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Symmetry fractionalization is a ubiquitous feature of topologically ordered states that can be used to classify
different symmetry-enriched topological phases and reveal some of their unique experimental signatures. Despite
its vast popularity, there is currently no available framework to study symmetry fractionalization of quantum spin
ice (QSI)—a U(1) quantum spin liquid (QSL) on the pyrochlore lattice supporting emergent photons—within
the most widely used theoretical framework to describe it, gauge mean-field theory (GMFT). In this work, we
provide an extension of GMFT that allows for the classification of space-time symmetry fractionalization. The
construction classifies all GMFT Ansditze that yield physical wave functions invariant under given symmetries
and a specific low-energy gauge structure. As an application of the framework, we first show that the only
two Ansdtze with emergent U(1) gauge fields that respect all space group symmetries are the well-known 0-
and -flux states. We then showcase how the framework may describe QSLs beyond the currently known ones
by classifying chiral U(1) QSI. We find a new chiral QSL described by 7 /2 fluxes of the emergent gauge field
threading the hexagonal plaquettes of the pyrochlore lattice. We finally discuss how the different ways translation
symmetries fractionalize for all these states lead to unique experimentally relevant signatures and compute their

respective inelastic neutron scattering cross-section to illustrate the argument.
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I. INTRODUCTION

Intrinsic topological phases of matter are novel ground
states of many-body systems characterized by long-range
entanglement (LRE) [1-6]. LRE leads to drastic phenomeno-
logical consequences such as topology-dependent ground
state degeneracies and the emergence of deconfined fractional
excitations and low-energy gauge structures. The definition of
topologically ordered states in terms of LRE is independent
of the presence of any symmetries. However, in the presence
of symmetries, such as the space group of a lattice or on-site
symmetries, topologically ordered phases of matter acquire a
finer classification as they can split into different symmetry-
enriched topological (SET) classes [7—12]. In distinct SET
phases, the global symmetries fractionalize in different ways,
i.e., the emergent quasiparticles carry different fractions, so to
speak, of the local constituents’ quantum number (e.g., the
charge or spin of the electrons) [13—19]. The investigation
of symmetry fractionalization in SET classes is a uniquely
important tool in our current quest for the experimental
realization of topological phases of matter. It provides a clas-
sification framework and highlights distinct experimentally
accessible signatures since symmetry fractionalization can be
measured by conventional shot-noise and neutron scattering
experiments [20-23].

Some of the most experimentally relevant potential realiza-
tions of topological order are quantum spin liquids (QSLs);
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quantum paramagnetic ground states of spin systems where
competition between different local interactions is so intense
that it prevents conventional magnetic long-range order and
instead results in LRE [24-28]. One of the most paradigmatic
QSLs is quantum spin ice (QSI). QSI is a QSL on the py-
rochlore lattice [see Fig. 1(a)] with an emergent compact U(1)
gauge structure that provides a lattice realization of quantum
electrodynamics with a gapless photonlike mode, charged
particles with mutual Coulomb interactions (spinons), and
magnetic monopoles [29-34]. It is known that considering the
symmetries of the pyrochlore lattice, QSI can realize at least
two different SET phases: The 0- and 7 -flux states (0-QSI and
m-QSI) where the hexagonal plaquette of the pyrochlore lat-
tice [see Fig. 1(c)] are threaded by static 0 and 7 fluxes of the
emergent U(1) gauge field respectively [35—-38]. Currently, the
only available classifications of SET phases on the pyrochlore
lattice beyond the 0- and w-flux states rely on the projective
symmetry group (PSG) [39—42]. As introduced by Wen in his
seminal work [43], the PSG is historically the first attempt
to provide a classification scheme for QSLs using space-time
symmetry fractionalization. In this framework, a specific par-
ton construction is first assumed. Different PSG classes (i.e.,
different patterns of space-time symmetry fractionalization)
correspond to inequivalent mean-field (MF) solutions within
that specific slave-particle construction [44-49]. The PSG
can classify QSLs invariant under a given set of symmetries,
such as fully symmetric QSLs where all space-time symme-
tries are preserved or chiral QSLs with broken time-reversal
symmetry [50,51]. It further provides variational wave func-
tions to study the physical properties of these prospective
QSLs. For QSI, all PSG classifications have used Abrikosov
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FIG. 1. (a) The sites of the pyrochlore lattice form a three-
dimensional network of corner-sharing tetrahedra. The down (up)
tetrahedra are colored in purple (green). (b) The parent diamond
lattice and the three basis translation vectors. (¢) When seen along
the [111] direction, the pyrochlore lattice forms alternating two-
dimensional kagome and triangular layers, whereas the parent
diamond lattice forms puckered honeycomb layers with an ABC
stacking. (d) The unit cell of the pyrochlore and parent diamond
lattice.

fermions [41,52] or Schwinger bosons [39,40,42] parton con-
structions. These are generic slave-particle constructions for
spin systems that do not have any apparent connection to the
physics of QSI, thus making the physical relevance of the
identified QSLs dubious.

On the other hand, a parton construction with a trans-
parent connection with QSI is gauge mean-field theory
(GMFT) [36,37,53,54]. In this formalism, bosonic spinons
hop on the parent diamond lattice while interacting with an
emergent compact U(1) gauge field, which directly corre-
sponds with our conceptual understanding of QSI. GMFT is
still a widely used theoretical framework to study QSI and
has successfully unveiled many vital insights. However, it
remains unclear if a classification scheme similar to the PSG
can be applied to GMFT. Indeed, there are salient differences
between GMFT and other parton constructions upon which
the PSG classification is based (i.e., Abrikosov fermions and
Schwinger bosons) that make the construction of such a the-
oretical framework nontrivial. For instance, many ideas from
the PSG are challenging to apply to GMFT since the emergent
gauge structure, which is the cornerstone of the PSG construc-
tion, has an entirely different physical origin. In conventional
parton constructions, the emergent gauge field fluctuations are
introduced to project back the parton wave function to a phys-
ical subspace with a fixed number of partons per site. On the
other hand, the emergent gauge structure in GMFT imposes
a lattice analog of Gauss’s law after artificially introducing a
slave bosonic Hilbert space at every site of the parent lattice.
Furthermore, the spins in GMFT are represented by directed

link variables in contrast to purely on-site operators in the
Abrikosov fermions and Schwinger bosons representations.

