
PHYSICAL REVIEW B 107, 064407 (2023)

Impact of Dzyaloshinskii-Moriya and anisotropic exchange interactions on the cubic kagome
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We perform a symmetry analysis of the ABC-stacked kagome planes of Mn atoms common to the L12 Mn3X
and antiperovskite Mn3AB alloys. In addition to the single-ion-anisotropy and Kitaev-type anisotropic exchange
known to stabilize 120◦ spin structures in these materials, our analysis results in a staggered Dzyaloshinskii-
Moriya interaction and further gamma-type anisotropic exchange between nearest-neighbor spins. The presence
of these new terms is shown not to affect the energetics of the 120◦ ground states, which explains their absence
in prior minimal magnetic models. We go on to show, however, that their influence becomes apparent when
spin-wave excitations are considered. We highlight these effects by calculating inelastic neutron-scattering
cross sections to illustrate experimental means of probing the existence and relative strengths of these cloaked
interactions.
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I. INTRODUCTION

Both the Cu3Au-type Mn3X alloys with X ∈ {Rh, Pt, Ir}
and the antiperovskite Mn3AB alloys with A ∈ {Ga, Zn, Ni,
Sn, Ag, Rh, Pt, etc.} and B ∈ {C, N} can exist in a cubic
configuration belonging to the space group Pm3̄m with Mn
ions occupying the face centers of the cubic unit cell, X or A
atoms occupying the unit-cell corners, and either a B atom
or a vacancy at the cell center (Fig. 1). In both structures,
the octahedrally arranged Mn ions form an ABC-stacked array
of two-dimensional (2D) kagome layers which are contained
to the {111} family of planes. As is the case for the heavily
studied 2D kagome system, the magnetic interactions in these
three-dimensional (3D) systems can be highly frustrated, lead-
ing to a highly degenerate manifold of magnetic ground states
[1,2] when only nearest-neighbor, isotropic exchange inter-
actions are considered. By contrast, many of these Mn3X
and Mn3AB compounds are found with an ordered q = 0,
120◦ noncollinear Néel ordering [3] which is stabilized either
by further-range exchange, anisotropic exchange, single-ion
anisotropy (SIA), or a combination thereof.

In the Mn3AB systems, the onset of 120◦ ordering is usu-
ally associated with a dramatic, first-order increase in lattice
dimension, although, with certain chemical doping procedures
this transition can be smoothed out into a more continuous
expansion [4–7]. The prospect of a controlled negative ther-
mal expansion (NTE) has propelled interest in this class of
materials. On the other hand, the Mn3X alloys have been
heavily studied in part as effective exchange-biasing layers in
giant magnetoresistance (GMR) sensors [8] with the ordered
L12 Cu3Au-type structures enhancing the already large uni-
directional magnetic anisotropy characteristic of disordered

γ -type MnIr, MnRh, and MnPt alloys allowing for thinner
pinning layers in GMR heterostructures.

In both the Mn3X and Mn3AB systems, noncollinear, an-
tiferromagnetic spin arrangements have also garnered much
interest recently due to the impact this type of spin-
arrangement can have on various transport phenomenon. Chen
et al. [9] first predicted the possibility of a nonzero anoma-
lous Hall effect (AHE) in the antiferromagnetic metal Mn3Ir
and the effect has since been experimentally realized in the
related AB-stacked Mn3X compounds Mn3Ge and Mn3Sn,
the Cu3Au-type compounds Mn3Ir and Mn3Pt, as well as the
antiperovskites Mn3GaN and Mn3Ni1−xCuxN [10–15], solid-
ifying the crucial symmetry-breaking role these noncollinear
spin arrangements play in enabling AHE even in the absence
of a ferromagnetic moment.

Noncollinear and particularly noncoplanar spin arrange-
ments have also recently been studied for the impact that their
magnetic excitations can have on thermal transport properties.
The thermal Hall effect has been demonstrated in magnetic in-
sulators with either noncoplanar spin arrangements or certain
forms of the Dzyaloshinskii-Moriya (DM) interaction leading
to dissipationless, transverse thermal current carried by spin
waves in an analogous fashion to the electronic Hall effect
[16–18]. Although the materials we consider here are metals,
our analysis remains valid for insulating magnetic structures
with the same symmetries.

In this paper we derive a classical magnetic Hamiltonian
for the ABC-stacked kagome planes of Mn ions in both
the Cu3Au-type Mn3X compounds and the antiperovskite
Mn3AB compounds based on symmetry considerations. Us-
ing this model we explore the space of possible ground-state
configurations building upon the known q = 0 noncollinear
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FIG. 1. The crystal structure of (a) the Cu3Au-type Mn3X com-
pounds with the red Mn ions occupying the cubic faces and the
black X atoms occupying the unit-cell corners (b) the antiperovskite
Mn3AB compounds with the red Mn ions occupying the cubic faces,
the black A atoms occupying the unit-cell corners and the yellow B
atom occupying the body-center of the unit cell.

configurations. We show that, although the presence of the
DM interaction in these systems does not alter the ground-
state configurations in the q = 0 regime, its influence is
activated when considering the magnonic excitations of these
ground states. We provide calculations which illustrate the
influence the DM interaction has on the spin-wave dispersion
in these materials and demonstrate that the magnitude of the
DM interaction should be measurable using inelastic neutron
scattering.

