given by
m + δi. The nearest neighbors of an odd site n are then
n − δi. We take explicitly δ1 = (0,−1), δ2 = (

√
3

2 , 1
2 ), and
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δ3 = (−
√

3
2 , 1

2 ). For a finite lattice � with periodic boundary
conditions, the eigenvalues of the Laplacian are grouped in
two ± bands:

E±
k = 3 ± |ε(k)|, where ε(k) =

3∑
j=1

exp(ik · δ j ). (4)

In an explicit manner,

ε(k) = exp(−i k2) + 2 exp

(
i

k2

2

)
cos

(√
3k1

2

)
, (5)

and therefore

|ε(k)| =
√√√√1 + 4 cos

√
3k1

2

(
cos

√
3k1

2
+ cos

3k2

2

)
. (6)

Here, the momentum k ≡ (k1, k2) takes values in the Bril-
louin zone (BZ) for one of the two sublattices. Corresponding
eigenvectors h±

k (m) are

h+
k (m) = sgn(m)

1√|�| exp

[
ik·m + sgn(m)

φ(k)

2

]
, (7)

h−
k (m) = 1√|�| exp

[
ik · m + sgn(m)

φ(k)

2

]
, (8)

where the phase φ(k) is determined from

ε(k) = |ε(k)| exp (iφ(k)).

Following Ref. [36], and in particular Lemma 6.1 therein, one
proves the Gaussian domination inequality common for both
Heisenberg and YZ models:(∑

m

sgn(m)S3
m(−�f)(m) ×

∑
n

sgn(n)S3
n(−� f )(n)

)

� β−1
∑

m

f (m)(−� f )(m), (9)

where (·, ·) is Duhamel two-point function [36], the bar de-
notes the complex conjugation, f (m) is arbitrary function on
the lattice, and β is inverse temperature (below we shall take
the limit β → ∞).

Define

S±
k =

∑
m

h±
k (m)S3

m. (10)

(Note that S±
k are not related to the spin raising and lowering

operators.) The sum in Eq. (10) includes only third compo-
nents of spin operator, and ± is a band index. Choosing now
eigenvectors h±

k as a function f in Eq. (9), we get

(
S±

k , S±
k

)
� 1

βE∓
k

. (11)

So far, the calculations for YZ model (1) are very sim-
ilar to those for the Heisenberg model [30]. Substantial
difference appears when one calculates the average of the
double commutator〈[S±

k , [H, S±
k ]]〉. The double commutator is

calculated in a standard manner:[
S±

k , [H, S±
k ]

]
= 1

|�|
∑

m

∑
n:||m−n||=1

(
eik·(m−n)S1

mS1
n− S2

mS2
n

)
. (12)

The average of 〈S2
mS2

n〉 is expressed easily by the ground-state
energy per site egs,〈

S2
mS2

n

〉 = 1

2

〈
hYZ

〈mn〉
〉 = 1

2

|�|
N egs, (13)

where N is the number of bonds of the lattice. The average of
〈S1

mS1
n〉 can be estimated as in Refs. [14,33]:∣∣〈S1

mS1
n

〉∣∣ �
∣∣〈S2

mS2
n

〉∣∣. (14)

Putting all together, the average of double commutator can be
estimated as

〈[S±
k , [H, S±

k ]]〉 � 1

3
Ẽk |E0|, (15)

where

Ẽk = 3 +
√√√√1 + 4

∣∣∣∣∣cos

√
3k1

2

∣∣∣∣∣
(∣∣∣∣∣cos

√
3k1

2

∣∣∣∣∣ +
∣∣∣∣cos

3k2

2

∣∣∣∣
)

,

(16)
and E0 is a lower bound on the ground state energy. We have
also used cos x � | cos x| and N /|�| = 3/2 for the honey-
comb lattice.

A crude approximation for E0 can be obtained with aid of
inequalities, expressing the free energy of the YZ model by
the free energy of the Ising model, in a similar manner as in
Ref. [39], see p. 57:

f Is(β ) � f YZ(β ) � f Is(2β ).