In this work, we provide a projective extension of GMFT
that allows for the classification of space-time symmetry frac-
tionalization. After briefly reviewing the physics of GMFT,
we explain how to find all possible Ansditze that yield physical
wave functions invariant under a specific set of symmetries
and construct their corresponding variational MF wave func-
tion. With this framework in hand, we first show that assuming
the full space group of the lattice, only two QSI states are
possible: the 0- and m-flux states. Even though our extension
of GMFT confirms that all fully symmetric QSI states were
previously known, it is still an essential step towards the un-
ambiguous experimental realization of QSI since it provides a
natural framework that can be extended to study QSLs beyond
the fully symmetric U(1) case. For instance, it can be used to
classify Z, QSLs born out of the condensation of spinon pairs
or chiral QSLs. The latter classification of chiral QSLs might
be especially relevant since recent numerical and analytical
studies have found some evidence hinting at the presence of
a disordered phase that breaks time-reversal or inversion in
proximity to the SU(2) symmetric Heisenberg point [55-59].
Therefore, to exemplify the framework’s usefulness, we clas-
sify chiral U(1) QSI states. We find two states related by
time-reversal symmetry described by /2 and 37 /2 fluxes
piercing the hexagonal plaquettes. We finally compute the
spinon contribution to the neutron scattering cross-section for
all these states and show how the spectral periodicity of the
two-spinon continuum can be used to distinguish them exper-
imentally.

The rest of the paper is organized as follows. In Sec. II, the
conventions we use for the pyrochlore and its parent lattice are
discussed before reviewing the GMFT construction in Sec. I11.
Our projective extension for GMFT is presented in Sec. IV
and then applied to classify symmetric and chiral U(1) QSI
states. We move on to discuss the experimental signatures of
these different QSLs and compute the spinons’ contribution
to their respective neutron scattering cross section in Sec. V.
In Sec. VI, we finally end with a discussion of our work’s
implications and future directions.

II. CONVENTIONS

A. Pyrochlore and parent diamond lattice

The magnetically active ions in spin ice form a pyrochlore
lattice, an fcc Bravais lattice with four sublattices shaping
into a network of corner-sharing tetrahedra as illustrated in
Fig. 1(a). To identify the position of a unit cell on the
pyrochlore lattice, we introduce the global Cartesian coor-
dinates (GCC), which are the standard frame coordinates of
the fcc cube with edge length set to unity, and the following
three basis vectors [as expressed in the GCC and illustrated in
Figs. 1(b) and 1(c)]:

& =1(0,1,1), (1a)
& =1(1,0, 1), (1b)
& =1(1,1,0). (1c)

For later convenience, we also introduce & = (0, 0, 0).

064404-2



SYMMETRY FRACTIONALIZATION IN THE GAUGE ...

PHYSICAL REVIEW B 107, 064404 (2023)

The diamond lattice is premedial to the pyrochlore lat-
tice [60]. It is often colloquially referred to as the dual
diamond lattice. To be rigorous, we shall hereafter refer to it as
the parent diamond lattice. This parent lattice is an fcc Bravais
lattice with two sublattices positioned at the center of the
up and down pointing tetrahedra, as shown in Fig. 1(b). The
initial pyrochlore lattice sites are at the center of the bonds on
the diamond lattice. Each down tetrahedron [see Fig. 1(a) for
definition] is connected to four nearest-neighbor up tetrahedra
by

by = (1,1, 1), (2a)
b = 1(—1,1,1), (2b)
by = 1(1,—1, 1), (2¢c)
by = 1(1,1,-1). 2d)

Each up tetrahedron is connected to four down tetrahedra by
the opposite vectors. To label the position of the sites on this
parent diamond lattice, we introduce the sublattice indexed
diamond coordinates (SIDC), where the unit cell is identified
by a linear combination of the three basis vectors in Eq. (1).
The two sublattices are defined by the sublattice displacement
vectors —n4bo/2, where 4 = 1 and ng = —1 with « labeling
the sublattice, and A (B) stands for down (up). This coordinate
system is related to the GCC by

Ky = (r1, 12, 13)y = 181 + 12y + 1383 — %abo (SIDC)

1 o
= 5(”24—"3,?1 +r3, 1 ~|—"2)—%bo (GCO).

Finally, spins at every site are defined in a sublattice-
dependent local frame. The local basis on each pyrochlore
sublattice is defined in Appendix A.

B. Space group

The space group (SG) of the diamond lattice is Fd3m
(No. 227). This space group is minimally generated by five
operators: three translations 7; (i = 1, 2, 3), a rotoreflection
Ce (i.e., Co = IC5 where Cs is a threefold rotation around
[111] and 7 is the inversion), and a nonsymmorphic screw
operation S. These space group generators act on the position
vector written in the SIDC as

Tiixg = (ri+ 81,72+ 8i2, 13 4+ 8i3), (3a)
—rz)nA,B(aﬁ (3b)
—ry, r1+ 12+ 13+ 80, A)ny gy, (3€)

C():ra = (_r37_r]7
Siry > (—ry,

where w4 p(«) are cyclic permutations of the A and B sublat-
tices.