II. THE SYMMETRY-ALLOWED
MAGNETIC HAMILTONIAN

For the purpose of this paper we consider only classical,
bilinear, Heisenberg-type spin-spin interactions. We use the
symmetries of the crystallographic space group to identify
all allowable single-site and two-site interactions that have
exchange paths contained within the first crystal unit cell.
There are three Mn atoms in the unit cell shown in Fig. 1,
which sit on three different sublattice positions. Each Mn atom
has eight nearest neighbors, four from each of the other two
sublattices. The spin-Hamiltonian can therefore be compactly
expressed as

H = 1

2

∑
�

∑
i j

ST
i Ji jS j, (1)

where the first sum runs over the octahedra (effectively the
crystal unit cells), � and the second sum runs over the sublat-
tice indices, i, j ∈ (1, 2, 3, 1′, 2′, 3′). S is an 18-dimensional
vector containing the six three-dimensional spins that reside
on the faces of the unit cell,

ST = (S1, S2, S3, S′
1, S′

2, S′
3), (2)

and J is the (18 × 18) coupling matrix

J =

⎡
⎢⎢⎢⎢⎢⎢⎣

J11 J12 J13 J11′ J12′ J13′

J21 J22 J23 J21′ J22′ J23′

J31 J32 J33 J31′ J32′ J33′

J1′1 J1′2 J1′3 J1′4 J1′2′ J1′3′

J2′1 J2′2 J2′3 J2′1′ J2′2′ J2′3′

J3′1 J3′2 J3′3 J3′1′ J3′2′ J3′3′

⎤
⎥⎥⎥⎥⎥⎥⎦

, (3)

FIG. 2. (a) The magnetic Mn ions within the unit cell along with
double-sided orange arrows indicating the easy-axis and hard-axis
directions on each of the three sites along with blue arrows indicating
the direction of the DM vector at the bisector of each nearest-
neighbor bond. (b) A top-down view of the unit cell highlighting the
directions of D̂i j in the top of the octahedron. (c) The T1 or �4g spin
configuration. (d) The T2 or �5g spin configuration.

with

Ji j =

⎡
⎢⎣
J xx

i j J xy
i j J xz

i j

J yx
i j J yy

i j J yz
i j

J zx
i j J zy

i j J zz
i j

⎤
⎥⎦. (4)

The coupling matrix J contains all twelve nearest-
neighbor (NN) bonds shown in Fig. 2(a), all three single-
site interactions, and all three next-nearest-neighbor (NNN)
bonds. The factor of 1

2 in front of H is due to the usual
double-counting.

By definition, the coupling matrix J is equal to its trans-
pose, thus, in general, it could contain 171 unique parameters.
However, the spin-Hamiltonian must be invariant under all
symmetry operations of the crystal and so must be invariant
under the generating operations of point group Oh. This re-
striction imposes five equations that J must obey, along with
the condition that J = J T . The remaining requirements are
as follows:

C2JCT
2 = J ,

C′
2JC′T

2 = J ,

C3JCT
3 = J , (5)

C′′
2JC′′T

2 = J ,

IJ IT = J .

The operation C2 refers to a π rotation about the [001] crys-
tallographic direction, C′

2 is a π rotation about [100], C3

is a 2π/3 rotation about [111], C′′
2 is a π rotation about

[110] and I is the inversion operation. Upon application of
these symmetries, the 171 free parameters contained in J are
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reduced to just eight. These are most conveniently displayed
in the representative single-site J11, NN J23, and NNN J11′

submatrices:

J11 =
⎡
⎣J xx

11 0 0
0 J xx

11 0
0 0 J zz

11

⎤
⎦,

J23 =
⎡
⎣J xx

12 J xy
12 0

J yx
12 J xx

12 0
0 0 J zz

12

⎤
⎦, (6)

J11′ =
⎡
⎣J xx

11′ 0 0
0 J xx

11′ 0
0 0 J zz

11′

⎤
⎦,

where all other Ji j can be obtained by an appropriate rotation.
Following the decomposition procedure outlined in Ref. [19],
we can rewrite the spin Hamiltonian in terms of more familiar
bilinear coupling terms as follows:

H = HJ + HD + HA + HB + HK + HJ ′ . (7)

The various terms contributing to this general form of the
Hamiltonian are summarized as

HJ = J

2

∑
�

∑
i j

Si·S j,

HD = D

2

∑
�

∑
i j

D̂i j ·Si × S j,

HA = A

2

∑
�

∑
i j

(n̂i j ·Si )(n̂i j ·S j ),

(8)

HB = B

2

∑
�

∑
i j

(l̂i j ·Si )(m̂i j ·S j ) + (m̂i j ·Si )(l̂i j ·S j ),

HK = K

2

∑
�

∑
i

(n̂i·Si )
2,

HJ ′ = J ′

2

∑
�

∑
ii′

Si·S′
i,

where the various unit-vectors, D̂i j , n̂i j , m̂i j , l̂i j , and n̂i are
defined in Eq. (B1).

This decomposition of the Hamiltonian via decomposi-
tion of the coupling matrix J leads to terms representing
NN isotropic exchange (HJ ), DM interaction (HD), Kitaev-
type anisotropic exchange (HA), symmetric, off-diagonal,
anisotropic exchange (sometimes referred to as Gamma-
type exchange) (HB), single-ion anisotropy (HK ), and NNN
isotropic exchange HJ ′ where we have six free parameters, J ,
J ′, D, A, B, and K (reduced from eight since one parameter
amounts to an uninteresting constant energy shift and we have
assumed for the scope of this paper that A′ = 0, neglecting
the second-order Kitaev-type term). These six free parame-
ters of our model can be defined in terms of the eight in
Eq. (6) as

J = J xx
12 ,

J ′ = J xx
11′ = J zz

11′ ,

D = J yx
12 − J xy

12

2
,

(9)
A = J zz

12 − J xx
12 ,

B = J yx
12 + J xy

12

2
,

K = J zz
11 − J xx

11 .