Passing to the limit β → ∞, one obtains

EYZ
gs � E Is

gs = −2S2N , (17)

so for the honeycomb lattice, one finds the lower bound E0 for
the ground-state energy per site:

E0 = −3S2. (18)

Following the arguments of Refs. [30,36], i.e., the Gaussian
domination inequality Eq. (9), and the Falk-Bruch inequality,
the usual sum rule and 〈S3

mS3
m〉 = 〈Sm ·Sm〉/3 = S(S + 1)/3

imply that there is Néel order in the ground state if

2S(S + 1)

3
> S(I+ + I−), (19)

where

I± = lim
|�|→∞

∑
k

√
Ẽk

E±
k

= 1

2|BZ|
∫

BZ
d2k

√
Ẽk

E±
k

. (20)

Here BZ stands for the Brillouin zone for one of two
sublattices and |BZ| is its area. The integrand of I+ is a
regular function, whereas integrands of I− possess singular-
ities, but they are integrable. One finds a numerical value of
I+ + I− = 1.777, which implies that the condition (19) is ful-
filled for S = 2 or larger. In other words, we have proved that
the AFM XY model on the honeycomb lattice possesses Néel
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order in the ground state for S � 2. We suggest that future
research should allow us to improve an estimation for the
average of double commutator (12), as well as for the lower
bound of the ground-state energy.

III. DISCUSSION: LINEAR SPIN-WAVE THEORY INSIGHT

In this section, we would like to provide better under-
standing why, as the RP result suggests, the LRO seems to
be softer on the honeycomb than on the square lattice (since
the spin for which the LRO exists is proved to be higher for
the honeycomb than for the square lattice). To this end, we
analyze in detail the well-known LSWT result which gives
the quantum correction to the order parameter on the square
(honeycomb) lattice �m = 0.06 (�m = 0.08), respectively
[35]. Thus, we follow the calculations of Ref. [35] and write
down the expression for the LSWT quantum corrections to
the order parameter by performing the Holstein-Primakoff
expansion around the Néel state to bosonic operators for each
spin at site m of the ↑-spin sublattice [31],

S−
m � a†

m, S+
m � am, Sz

m = S − a†
mam, (21)

and similarly for the ↓-spin sublattice. Keeping only the
linear terms in the bosonic operators and performing suc-
cessive Fourier and Bogoliubov transformations, one finds
then the quantum corrections to the order parameter [35],
〈Sz

m〉 = S − �m, where

�m = 1
4

∣∣C+
1 + C−

1 + C+
−1 + C+

−1

∣∣. (22)

Here

C±
1 = z

2N
∑

k

C±
1 (k), C±

−1 = z

2N
∑

k

C±
−1(k), (23)

and

C±
1 (k) =

√
1 ± |γ (k)| − 1, (24)

C±
−1(k) = 1√

1 ± |γ (k)| − 1. (25)

A constant z stands for the coordination number of the lattice
(z = 3 for the honeycomb and z = 4 for the square) and γ (k)
is the structure factor that for the honeycomb lattice is given
by

γ (k) = 1

3

[
exp

(
−i

2k2

3

)
+ 2 exp

(
i

k2

3

)
cos

(
k1

2

)]
, (26)

and for the square lattice by

γ (k) = 1
2 [cos(k1) + cos(k2)]. (27)

Note that above we used the two-sublattice BZ of the same
range for both the honeycomb and square lattice, namely,
−π < k1,2 � π . The use of the same BZ enables us to
easily compare any momentum-dependent function on the
honeycomb and on the square lattice. Note that the structure
factor for the honeycomb lattice can be obtained from the
bands defined by Eq. (5) after substituting k1 → k1/

√
3 and

k2 → 2k2/3.
The important observation is that the modulus of any of

the four contributions to the quantum corrections to the order
parameter �m (22), i.e., |C±

1,−1|, is always by a factor q � 1.3

times larger for the honeycomb lattice than for the square
lattice—i.e., just as �m. Hence, despite the fact that C±

1,−1
have different signs and overall scales to understand why �m
is q times larger for the honeycomb than for the square lattice,
it is enough to investigate why the moduli |C±

1,−1| are always
q times larger on the honeycomb lattice.