III. PARTON MEAN-FIELD THEORY

A. Slave-spinon formulation

For completeness, we briefly review the physics of quan-
tum spin ice (QSI) and the GMFT parton construction. For a
more detailed exposition of the formalism, we refer the reader
to Refs. [36,37,53,54].

For the sake of simplicity, we restrict our analysis to the
XXZ model:

Hxxz = ) (JZZSi'{iSf{} — Ji(S;{iSl’{; + s,;isj)), 4)
(RiR’)

where the spins are written in the local frame, and the sum is
over nearest-neighbor sites of the pyrochlore lattice. We con-
sider the spins to be effective spin-1/2 doublets that transform
as usual spinors under elements of the local site symmetry
group D3y [61]. In the antiferromagnetic Ising limit (i.e.,
J+/J.; = 0 and J; > 0), the J,, coupling enforces the sum
over the z component of the spins to be zero for every tetra-
hedron (i.e., 2-in-2-out). This set of local constraints, known
as the ice rules, is a lattice equivalent of the requirement for
the spin field to be divergenceless and leads to an extensive
ground state degeneracy. The effect of a small transverse term
J1 can then be treated perturbatively within this manifold of
2-in-2-out states. By going to the third order in degenerate
perturbation theory, the effective Hamiltonian is a compact
U(1) lattice gauge theory of the form [62]

Hetr ~ —J3/J; Zcos(v x A), 5)

where the sum is taken over hexagonal plaquette and the
lattice curl (V x A)O = ZM)EO A;; is equal to the flux

through the hexagonal loops [see Fig. 1(c)]. This emergent
U(1) gauge structure is, in a sense, inevitable since the sum
over the z component of all spins within any tetrahedra must
commute with the effective Hamiltonian as it is defined in
a manifold where ), S; = 0. For a ferromagnetic trans-
verse coupling J1 > 0, the existence of a deconfined U(1)
QSL @i.e., QSI) with 0-flux threading the hexagonal plaque-
ttes [i.e., (V X A_)O = 0] is well established from quantum

Monte Carlo (QMC) simulations [63-66]. In this perturba-
tive regime, the exact mapping between Jr < 0 and Ji >
0 [37,60] indicates that a w-flux QSI state [i.e., (V x A)O =

] exist for J+ < 0. However, the sign problem of QMC
in that parameter regime makes the fate of the w-flux state
ambiguous beyond the perturbative Ising regime.

To go beyond the perturbative regime |J.| < J.., the the-
ory cannot be restricted to the 2-in-2-out manifold since
tetrahedra configurations that do not respect the ice rules then
play a significant role. GMFT is a theory introduced by Savary
and Balents [53] that attempts to properly describe the U(1)
deconfined phase without appealing to any perturbative argu-
ment. In this framework, bosonic particles that conceptually
correspond to defect tetrahedra breaking the ice rules are
introduced at the center of each tetrahedron on the parent dia-
mond lattice. The Hilbert of interest is therefore augmented to
iy = Hpin @ Hp, where Hyin = QnFs=12 is the initial
Hilbert space of the spins-1/2 on the pyrochlore lattice and
€y is the Hilbert space for the new bosonic field Oy, € Z
that is defined on each parent diamond lattice site r,. The
canonically conjugate variable to the bosonic charge is ¢y,
(i.e., [¢r,, Or,1 = i). This naturally leads to the definition of
raising and lowering operators CDT = ¢ and @y, = e ¥
respectively. To project back jﬁ,lg onto the initial physical
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spin Hilbert space, the discretized Gauss’s law
3
Qr” = T Z Sia+nublt/2’ (6)
n=0

needs to be enforced for all tetrahedra. All matrix elements
are reproduced with the replacements

+ — ®F (1, iArg rq+by
SrA+bu/2 - cI)I‘A (Eel o )q)rA+bu’ (73)
Sf-Aerﬂ/g = EI'A,I'Aer”s (7b)

where A and E are canonical conjugate fields that act within
the JZ, subspace of J#4;,. The local z component of the
spin now corresponds to the emergent electric field, and the
raising/lowering operators create a pair of spinons on the par-
ent lattice while creating/annihilating an electric field quanta
to respect Eq. (6).

With those replacements, the XXZ Hamiltonian is

Iz 2 Jx f
Hiotor = 7 Z Ql‘,J - Z Z Z (D;a""nubu
Iy Ty [,VFEU

X CDrD,-H]ab\,eiM (Arg.ra+1aby 7Al‘ml‘a+myb;t).

The J,, term represents the energetic cost for the existence
of spinons while J. leads to hopping of the spinons between
different tetrahedra of the same type (i.e., up or down) while
being coupled to the gauge field. The Hamiltonian has the
following U(1) gauge structure

b, — Dy e

Armr}3 - Arnr,’g - Xr)’g + Xr, ®)

as a direct consequence of the physical constraint (6). This

completes the reformulation of the initial nearest-neighbor

Hamiltonian as a compact U(1) lattice gauge theory coupled
to quantum rotors.

B. Saddle-point approximation

The total partition function, taking into account both par-
tons and gauge fields, is

Z= / DI®*, &, 0, A, E, &, ]e S5 (9)

where Sgp = foﬂ dr% > (rur;i)(Er’ar;} )2 enforces the odd vac-
uum condition Erv, = +1/2 by taking the U — oo limit, and

Smatter describes the quantum rotors coupled to the U(1) gauge
field

B
samwr=l/ de| Y[ iog deer, +ing (a7 0L —1)
0

Ty

HigE | Y ED o en, — 05 | | A Hrower |- (10)
"

The Lagrange multipliers A; and ¢, enforce the constraint
|<I>Iu ®,,| =1 and Eq. (6) respectively at all sites of the dia-
mond lattice.