Of particular interest is the presence of the DM interaction
between neighboring Mn ions. The revealed directions of Di j

through our symmetry analysis of J [shown in Fig. 2(a)] are
consistent with Moriya’s rules [20]. They are also reminiscent
of the form of the DM coupling in the isolated kagome plane
geometry described by Elhajel et al. [21], which included both
an in-plane and out-of-plane component for the DM vectors.
The presence of this in-plane component can be most easily
justified by noting that the kagome planes are not themselves
mirror planes, as is the case in the AB-stacked systems which
consequently do not exhibit an in-plane component. Discus-
sion of the DM interaction in both Mn3X and Mn3AB systems
is almost completely lacking likely due to energetic cancel-
lations in the most common T1 and �5g configurations as is
pointed out by Chen et al. [22]. However, as we will argue,
the impact of this chiral term is not necessarily vanishing in
these materials. It is worth noting that the spin-structures of
two representative examples from each of the classes, Mn3X
and Mn3AB, can be explained rather simply using Eq. (8). The
Cu3Au-type structure Mn3Ir was described by Szunyogh et al.
[23] using a combination of HJ , HA and HK . The authors
found that the Kitaev-type term and the SIA could effectively
be rolled into a single, effective, easy-axis anisotropy term
with a negative-valued Keff where the easy axis for each Mn
atom corresponded to the normal direction of the cubic face
it occupies as is shown in Fig. 2(a). The combination of
easy-axis anisotropy and isotopic NN exchange of this form
was investigated further by LeBlanc et al. [24] who showed
that the ground-state spin structure of such a model should be
the canted 120◦ T1 (or �4g) structure exhibiting a small net
moment along one of its [111] directions. Figure 2(c) shows
the T1 structure with negligible canting. Likewise, the struc-
ture for the antiperovskite Mn3GaN was described by Bertaut
et al. [25] using the subset of Eq. (7) including HJ , HJ ′ , and
HK . In this case, the SIA axes shown in Fig. 2 are hard axes
since the value for K was determined to be positive. This
energy penalty attributed to S1z, S2x, and S3y along with the
ferromagnetic NNN coupling (J ′ < 0) leads to another 120◦
structure in which each spin is confined to both the (111) plane
and its respective cubic face which the authors dubbed the �5g

configuration (also sometimes referred to as T2), as shown in
Fig. 2(d). These two configurations will serve as representa-
tive examples of the two most commonly reported ground-
state spin configurations in Mn3X and Mn3AB compounds
with the goal of this paper being an expansion upon these
simple examples of noncollinear order in Mn3X and Mn3AB
systems with a particular emphasis on understanding the
cloaked influence of the DM interactions in these materials.

It is important to point out that the coupling matrix J
that was used to determine terms in the Hamiltonian con-
tains (3 × 3) coupling matrices for each bond in the unit-cell.
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However, to simply describe spin-configurations in these sys-
tems, it is convenient to work in a three-spin basis since
each unit cell contains only three Mn atoms. This is most
conveniently achieved by working with the Fourier-
transformed J (q), where each element is defined as

Ji j (q) =
∑

d

Ji j (d)e−iq·d, (10)

with d = r − r′ being the vector which points from the Bra-
vais lattice point of the unit cell containing first atom i to the
Bravais lattice point of the unit cell containing the second
j. By doing this, we retain all the information contained in
Eq. (3) while using a basis which conforms with the crystal
structure. For example, in the case q = 0, we expect every
Mn atom on sublattice 1 to point in a common direction and
likewise for sublattices 2 and 3.

The Fourier-transformed J (q) is as follows:

J (q) =

⎡
⎢⎢⎣

J11 + J11′γ11′ (q) J12γ12(q) + J12′γ12′ (q) J13γ13(q) + J13′γ13′ (q)

J21γ21(q) + J21′γ21′ (q) J22 + J22′γ22′ (q) J23γ23(q) + J23′γ23′ (q)

J31γ31(q) + J31′γ31′ (q) J32γ32(q) + J32′γ32′ (q) J33 + J33′γ33′ (q)

⎤
⎥⎥⎦, (11)

where, for example,

γ12(q) = 1 + ei2π (h−�), (12)

with q = (2πh/a, 2πk/a, 2π�/a) and the Ji j are the same as
in Eq. (6).

We can now use the Fourier-transformed J (q) to gain
insight into the periodicity of the ground-state spin structure
for various combinations of the six free material parameters,
J , J ′, D, A, B, and K . We employ the Luttinger-Tisza method
[26,27] to minimize the Fourier-transformed Hamiltonian,

H = 1

2

∑
q

∑
i, j

ST
i (q)Ji j (q)S j (−q), (13)

under the “weak” constraint which states that the sum of
the magnitudes of all spins must equal the number of spins.
Under this weak constraint, minimization of (13) amounts to
an eigenvalue problem in which the minimum-energy eigen-
value of J (q), denoted λ0(q), corresponds to the ground-state
energy for a given q. We note that it is possible to obtain un-
physical spin configurations with non-unit-length spins while
operating with the weak constraint. To validate a given solu-
tion, one must first check that each spin is unit length.

FIG. 3. The first Brillouin zone of the cubic system. The di-
rection of the vector spin chirality is indicated by the arrow and
is assumed to always be along the [111] direction without loss of
generality.