To this end, we plot in Figs. 1(a)–1(d) the functions
C±

1,−1(k) in the first BZ of the square and honeycomb lattice
(note that the BZs are the same due to the rescaled momenta
of the standard rectangular BZ of the honeycomb lattice, see
above). We observe that for all momenta in the substantial
(central) part of the BZ the functions |C+

1 (k)|, |C−
−1(k)|, and

|C+
−1(k)| all take a higher value for the honeycomb lattice

than for the square lattice. It is only for relatively small areas
around the corners of the BZ [i.e., close to (±π,±π ) and
(±π,∓π ) momenta] that the opposite situation takes place.
At first sight, a bit more intricate situation takes place for the
|C−

−1(k)| function, see Fig. 1(e). In that case, one should also
take into account the distinct singularities for both lattices.
However, their contributions are in the end roughly equal and
we end up with a similar conclusion for |C−

−1(k)|, as for the
case of |C+

1 (k)|, |C−
−1(k)|, and |C+

−1(k)|.
To fully track the origin of the larger quantum corrections

to the order parameter �m on the honeycomb lattice, we try to
understand why in the large part of the BZ all of the relevant
functions |C±

1,−1(k)| take a higher value for the honeycomb
lattice than for the square lattice. To this end, we turn our
attention to the moduli of the structure factors ±|γ (k)| for
the honeycomb and square lattice—since these are the crucial
quantities entering Eqs. (24) and (25). Figures 1(c)–1(f) show
that in the large part of the BZ, also the modulus of the
structure factors takes a higher value for the honeycomb lattice
than for the square lattice. Mathematically, this situation is to
a large extent controlled by the fact that the sets of zeros of the
structure factor functions are very distinct for the honeycomb
and for the square lattice: Whereas for the honeycomb lattice
there are just two independent momenta for which |γ (k)| ≡ 0
(at the Dirac points), for the square lattice there is a whole
range of momenta for which |γ (k)| ≡ 0 (note that the nesting
property occurs along the magnetic BZ boundary). Physically,
this indicates the noticeably larger mobility of the spin waves
on the honeycomb than on the square lattice.

IV. SUMMARY AND OUTLOOK

Motivated by recent studies of the van der Waals materials
with quasi-2D honeycomb magnetism, we have investigated
the onset of the LRO at T = 0 of a continuous spin model
on the honeycomb lattice. Thereby, we have shown that the
order in the XY model occurs on the honeycomb lattice but
is softer than for the square lattice: Using the RP method,
we have shown that the magnetic LRO occurs for the honey-
comb lattice in the XY model for sufficiently large spin value
S � 2. This is in contrast with the result obtained using the
same method for the square lattice which gives LRO for spin
S � 1 [33].

The intuitive understanding of the above result can be
achieved using the (approximate) LSWT. We show that the
enhanced quantum spin fluctuations on the honeycomb lattice,
as calculated using the spin waves, are due to the overall much
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FIG. 1. Dependence of the four contributions to the order parameter renormalization �m (22) on the momentum components {k1, k2} in
the LSWT approach: (a) C+

1 (k), (b) C+
−1(k), (d) C−

1 (k), (e) C−
−1(k). For comparison, the relevant moduli of the structure factors are also shown

in (c) |γ (k)| and (f) −|γ (k)| (see text for further details). The blue (yellow) color indicates for the results found for the honeycomb (square)
lattice, respectively.

higher kinetic energy of the spin waves on the honeycomb
lattice than on the square lattice. The latter can largely be
traced back to the large qualitative differences between the
(nearest-neighbor) structure factors: Whereas on the honey-
comb lattice the structure factor has Dirac points and hence
rarely vanishes, the good nesting properties of the square
lattice yield a whole range of momenta for which the structure
factor vanishes. We note that the here-obtained intuition goes
beyond the simple argument, which suggests that the order is
less stable on the honeycomb than on the square lattice due
to the lower coordination number z of the former lattice (see
Introduction).

We conclude by suggesting two open problems: First, find-
ing rigorous proof of the existence of LRO in the XY model
on the honeycomb lattice below the spin value S = 2 remains
a challenging open problem in the theory of magnetism. It
is a bit surprising that LRO here has this constraint while a
qualitative argument that this should be the case is missing.

Second, rigorously verifying the existence of the ordered
state for the Heisenberg model on the honeycomb lattice with
small Kitaev interactions may be an important, but supposedly

also quite challenging, exercise. So far, it is known that the
interplay of Heisenberg and Kitaev interactions gives an inter-
esting phase diagram with several ordered phases competing
with spin liquids [40,41], and an experimental realization of
the spin liquid was recently proposed [42]. However, the bor-
der lines between particular phases depend on the accuracy
with which one treats quantum fluctuations [43,44]. It would
be interesting to control quantum fluctuations in perturbation
theory for the Kitaev-Heisenberg (or Kitaev-XY) model with
weak Kitaev interactions.
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