To get a tractable model, a saddle point approximation is
performed by fixing the gauge field to a constant background
(i.e., A — A), which amounts to decoupling the dynamics
in S, and in JZp. We also allow the gauge charges to
take on any integer value Qy, € (—00, 00) instead of being
constrained to |Qr,| < 2S. Doing so and integrating out the
charges yields

Zyr = / DI®*, BleSowr, (11)

where the saddle point action is

b 1
SomFT = / dr Far O3, p + Homrr
0

Z

+iy (@ er 1) (12)

r(l

and Hgmer is the J1 term in Hioor but with the gauge fields
fixed to constant values. At this stage, an Ansatz is usu-
ally made about the gauge field background A. For instance,
with ferromagnetic (antiferromagnetic) transverse coupling,
one assumes a gauge field configuration with 0-flux (7 -flux)
threading the hexagonal plaquettes as a consequence of the
perturbative argument outlined above. However, one must
wonder if these two Ansdtze are the only possible U(1) QSLs
that respect all lattice symmetries and if there is a way to
systematically find all gauge field Ansdtze that respect a given
set of symmetries. In the following section, we describe such
a framework and classify all fully symmetric and chiral U(1)
QSLs within the GMFT parton construction.

Once the gauge background has been specified, the ground
state within this parton mean-field theory approach can be
identified. The quantum rotor formalism captures many dif-
ferent phases. Most importantly, it can describe U(1) QSLs
that formally correspond to deconfined phases within the tra-
ditional U(1) lattice gauge theory. From this deconfined phase,
transition to an ordered phase is described either by the Higgs
mechanism that occurs through condensation of the spinon
(i.e., (@) # 0) or gauge field confinement (i.e., (") = 0).
The framework also describes Z, QSLs born out of spinon
pairs condensation (i.e., (®P) # 0) from the U(1) QSL in the
presence of spinon-spinon interactions.

IV. PROJECTIVE CLASSIFICATION
A. Generalities

We here discuss the general ideas behind the projec-
tive classification of SET phases within the GMFT parton
construction. This construction is inspired by the projective
symmetry group (PSG) analysis. For a detailed discussion of
the PSG, we refer the interested reader to Refs. [43,44,50,51].

After performing a saddle point approximation by replac-
ing the gauge connection operators with a fixed background,
the theory does not have a U(1) gauge structure since Gauss’s
law is not respected anymore. This stems from the decoupling
of the gauge %pin and bosonic 7% Hilbert spaces. However,
even if the gauge structure is absent at the MF level, it still
has important consequences. To see this, one can consider the
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action of the operator generating the U(1) gauge transforma-
tions

Utxd) =[Jexp | ixen | O = Y Eryrytnn, (13)
"

Ty

on a GMFT eigenstate assuming a specific gauge background
{A}
Homrr((ADIW({A})) = E(ADIW{A). (14)

This operator maps the gauge configuration to another one
U :{A} — {G(A)} = {As} by a transformation of the form
expressed in Eq. (8). To simplify the notation, we use a sub-
script to denote the transformed gauge field and suppress the
explicit mention of the y parameters. It is first straightforward
to see that all GMFT eigenstates with gauge configurations re-
lated by gauge transformations (i.e, |U({A})) and |W({Ag})))
are degenerate. Indeed,

Haomrr({AcHIV({AGH) = E{AGHIV({AG)))
= UHomer (AU TU [ W({A)}))
= E(ADIV(AG)H)

implies £({A}) = E({AG)).

Next, the GMFT eigenfunctions are not physical spin wave
functions in general unless they happen to satisfy Eq. (6).
To recover a physical spin wave function one can think of
using a projectorlike transformation Pg,ys that removes any
charge configuration that does not respect |Q, | < 2S and
acts on the %, part of [W({A})) = [{E}) ® [{Q}) such that
Piauss | Y{A))) respects the constraint of Eq. (6). Accordingly,
since [U, Pgauss] = 0 because U acts trivially on any state that
respects the lattice Gauss’s law, all GMFT eigenstates that
only differ by a gauge transformation yield the same physical
spin wave function

/PGaussUI"IJ({Z})) = PGauss|“I’[({ZG})>
= UPGau€s|\y({Z})>
= PGauss|\I}({Z})>'

This argument is independent of the way one chooses to im-
plement the projection back to the physical spin space Pgayss-
Accordingly, although the gauge structure is not explicitly
present, the MF theory still has a redundancy in its descrip-
tion. This redundancy has important and subtle consequences.
If we require a GMFT wave function to yield a physical
spin state that respects a symmetry O, then this amounts to
requiring that O maps the MF wave function |W({A})) to
the same MF state up fo a gauge transformation. That is,
for a GMFT wave function to yield a physical state that is
symmetric under a specific transformation, there needs to exist
a gauge transformation G such that the MF state is invariant
under Gp o O. Equivalently stated at the Hamiltonian level, a
specific gauge background {A} will yield a symmetric physical
state under O if

Go 0 O : Howrr({A}) = Howrr({A)). s)

This idea is illustrated graphically in Fig. 2. As a result, all
static gauge field configurations corresponding to physical

14}

FIG. 2. Graphical representation of the projective construction.
The space represents all possible gauge configurations {A}, and the
red curves correspond to sets of gauge configurations related by a
gauge transformation G (i.e., different equivalence classes). Depend-
ing on the set of equivalent gauge configurations, a symmetry O can
map a representative of an equivalence class to an equivalent (right
part of the figure) or nonequivalent (left part of the figure) field con-
figuration. In the first case (right), there exists a gauge transformation
Go such that Gp o O maps the representative point to itself, whereas
no such gauge transformation can be found in the second case (left).
The MF eigenstate on the right (left) yields a physical spin wave
function that is symmetric (not symmetric) under O.

states invariant under a given set of symmetries {O;, O,, ...}
can be classified by identifying the associated gauge-enriched
operations {D},0,,...} = {Go, 0 O01,Gp, 0O, ...} that
can leave Hgmpr invariant.