III. MINIMUM-ENERGY ORDERING VECTORS

In practice, we expect the minimum-energy state to have a
wave vector that is along one of the high-symmetry directions
of the lattice. Consequently, we evaluate the minimum-
energy eigenvalue λ0(q) along the path �-X -M-�-R || X -R-M
through the first Brillouin zone (Path 1 in Fig. 3). As an
example, consider the model described in Sec. II for Mn3GaN
with J = 1, K = 0.2, and J ′ = −0.5. The minimum energy
λ0(q) of J (q) is plotted as the solid, black line in Fig. 4,
which demonstrates a clear energy minimum at the � point.
This q = 0 minimum-energy state is consistent with the �5g

ordering of this model described by Bertaut et al. (although
it is also consistent with the q = 0 T1 state and analysis
of the eigenvectors is necessary to distinguish between the
two; see Sec. IV). By contrast, if K and J ′ are set to zero,
λ0(q) becomes degenerate along the entire branch �-X as
can be seen in Fig. 4 following the red, dashed line, in-
dicating a highly degenerate ground-state manifold similar
to previous studies [28,29] in which so long as the angle
between each spin in the system is 120◦ the state qualifies
as a viable magnetic ground state. We wish to study the
extended model described by our general J (q) in the case of
antiferromagnetic nearest-neighbor interactions, J = 1. The
minimum-energy q are summarized in the two-dimensional

Γ X M Γ R

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

E
n
er
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in

u
n
it

s
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J

X R M

FIG. 4. (solid black) The minimum-energy eigenvalues λ0(q) for
the coupling matrix J (q) with J = 1, K = 0.2, and J ′ = −0.5 and
all other parameters set to zero. The clear minimum exists exclu-
sively at the � point, consistent with the q = 0 order known for this
set of parameters. (red dashed) The minimum-energy eigenvalues
λ0(q) for the coupling matrix J (q) with J = 1 and all other param-
eters set to zero. λ0(q) is degenerate along the entire branch �-X
indicating a high degree of degeneracy.
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2
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I

(c)

-2 0 2

D
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0

2
K III V
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I

(d)
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A

-2

0

2

K I IV

(e)

-2 0 2

D

-2

0

2

B IV

V

III

(f)

FIG. 5. Two-dimensional slices through the four-dimensional
subphase-space containing the parameters A, B, D, and K . The
various regions identified correspond to one of the six possible
energy-minimizing q vectors. Case I corresponds to a minimum at
the � point, II to minima at the M points, III to minima at the R
points, IV to a macroscopic degeneracy between � and X , V to a
macroscopic degeneracy between M and R, and VI to a macroscopic
degeneracy over the entire reciprocal space path.

slices through configuration space shown in Fig. 5 for this
situation. There are a total of six different scenarios that can
manifest. The different scenarios are labeled with the Roman
numerals (I–VI). In cases I–III, the energy is minimized by a
single q with qI ∈ �, qII ∈ M, and qIII ∈ R. In cases IV–VI we
find varying degrees of degeneracy throughout the Brillouin

TABLE I. Representative symmetry operations from each class
of Oh with their corresponding permutation characters χP, rotation
characters χR and total characters χ .

Operation χR χP χ

C3 : {3+
111} 0 0 0

C2 : {2110} −1 0 0
C4 : {4+

001} 1 2 2
C′

2 : {2001} −1 2 −2
I : {−1} 3 0 0
S4 : {−4+

001} 1 0 0
S6 : {−3+

111} 0 0 0
σh : {m001} −1 4 −4
σd : {m110} −1 2 −2

zone (BZ). Configuration IV has a flat “dispersion” in the slice
�-X , V has a similar behavior in the slice M-R, and VI has a
degenerate λ0(q) for the whole BZ path shown in Fig. 3.

The phase boundaries between regions exhibit mixed de-
generacy of the energy-minimizing q on either side of the
boundary indicative of the continuous transitions between
regions. For example, at the phase boundary between regions
IV and V, scenario VI is realized. Also worth noting is that
a small, negative J ′ breaks all degeneracies, with regions
labeled IV switching to I and regions labeled V switching
to II.

IV. DIAGONALIZATION OF THE q = 0 HAMILTONIAN

We now explore the possible phases of our spin system in
the specific case q = 0 given the symmetry-allowed Hamilto-
nian found in Sec. II which is shown in Eq. (14). Importantly,
all dependence on D and B has dropped out in the q = 0
limit. This is consistent with the two q = 0 configurations
described in Sec. II which had no DM interaction or Gamma-
type exchange term present in their descriptions. To do this
in a convenient and expedient manner we follow the method
detailed by Essafi et al. [30]. Since the crystal structures of
Cu3Au-type Mn3X and antiperovskite Mn3AB belong to space
group Pm3̄m with corresponding point-group symmetry Oh,
the spin-Hamiltonian must also be invariant under all oper-
ations of Oh. These operations are detailed in Table I and
Eq. (A3). We have used this property once already to find the
form of the coupling matrix J . Now we use it to aid in the
diagonalization of J :

J (q = 0) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6J ′ 0 0 4J 0 0 4A + 4J 0 0
0 6J ′ 0 0 4A + 4J 0 0 4J 0
0 0 6J ′ + 2K 0 0 4J 0 0 4J

4J 0 0 6J ′ + 2K 0 0 4J 0 0
0 4A + 4J 0 0 6J ′ 0 0 4J 0
0 0 4J 0 0 6J ′ 0 0 4A + 4J

4A + 4J 0 0 4J 0 0 6J ′ 0 0
0 4J 0 0 4J 0 0 6J ′ + 2K 0
0 0 4J 0 0 4A + 4J 0 0 6J ′

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (14)
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TABLE II. Character table for point group Oh.

Oh E 8C3 6C2 6C4 3C′
2 I 6S4 8S6 3σh 6σd

A1g +1 +1 +1 +1 +1 +1 +1 +1 +1 +1
A2g +1 +1 −1 −1 +1 +1 −1 +1 +1 −1
Eg +2 −1 0 0 +2 +2 0 −1 +2 0
T1g +3 0 −1 +1 −1 +3 +1 0 −1 −1
T2g +3 0 +1 −1 −1 +3 −1 0 −1 +1
A1u +1 +1 +1 +1 +1 −1 −1 −1 −1 −1
A2u +1 +1 −1 −1 +1 −1 +1 −1 −1 +1
Eu +2 −1 0 0 +2 −2 0 +1 −2 0
T1u +3 0 −1 +1 −1 −3 −1 0 +1 +1
T2u +3 0 +1 −1 −1 −3 +1 0 +1 −1

The (9 × 9) symmetry operations, �(g), are
representative of the ten classes of Oh, where
g ∈ (E ,C3,C2,C4,C′

2, i, S4, S6, σh, σd ). They are, however, a
reducible representation. By decomposition of the � represen-
tation via a unitary transformation U†�(g)U , the � represen-
tation can be decomposed into an irreducible representation.
The transformed operations, U†�(g)U , will be block diagonal,
all with the same block structure. In fact, any (9 × 9) matrix
which is invariant under Oh will also be block diagonalized
by U , including the coupling matrix of interest, J .

Our first task is to find the relevant characters of the �

representation operators, χ (g). These characters are simply
the trace of one representative operation from each class, g.
To simplify matters, we note that the full operation �(g) is the
tensor product of the corresponding spin permutation matrix
P (g) and the spin rotation matrix R(g):

�(g) = P (g) ⊗ R(g), (15)

thus the corresponding character is just the product of the
permutation operation’s character and the rotation operation’s
character:

χ (g) = χP (g)χR(g). (16)

We can now use these characters to find a decomposition

� = ⊕IγI�I (17)

of the spin configuration into its irreducible representations
where the coefficients γI are

γI = 1

n

∑
g∈Oh

χI(g)χ (g), (18)

where n is the total number of symmetry elements, in this
case n = 48, and χI(g) are the characters summarized in
Table II. This results in the following decomposition for the
9-D representation:

� = 2T1g ⊕ T2g. (19)

As a result, we expect that our coupling matrix should be
block-diagonalizable into three three-dimensional blocks, two
which transform as T1g and one which transforms as T2g.
It is possible to describe nine basis vector configurations
that transform as the representations T1g and T2g. These nine
symmetry-adapted order parameters (SAOPs) will be conve-
nient for interpreting the ground-state spin configuration of
the q = 0 spin Hamiltonian. They are defined as follows in

the S = [S1, S2, S3] basis:

TFx
1g = [100, 100, 100],

TFy
1g = [010, 010, 010],

TFz
1g = [001, 001, 001],

TAx
1g = 1√

2
[100,−200, 100],

TAy
1g = 1√

2
[010, 010, 0 − 20], (20)

TAz
1g = 1√

2
[00 − 2, 001, 001],

Tx
2g =

√
3

2
[100, 000,−100],

Ty
2g =

√
3

2
[010, 0 − 10, 000],

Tz
2g =

√
3

2
[000, 001, 00 − 1].

Whereas configurations from the T Fα
1g block conform to the

strong constraint with unit-length spins, configurations from
the T Aα

1g and T2g blocks do not. To realize physical spin-
configurations in these blocks, linear combinations must be
formed. Two example physical configurations are as follows:

TA
1g = 1√

3

(
TAx

1g + TAy
1g + TAz

1g

)
,

T2g = 1√
3

( − Tx
2g + Ty

2g − Tz
2g

)
, (21)

and are shown in Figs. 2(c) and 2(d), where it becomes obvi-
ous that the T A

1g configuration corresponds to T1(�4g) ordering
while T2g corresponds to T2(�5g). Rewriting the coupling ma-
trix, J (q = 0) in the SAOP basis reveals the utility in working
in such a basis. The transformed J is

J ′(q = 0) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P 0 0 S 0 0 0 0 0
0 P 0 0 S 0 0 0 0
0 0 P 0 0 S 0 0 0
S 0 0 Q 0 0 0 0 0
0 S 0 0 Q 0 0 0 0
0 0 S 0 0 Q 0 0 0
0 0 0 0 0 0 R 0 0
0 0 0 0 0 0 0 R 0
0 0 0 0 0 0 0 0 R

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(22)

with

P = 8A

3
+ 8J + 6J ′ + 2K

3
,

Q = 4A

3
− 4J + 6J ′ + 4K

3
,

(23)
R = −4A − 4J + 6J ′,

S = 2
√

2

3
(2A − K ).
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This form of the coupling matrix is nearly diagonal, and one
can gain insight as to which eigenvectors, or SAOPs, will
need to mix in order to create the minimal energy state given
a prescribed set of J , A, J ′, and K . Namely, in the case
where A = K = 0, we can see immediately that for J < 0
the ground state belongs to the T F

1g family with some SO(3)
global rotational symmetry as is the case in the classical 3D
Heisenberg ferromagnet. Meanwhile, if J > 0, we find that
the T A

1g and T2g antiferromagnetic states minimize the energy
and are degenerate with no mixing between T A

1g and T F
1g since

the off-diagonal terms are zero. If A and/or K are not zero,
we expect these two modes to intermix. To move forward, we
must take one more step to remove the mixing between our
mathematically intuitive but physically arbitrary SAOPs in the
T F