As a final remark, we note that the subgroup of pure
gauge transformations Gigg o 1 that leave the MF Hamil-
tonian invariant is not associated with any symmetry of
the initial system but rather the emergent low-energy gauge
structure of the model. This subgroup is called the invariant
gauge group (IGG). From an algebraic standpoint, the gauge-
enriched group F is a central extension of the original group
F ={0;,0,, ...} by the IGG (F = F /IGG), and the second
cohomology group classifies all inequivalent gauge-enriched
classes.

Looking at Eq. (12), it can be observed that the IGG
of the GMFT action is U(1) x U(1) since the two diamond
sublattices are decoupled. This is a very particular property
that stems from our restriction to the XXZ model. The IGG
would reduce to U(1) by adding any coupling between the two
sublattices. Such coupling could be induced by interactions
beyond the XXZ model. Since the U(1) x U(1) gauge struc-
ture is a fine-tuned and fragile property whose naturalness is
ambiguous, we will restrict our attention in the rest of the
paper to the more physically relevant case where the IGG is
U(1). This will also allow us to make contact with existing
literature on QSI. This potential U(1) x U(1) gauge structure
remains an interesting observation that requires clarification.

B. Projective construction

We now discuss the detailed implementation of the formal-
ism. Within GMFT, the spin operators are mapped to directed
link variables. Consequently, it can be remarked that time-
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reversal and certain space group operations map a bosonic
creation operator to an annihilation one and vice versa. For
instance, a transformation acting purely on the lattice that
changes the orientation of the links (i.e., maps bonds A — B
to B — A) effectively inverts the annihilation and creation
operator. As such, the symmetry operations can not be ad-
equately represented by acting solely on &,,. To build a
representation of the space-time symmetry operations on the
bosonic fields that correctly encodes this information, we thus
introduce the vector field

N P
G, = (@;«) (16)
Ty
and the gauge matrices
eirhxxru.raﬂmbu O
gx(ron ry + nﬂlb/l) = ( 0 e—iﬂazm.rwrnab“ )
(a7

With this notation, the GMFT Hamiltonian is written as
Ji -
Homrr = ry Z Z WYy b, 92 (Ta + by, To)
Yo WU,VFEL
X gX(rzxs ry + nabv)\rlraJrnnr,n (18)

and the action of the symmetry generators on the bosonic field
can be represented by (see Appendix B)

- 1 0)\- -
Ti: Wy, > (0 1)‘1’T,-<ra> = UrV¥rr,), (192)
Co: 0 L0 19b
6 ¥ = o 1) VYee) =UeYeur,)  (19D)
- 0 1\- -
S \Ilrn = 1 0 \IJS(ra) = US‘I/S(M). (19C)

As discussed in the previous section, a gauge transformation
of the form
N ei¢(ra) O
G: \IJra = 0 e*l‘¢(ra) \I"ra = g(ra)“pra (20)
is associated with each symmetry operation to make it pro-

jective. The projective transformations that act on the spinons
are

T Ur, > Grl T ity e, (21a)
Co: U, > G [Cor)"™slhe, Ve, ), (21b)
§: W, > GsIS )" Us Ws, ), (2l¢)
where the gauge matrices are of the form
£i90lO)] 0
GolO(r,)] = ( . e—womn) (22)
and the factors ny, =1, ne, = 1, ng = —1 are introduced to

correctly apply the gauge transformation considering if the
creation and annihilation operators have been exchanged.

C. Symmetric U(1) quantum spin ice states

We are now in a position to classify QSLs that realize
different patterns of space-time symmetry fractionalization.

We first classify all QSLs which have an IGG of U(1) (i.e.,
¢o € [0, 2m) for all phase factors in the gauge-enriched sym-
metry operations) and respect all space group symmetries. The
detailed classification is presented in Appendix C. We find
that two different classes associated with the phase factors

o1, (re) =0, (23a)
o1, (ry) = mmry, (23b)
o1, (ry) = mm(ry + r2), (23¢c)
¢e,(ro) = mmri(r2 +13), (23d)

Ps(ry) = %(—rl (r+ 1) +nr@r+1)+2nr), (23e)

where n; is a parameter that can be either 0 or 1. It is not
obvious from these equations, but it is later shown that these
two GMFT classes are nothing but the well-known 0- and -
flux states for n; = 0 and n; = 1, respectively.

D. Chiral U(1) quantum spin ice states

A relevant extension of the previous classification of sym-
metric QSLs is the classification of chiral QSLs with an
IGG of U(1). Chiral QSLs are classically associated with
noncoplanar magnetic order [67,68]. In contrast to symmetric
QSLs, chiral QSLs break time-reversal symmetry and some
lattice symmetries modulo a global spin flip [42,51]. Namely,
a parity €o is associated with every symmetry operation O.
The parity is defined to be even €» = 1 if the GMFT Ansatz
respects the symmetry and odd €p = —1 if the Ansarz only
respects it modulo time-reversal. There is a subgroup y, of
the space group with operations that can only be even. Math-
ematically, all elements of . are sent to the identity by any
morphisms from the SG to Z,. Careful consideration of the
diamond lattice SG algebraic constraints shows that the even
subgroup x, is generated by {71, T», T3, C3, C}} where we have
introduced C; = S™'C3S (see Appendix D 1). On the contrary,
the operators Cy and S have an undefined parity. The GMFT
Ansiitze are then only required to be invariant under operations
of the even subgroup and can thus be enumerated by the same
procedure we used for the fully symmetric case but using
Xe instead of the whole SG. The chiral classification should
capture all symmetric Ansdtze that have been previously iden-
tified since these will correspond to the cases where Cg and
S have an even parity (eg = €c, = 1). The new Ansdtze that
can describe chiral QSLs will be those where there is at least
one SG operation with an odd parity €p = —1. Proceeding
as such, we find four different GMFT classes with the phase
factors

¢T1 (rDt) = 07 (243)

b, (ry) = %n, (24b)

o1, (ra) = “L2T (= 1), (24c)

be.(t) = 2201 (s — 1), (24d)
. —n1/2n _ _

éc;(ry) = (r(2ri +r2 = 7) 4+ r3(r3 — 1 4+ 2684,0)),

(24e)
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where ny/; € {0, 1, 2, 3}. The ny/» = 0 and n;,, = 2 Ansditze
correspond to the n; = 0 and n; = 1 states from our previous
fully symmetric classification, respectively. The ny,, = 1 and
ny2 = 3 GMFT Ansditze are new chiral states that are related
by time-reversal. They correspond to a single chiral QSL.
Since this classification encompasses the previous symmetric
one, we shall only use and refer to the results of the chiral
classification in the rest of the paper.

E. Gauge field configuration at the saddle point
1. Relating the gauge field on different bonds

The value of the gauge field on every bond needs to be
determined to build the GMFT action for the classified An-
sditze. The transformation properties of the gauge field are first
necessary to determine the relation between the values of the
gauge field on different bonds of the parent diamond lattice.
It can be deduced by using the spinon transformations and
requiring that the Hamiltonian is invariant under the gauge-
enriched symmetry operations. Indeed, the gauge-enriched
operators O must be symmetries of the GMFT Hamiltonian
G.e., O : Homer = Howmer). For the GMFT Hamiltonian to
be invariant under the projective operations, we have the re-
quirement that

gX(O(ra)a O(ry + nabu))

= UG (O(r4) 10 G(ry, ¥y + 14by)
X [gO(O(ra + nszu))]nou(?’ (25)

for space group operations.

2. Unit cell

We can use this relation to find the complete gauge field
configuration of the ny,, =0, 1, 2, and 3 GMFT Ansditze.
To do so, the value of the gauge field on a given represen-
tative bond is initially arbitrarily fixed. Since all bonds of
the parent diamond lattice are related by compositions of the
symmetry generators for the symmetric and chiral cases, the
value of the gauge field on all other bonds of the lattice can
be determined. A translation of the entire GMFT unit cell
is a trivial operation. Because 7; = 1 for nj, =0, 72 =1
for ny;, =2 and 7}4 =1 for n;;, =1 with i € {2,3}, the
GMFT unit cell comprises 1, 4, and 16 primitive unit cells
of the parent diamond lattice for these three cases respectively.
Therefore the problem of finding the gauge field configuration
on all bonds reduces to determining the gauge fields on bonds
within a single GMFT unit cell. After proceeding as such (see
Appendix E), we find the unit cells depicted in Fig. 3. The
ni2 =0 and ny» = 2 GMFT Ansditze are described by static
patterns of O and = gauge field fluxes through all hexagonal
loops of the diamond lattice respectively. As a result, we
shall refer to them as the O-flux and w-flux QSI states in
the rest of the paper. We note that these two states are time-
reversal invariant even though we did not require it explicitly.
The ny, =1 Ansatz is described 7 /2-fluxes threading the
hexagonal plaquette. The flux is equal to the phase spinons
acquire after transporting them around a closed loop (i.e.,
counterclockwise rotation in Fig. 3). We shall simply refer to
this chiral GMFT Ansatz as the 7 /2-flux state. The nyp =3

Ansatz is related to the ny, = 1 Ansatz by replacing the 7 /2
fluxes with 37 /2 fluxes and vice versa (i.e., time-reversal
operation). The m/2- and 3w /2-flux states have the same
physical properties. We shall accordingly only consider the
n12 = 1 state in the rest of this paper. Now that the gauge
field configuration has been determined, we can forget about
the details of the GMFT classification construction and only
retain the definition of the Ansdtze given in Fig. 3.

V. EXPERIMENTAL SIGNATURES

With the background gauge field configurations in hand,
the GMFT action can be fully constructed and used to
evaluate observables for our three prospective QSI states.
The only caveat is that the constraint on the rotor length
at every site |<I>iu ®,,| =1 that is imposed by the site-
and time-dependent Lagrange multiplier Af is particularly
difficult to enforce. To resolve this issue, we follow the
usual prescription and perform a large-N approximation by
replacing the site-dependent Lagrange multipliers field by
sublattice-dependent global ones A to only enforce the aver-
age constraint Zrd (‘DL ®,,)/Nauc = k for o € {A, B} where
Ng.u.. 1s the number of diamond lattice primitive unit cell and
Kk is a real parameter. As a side note, we mention that there
exist alternatives to this large-N approximation. One of them
is the exclusive boson representation of the XY quantum rotor
introduced in Ref. [69], which also has the advantage of allow-
ing the straightforward application of standard diagrammatic
techniques. Our classification scheme is independent of such
a choice.