1g and T A
1g families. To do this we create six new basis vectors

which are simply linear combinations of TFα
1g and TAα

1g :

TIα
1g = ξTFα

1g + TAα
1g√

1 + ξ 2
, TIIα

1g = TFα
1g + ζTAα

1g√
1 + ζ 2

, (24)

where the constants ξ and ζ are defined in Eq. (26). With these
slightly more cumbersome order parameters defined, the q =
0 Hamiltonian now becomes fully diagonal with the coupling

matrix redefined as

J ′′(q = 0) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P′ 0 0 0 0 0 0 0 0
0 P′ 0 0 0 0 0 0 0
0 0 P′ 0 0 0 0 0 0
0 0 0 Q′ 0 0 0 0 0
0 0 0 0 Q′ 0 0 0 0
0 0 0 0 0 Q′ 0 0 0
0 0 0 0 0 0 R 0 0
0 0 0 0 0 0 0 R 0
0 0 0 0 0 0 0 0 R

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(25)

with P′ and Q′ defined in Eq. (26) and the three (3 × 3)
blocks now made very apparent. Thus, whichever of P′, Q′,
or R is minimized for a given set of J , A, J ′, K will saturate
the spin configuration in its corresponding normalized linear
combination of SAOPs.

Returning to the two examples in Sec. II, we can immedi-
ately explain the canted T1 ordering for Mn3Ir since for J = 1,
K < 0, A = 0, J ′ = 0, the minimum-energy eigenvalue is P′
which means the spin configuration should be TI

1g (T 1 plus
canting toward the [111] direction). Likewise, for Mn3GaN
with J = 1, K > 0, A = 0, J ′ < 0, we immediately find the
minimum-energy eigenvalue to be R which corresponds to the
T2g (�5g) configuration:

P′ = 2A + 2J + 6J ′ + K −
√

4A2 + 8AJ − 4AK + 36J2 − 4JK + K2,

Q′ = 2A + 2J + 6J ′ + K +
√

4A2 + 8AJ − 4AK + 36J2 − 4JK + K2,
(26)

ξ = 2
√

2(−2A + K )

2A + 18J − K + 3
√

4A2 + 8AJ − 4AK + 36J2 − 4JK + K2
,

ζ = 2A + 18J − K − 3
√

4A2 + 8AJ − 4AK + 36J2 − 4JK + K2

2
√

2(−2A + K )
.

Using this methodology, we can take our analysis one step
further to examine the amounts of T F

1g and T A
1g that make

up our newly defined T I
1g state. Figure 6 shows a picture

similar to Fig. 5(e) with the added insight of just how much
canting along the [111] direction is induced for various val-
ues of A and K . Importantly, this is also a measure of the
scalar spin chirality, χi jk = Si · (S j × Sk ) of the configuration.
Notably, for nearly the entire portion of the phase diagram
corresponding to the T1g configuration, χi jk is nonzero due to
coupling with the TF

1g mode inducing canting toward the [111]
direction, while, for the T2g region, χi jk is identically zero
since no coupling with the ferromagnetic mode is permitted,
resulting in a strictly coplanar arrangement. In both cases the
vector spin chirality, κi jk ∝ Si × S j + S j × Sk + Sk × Si is
directed along the [111] crystallographic direction, reflecting
the shared handedness of the two configurations.

V. INFLUENCE OF DZYALOSHINSKII-MORIYA
INTERACTION ON SPIN WAVES

As was made clear in Sec. IV, the presence of the DM inter-
action and γ -type anisotropic exchange have no impact on the

ground-state spin configurations in the q = 0 regime. The en-
ergetic contributions due to these terms cancel out identically
in these ferromagnetic sublattice configurations. However, as
we will show, one should still be able to glean information
on their presence and even qualitative measurements of their
magnitudes by considering the elementary magnetic excita-
tions of the q = 0 ground states.

Following the methods outlined in Refs. [31] and [32],
we calculate first the spin-wave dispersion along the paths
outlined in Fig. 3. It is important to note that we consider
here a system which has spontaneously aligned in such a way
that the vector-spin chirality (or the magnetic moment for T1g
with K < 0) is aligned solely with the [111] crystallographic
direction. This alignment breaks some of the crystallographic
symmetries and as a result, the point-group symmetry of the
system is reduced to D3d for coplanar arrangements and S6
for noncoplanar arrangements. Consequently, it is necessary
to probe both paths through the first cubic Brillouin zone
indicated in Fig. 3 since the points labeled M ′, for exam-
ple, indicate wave vectors that lie within the chosen kagome
planes, perpendicular to κi jk , while points labeled M indicate a
wave vector with components both perpendicular and parallel
to κi jk .
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FIG. 6. Phase diagram for the parameters A and K with J = 1
and J ′ = −0.1. The intensity in the region labeled T1g corresponds
to the weight of the T F

1g component in the linear combination T I
1g

which is associated with the amount of ferromagnetic canting toward
the [111] direction. The region labeled T2g has no ferromagnetic
contribution, it couples to neither of the T1g modes.

Returning to our two representative examples [Figs. 7(a)
and 7(c)], we see that the T2g ground state with K > 0 retains
the characteristic dispersionless mode between � and X while
the T1g state with K < 0 breaks the continuous degeneracy
due to the induced ferromagnetic component resulting in a
nearly dispersionless mode. Importantly, in both situations,

0

1

2

3

4
(a)

0

2

4

(b)

0

1

2

3

4
(c)

Γ X M(M ′) Γ R(R′)
0

1

2

3

4
(d)

X R(R′) M(M ′)

ω
/J

FIG. 7. Spin-wave dispersion for (a) the T1g ground state with
K = −0.1, D = 0, (b) the T1g ground state with K = −0.1 and D =
−0.2, (c) the T2g ground state with K = 0.1, D = 0, and (d) the T2g

ground state with K = 0.1, D = −0.2. In all cases, J = 1 and the
remaining parameters are set to zero.

each of the three spin-wave modes are degenerate along the
two paths through the Brillouin zone. In addition, all three
modes are degenerate at both the M, M ′ and R, R′ points.
These degeneracies are lifted as soon as a small DM term of
the form detailed in Eq. (6) is introduced, leading to a path-
dependent spectrum, a gapped spin-wave spectrum at M/M ′
and R/R′ as well as mode crossings that are not confined to
the BZ boundaries. In the interest of exploring possible ways
to measure this DM-induced effect, we provide calculations
of inelastic neutron-scattering intensities. Again following
Refs. [31,32], we calculate the perpendicular component of
the (3 × 3) dynamical spin-spin correlation matrix,

S (k, ω) =
∑
αβ

(
δαβ − qαqβ

q2

)
Sαβ (k, ω), (27)

where

Sαβ (k, ω) = 1

2πN

∑
mi,n j

eik(rmi−rn j )
∫ ∞

−∞
dτe−iωτ

〈
Sα

miS
β
n j

〉
,

(28)

α, β ∈ (x, y, z), m, n are unit-cell indices, N = 3, and i, j
again label sublattices.

We do this calculation for a path containing M ′ and R since
these are effectively the local x and z directions within the
coplanar or near-coplanar kagome planes. The path we follow
highlights markedly higher intensity in the second Brillouin
zones consistent with the elastic neutron-scattering intensity
appearing for h, k, � all even and (nearly) vanishing for h, k, �

all odd, as was reported in Ref. [24]. As can be seen in
Fig. 8, the effect of the DM interaction in the T1g configuration
is qualitatively obvious since both modes with appreciable
intensity at the R point become nondegenerate. Alternatively,
for the T2g state, the two modes with appreciable intensity
remain degenerate along the path �-R making the effect of the
DM interaction less obvious. Focusing on the M ′ point, the
influence of the DM interaction can again be observed with
the effect again far more obvious for the T1g configuration.
Nonetheless, the influence of the DM interaction should be
measurable at M ′ in both configurations since all three spin-
wave modes have appreciable intensity in both cases. With
the effect of the DM interaction being so prevalent in the slice
S (k = R, ω), we think it useful to investigate the dependence
on the splitting of the two visible modes as a function of the
DM strength. We define �E as the difference in energy of
the top and intermediate modes of the T1g structure at the R
point. Figure 9 shows the relationship between �E and D for
D ∈ (−0.5, 0) which is linear, outlining a potential means of
comparing the relative DM strength in different T1-ordered
materials. We also note the relevance of this effect as it per-
tains to certain optical measurements such as the work carried
out in Ref. [33].

Although single-crystal inelastic neutron scattering (INS)
data for either the Mn3X or the Mn3AB systems do not ex-
ist to our knowledge, experiments have been conducted on
polycrystalline samples of the Cu3Au-type Mn3Ir [34]. In the
interpretation of this data, the authors made use of not just
nearest-neighbor isotropic exchange J and effective SIA Keff

but also included further neighbor isotropic exchange interac-
tions reaching out to the fourth-nearest-neighbor Mn ions. The
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FIG. 8. Relative magnitudes of the dynamical correlation func-
tion S(k, ω) for (a) the T1g configuration with K = −0.1, D = 0,
(b) the T1g configuration with K = −0.1, D = −0.2, (c) the T2g

configuration with K = 0.1, D = 0, and (d) the T2g configuration
with K = 0.1, D = −0.2.

basis of including these interactions and the initial guesses of
their various strengths are due to a density-functional theory
(DFT) study by Szunyogh et al. [23], which predicted alter-
nating ferro- and antiferromagnetic couplings J1, J2, J3, and J4

along with a value for Keff. The authors fit this five-parameter
model to the powder INS data and found discrepancies with
the values predicted by density-functional theory (DFT).
We wish to point out here that the influence of the DM

0.0−0.1−0.2−0.3−0.4−0.5
D/J

0.0

0.5

1.0

1.5

2.0

2.5

Δ
E

in
un

it
s

of
J

FIG. 9. The difference in ω of the two visible spin-wave modes
for the T1 structure at the R point as a function of D.

FIG. 10. Comparison of calculated powder INS intensity profiles
for (a) the J1, J2, J3, J4 model with D = 0 and (b) the J1, J2, J3, J4

model with D = −0.2.

interaction could substantively alter the powder INS calcula-
tions even when its magnitude is relatively weak and should
be considered when interpreting the spin-wave spectra in this
material. To highlight this, in Fig. 10 we show calculations of
the powder INS spectrum for two situations. The first is the
case with all values set to the DFT predictions (normalized
so that J1 = 1) while the second includes the same values for
J1, J2, J3, J4, and Keff but also includes DM coupling with
value D = −0.2. Importantly, the presence of the DM inter-
action affects not only the total magnon bandwidth, causing
higher energy excitations, but also affects the width of the
high-energy parallel “tails,” increasing this width in E from
≈1J to ≈1.4J as can be seen in Fig. 10.