After this standard approximation, the translational sym-
metry of the lattice can be used to Fourier transform our
bosonic operators and, in all cases, rewrite the GMFT action

—>— Aryrath, =0
__>__ ATA-I'A+bAL =m

A,A7,._4+;,/L =7/2
s=de=n Ar,4,7-4+b,A =37/2

FIG. 3. Gauge field configuration within the unit cells for the
(a) 0-flux (n,,, = 0), (b) w-flux (n1, = 2) and (c) 7 /2-flux (n,,, =
1) QSI states. As indicated by the arrow, all lines are directed bonds
that go from the A (purple) to the B sublattice (green). The full circles
represent directed bonds coming out of the plane.
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in the general form (see Appendix F)

Samrr = Y Y DL (9K, i0,)] Prio,an (26)

k,iw, a€{A,B}

where the wave-vector sum is over the reduced first Brillouin
zone, the spinon vector field is

) _ * *
q:)k,iw,,,ot - (q:)k,iw,,,l,a’ st cbk,iw,l,Nsl,a) (27)

with the indices labeling all sites of either the A or B sublat-
tices inside the unit cell of a specific GMFT Ansatz, and the
spinon Matsubara Green’s function is

2
[9° (K, iw,)] " = (A“ + 263" )ﬂNs]stl +M(k).  (28)
ped
M?*(Kk) is an Ny x Ng matrix, with Ny being the number of
primitive diamond lattice unit cells within the unit cell of a
specific QSI state. It encodes all information regarding the
spinon hopping processes and background gauge field. Iden-
tifying the poles of the Green’s function (see Appendix G 1),
the spinon dispersion is of the form

Ey(k) = /20 (A + e2(K)), (29)

where &, (k) are the eigenvalues of the M*(k) matrix. Since
Ng =1, 4, and 16 for the 0-, -, and 7 /2-flux cases, respec-
tively, we have two bands for n;,, = 0 (one band for the A
sublattices and one band for the B sublattices), 8 bands for
nij» =2, and 32 bands for n;;; = 1. In all cases, the bands
associated with the A sublattices are degenerate with those of
the B sublattices.

A. Aside on the large-N approximation

Before discussing specific experimental signatures of the
classified QSI states, we make a few comments regarding the
large-N approximation. Interpreting the real and imaginary
parts of ®,, = gr,.1 + igr, 2 as two-dimensional coordinates,
the initial hard constraint on the rotor length constrains the
system at every site to be on the unit circle ¢; | +¢; , = 1.
Such a constraint is important for the mapping between the
initial spin model and the slave-particle construction to be
exact. The large-N approximation allows the particle to move
on the entire two-dimensional plane and only restricts its
average displacement. In the existing GMFT literature, «k = 1
is always chosen. However, since the correspondence between
the slave-particle construction and the initial spin model is
lost by relaxing the hard rotor length constraint, we would
like to argue that there are a priori no reasons why such
a choice ought to be made. Indeed, the x parameter should
instead be chosen to reproduce results in a given limit without
consideration for the initial hard constraint, in analogy to how
the average boson occupancy can be tuned to interpolate be-
tween the quantum and classical regime in Schwinger boson
mean-field theory [44,70,71].

In our case of interest, a natural regime where GMFT
should be expected to reproduce known results is the Ising
or classical spin ice limit (i.e., J+/J;; — 0). In such a limit,
the spinon dispersion is classically expected to become com-
pletely flat at an energy of J,;/2 [72]. To try and reproduce
this result, we first note that in the Ising limit, the rotor length

self-consistency equation reduces to (see Appendix G 2)

1 Jo 10 [ J Jzz
= —= = — )\‘Ol = ;,
7 Nowe Zk: Zy: €2 (k) 23 242

(30)

with the corresponding spinon dispersion

gak) =0 2 i, G1)

In order to respect the classical limit S)‘j‘ (k) = J,;/2, the pa-
rameter k = 2 needs to be chosen.

On top of reproducing the classical spin ice limit, we find
that ¥ = 2 significantly improves the accuracy of the GMFT
results. For instance, GMFT with x = 1 tends to widely over-
estimate the stability of QSI. For the O-flux state, GMFT
with « = 1 finds that the QSL is stable until J/J,, =~ 0.192,
whereas the transition to a magnetically ordered phase occurs
for the much smaller coupling strength of Jy/J,, & 0.05 in
QMC simulations [63,64,73,74]. With k = 2, we find a crit-
ical value of Ji/J,; = 0.048, which is in surprisingly good
agreement with QMC. Using x = 2, we further find a broad
agreement for the position of the lower and upper edges of the
two-spinon continuum with QMC results (see Figs. 4(2.a)—
(3.a) compared to results in Ref. [65]). For these reasons, all
remaining results are presented for k = 2.

B. Spectroscopic signatures of space group fractionalization

For the w-flux (ny/, = 2) and 7 /2-flux (n;, = 1) states,
crystal momentum fractionalizes. Namely, the spinons acquire
a nonzero Aharonov-Bohm phase after transporting them
around the shortest closed loop since

S P Favess

LTin T T, =¢ 7, (32)
for i € {1, 2, 3}. Such a fractionalization of translation sym-
metries has important consequences. It was pointed in
Ref. [20] and later restated for QSI in Ref. [23], that such
a fractionalization leads to a spectral enhancement of the
two-spinon density of states that could be measurable in INS.
To see this, we can consider a two-spinon eigenstate with
momentum q

V) = lq:2), (33)

where z stands for all other labels like the energy of the state
and the spins of the spinons. The momentum is expressed as
q = ¢1G1 + ¢2G2 + ¢3G3, where G; are the reciprocal lattice
basis vectors associated with the basis vectors of Eq. (1)
(i.e., G;-&; =2m4;;). Under the assumption of symmetry
localization [17], acting with the translation operator on this
two-spinon state amounts to translating the two spinons indi-
vidually against a translation-invariant background

Tly) = THT2)Ig; 2) = €77 q;2), (34)

where (1) and (2) label the spinons, and the last equality
follows from the fact that |q;z) is a momentum eigenstate.
At the MF level, the spinons are noninteracting. Translating
one of them is a good symmetry that leads to eigenstates with
the same energy

" (WL (T IY) = 1Won,mms))- (35)
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0-Flux

m-Flux

7 /2-Flux

XXX

Ssen > Q)
= < == X

| —

FIG. 4. Dynamical signatures of the symmetric and chiral QSI states. (1) Spinon dispersion, (2) dynamical spin correlations in the local
sublattice-dependent frame and (3) neutron scattering cross-section for the (a) 0-flux state at J.. /J,, = 0.046, (b) w-flux state at J. /J,, = —1/3
and (c) m /2-flux state at Ji./J;; = —1/3. Solid white lines denote the upper and lower edges of the two-spinon continuum. The results are
broadened by a Lorentzian function with a full width at half maximum of n = 0.02 to mimic finite lifetime effects. The inset of (1.a) shows
the first Brillouin zone of a face-centered cubic Bravais lattice and its high-symmetry points.