VI. CONCLUSIONS

To summarize, we have conducted a symmetry analysis
of L12 Mn3X and Mn3AB compounds to construct a classi-
cal magnetic Hamiltonian which includes terms due to NN
and NNN isotropic exchange, NN Kitaev-type anisotropic
exchange, NN γ -type anisotropic exchange, NN DM interac-
tions, and single-ion anisotropy. The magnetic ground states
we predict using our model are consistent with previous
results obtained considering only NN and NNN isotropic ex-
change and single-ion anisotropy with the off-diagonal HD

and HB terms making no energetic contribution in large
swaths of the ground-state phase diagrams. We show, how-
ever, that these terms can strongly influence the elementary
excitations of these spin structures. Reduction in the Bril-
louin zone symmetry leads to path-dependent spin-wave
dispersion in a similar manner to the AB-stacked system as
described in Ref. [35]. Additionally, gaps are formed at the
Brillouin-zone boundaries, which have a linear dependence
on the presupposed DM interaction’s magnitude. Our inelastic
neutron-scattering calculations show that both effects should
be measurable and highlight a route for quantifying and com-
paring the relative influence of these cloaked interactions in
different Mn3X and Mn3AB compounds.
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APPENDIX A: SYMMETRY OPERATIONS

In Sec. II we made use of the generating operations of point
group Oh. These operations can be found in Ref. [36], but

we detail their application to our system here. To apply the
generating operations to our coupling matrix Ji j (r − r′) we
must first understand the spin permutations that result from
each operation. The full transformation T associated with
each generating operation g is the tensor product between the
permutation matrix P and the associated axial-vector rotation
matrix R:

T (g) = P (g) ⊗ R(g). (A1)

These permutation and rotation matrices for the six-spin basis
used in Sec. II are as follows:

P (C2) =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 1 0 0
0 1 0 0 0 0
0 0 1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

, R(C2) =
⎡
⎣−1 0 0

0 −1 0
0 0 1

⎤
⎦,

P (C′
2) =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0
0 0 0 0 1 0
0 0 1 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

, R(C′
2) =

⎡
⎣−1 0 0

0 1 0
0 0 −1

⎤
⎦,

P (C3) =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

, R(C3) =
⎡
⎣0 0 1

1 0 0
0 1 0

⎤
⎦, (A2)

P (C′′
2 ) =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

, R(C′′
2 ) =

⎡
⎣0 1 0

1 0 0
0 0 −1

⎤
⎦,

P (I ) =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

, R(I ) =
⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦.

In Sec. IV we made use of representative symmetry operations from each class of point group Oh. The character table for Oh is
shown in Table II.

The permutation and rotation matrices associated with the representative operations g from each class are as follows:

P (C3) =
⎡
⎣0 0 1

1 0 0
0 1 0

⎤
⎦, R(C3) =

⎡
⎣0 0 1

1 0 0
0 1 0

⎤
⎦,

P (C2) =
⎡
⎣1 0 0

0 0 1
0 1 0

⎤
⎦, R(C2) =

⎡
⎣0 1 0

1 0 0
0 0 −1

⎤
⎦,
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P (C4) =
⎡
⎣1 0 0

0 0 1
0 1 0

⎤
⎦, R(C4) =

⎡
⎣0 −1 0

1 0 0
0 0 1

⎤
⎦,

P (C′
2) =

⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦, R(C′

2) =
⎡
⎣−1 0 0

0 −1 0
0 0 1

⎤
⎦, (A3)

P (I ) =
⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦, R(I ) =

⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦,

P (S4) =
⎡
⎣1 0 0

0 0 1
0 1 0

⎤
⎦, R(S4) =

⎡
⎣0 −1 0

1 0 0
0 0 1

⎤
⎦,

P (S6) =
⎡
⎣0 0 1

1 0 0
0 1 0

⎤
⎦, R(S6) =

⎡
⎣0 0 1

1 0 0
0 1 0

⎤
⎦,

P (σh) =
⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦, R(σh) =

⎡
⎣−1 0 0

0 −1 0
0 0 1

⎤
⎦,

P (σd ) =
⎡
⎣1 0 0

0 0 1
0 1 0

⎤
⎦, R(σd ) =

⎡
⎣0 1 0

1 0 0
0 0 −1

⎤
⎦,

with P (g) in the [S1, S2, S3] basis and R(g) in the [Sx
i , Sy

i , Sz
i ] basis.

APPENDIX B: COUPLING VECTOR DEFINITIONS

In Sec. II, the symmetry-allowed magnetic Hamiltonian
was defined as (8). The various unit vectors D̂i j , n̂i, n̂i j , l̂i j ,
m̂i j used to define the couplings are as follows:

D12 = D1′2′ = Dŷ,

D1′2 = D12′ = −Dŷ,

D31 = D3′1′ = Dx̂,

D31′ = D3′1 = −Dx̂,

D23 = D2′3′ = Dẑ,

D23′ = D2′3 = −Dẑ,

n̂1 = n̂1′ = ẑ,

n̂2 = n̂2′ = x̂,

n̂3 = n̂3′ = ŷ,

n̂12 = n̂12′ = n̂.21′ = n̂1′2′ = ŷ,
(B1)

n̂13 = n̂13′ = n̂31′ = n̂1′3′ = x̂,

n̂23 = n̂23′ = n̂32′ = n̂2′3′ = ẑ,

l̂12 = l̂12′ = l̂21′ = l̂1′2′ = x̂,

l̂13 = l̂13′ = l̂31′ = l̂1′3′ = ŷ,

l̂23 = l̂23′ = l̂32′ = l̂2′3′ = x̂,

m̂12 = m̂12′ = m̂21′ = m̂1′2′ = ẑ,

m̂13 = m̂13′ = m̂31′ = m̂1′3′ = ẑ,

m̂23 = m̂23′ = m̂32′ = m̂2′3′ = ŷ.
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