These degenerate eigenstates may have a different momentum
that is not connected by the reciprocal lattice basis vectors, as
can be seen from Eq. (34) and repeated usage of Eq. (32)

Tl |w(m1,m2,m3)>
= (LY (LT (D)]y)

ny

= T (E ()T (W (T Q)1Y)

i oy —my) oy 711 73 7 7
=e > (LML) H(DT(2)Y)

i "2 (o —
— e(2771(41,+ 5 (my m3)))|w(ml’m2’m3)>' (36)

Repeating the argument for 7, and T3, we see that for any
state with momentum q there exist other degenerate eigen-
states with the same quantum numbers at momentum q +
22(p1Gy + p2G2 + p3Gs3) with p; € Z.

The degeneracy between states connected by fractions of
the reciprocal lattice vectors has important consequences. It
implies that the two-spinon density of states and the edges of

the two-spinon continuum all have to obey
ni
0o @) = s (44 =L (P1G1 + p2Ga + paGa)). (B7)

where with p; € Z. As a specific example, we can
consider the path in the reciprocal lattice connecting
the I' point to X = (G| + G)/2. For the m-flux state,
the spinon dispersion must satisfy 5}‘}(F )= Eg(X ) which
leads to €2, ,=2(I') = 2,,,=2(X) for the two-spinon spec-
trum, whereas we have EJ(I') = EJ(X/2)=E)(X) and
Qp,=1(0) = Qy, ,=1(X/2) = Qp, ,=1(X) for the 7/2-flux
state. By comparison, there is no constraint between
@y, p=0(I") and 2, ,—0(X) for the O-flux state. Similarly,
the two-spinon spectrum between the I' and L = (G| +
G, + G3)/2 points respects Qp, ,=2() = €y, ,=2(L) and
Qp,,=1(F) = Qy, ,=1(L/2) = Ry, ,=1(L) for the - and 7 /2~
flux states, respectively.

It should be noted that since neutrons couple to spin-1 ex-
citations and the spinons carry spin-1/2, a neutron scattering
event corresponds to the creation of a spinon pair. For the
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deconfined QSI phases, INS probes the two-spinon contin-
uum. The enhanced spectral periodicity described in Eq. (37)
may be measured in INS and by other spectroscopic probes,
thereby potentially offering a practical and accessible way to
distinguish between different QSI states experimentally and
numerically.

C. Dynamical spin structure factor

Even though the spinon continuum for different QSI states
has to respect certain symmetries constraints, it does not nec-
essarily imply that the space group fractionalization will lead
to experimentally measurable signatures. Indeed, the inelastic
neutron scattering (INS) intensity depends on other factors
which do not have to respect the enhanced spectral periodicity.
To see if spectral periodicity offers a useful way to distinguish
the different QSI states experimentally, we explicitly compute
the INS cross-section. The dynamical spin-spin correlations
in the local frame are captured by the components of

Stb(@.w) = g 30 ) [aresg 0k o)

u.c. R,‘,R/]

(38)

where the sum is taken over all sites of the pyrochlore lattice
R;, with i € {0, 1, 2, 3} labeling the sublattices. To make di-
rect contact with experimental measurements, the spins need
to be rotated from their sublattice-dependent local frame to
the global frame, and the coupling between the neutron and
the magnetic dipole of the spins is considered by introducing
a transverse projector and g factors. The INS cross-section is
(neglecting any form factor) proportional to

d’c 9a4p ,
8a _ Aaib dt ot ;. a ot be ’0
dewocaZb<b |q|2>f ¢ (m(q, 1y (—q, 0)

(39
with

1 .
ma(q’ t) — Z ezq.R,- ZRZCngSf{i(t)s (40)
v Nu.c. R; c,d

where the R,, matrices are sublattice-dependent rotations from
the local frame to the GCC, and the g matrix contains the g
factors of the spin in the local frame.

The z components of the local dynamical correlations
8§75 o« (EE) are associated with the emergent photon prop-
agator. One can compute the contribution of the photon to the
INS cross-section [30]. However, since we are not consider-
ing gauge fluctuations within our GMFT approach, obtaining
a quantitative comparison between the contribution of the
matter and the emergent gauge bosons might be challeng-
ing. Furthermore, the photons and spinons usually operate
on entirely separate energy scales. In most cases, the photon
contributes on an energy scale which may be very challenging
to resolve experimentally [65]. For these reasons, we set g** =
&Y #0 and g& =0 to consider only the most significant
contribution to the dynamical spin structure factor: spinons
scattering.

The spinon dispersions, dynamical spin correlations in the
local frame, and neutron scattering cross-sections for the three
QSI states of interest in a regime where they are not condensed

are shown in Fig. 4. For the O-flux state, the INS cross-
section shows a broad continuum with most of its spectral
weight close to the upper two-spinon continuum edge and
high-intensity peaks at the X and L points. It should further
be noted that the GMFT calculations are consistent with the
QMC results of Ref. [65] (see Appendix H for a detailed
comparison). For the m-flux state, we get bands that are very
flat in most directions. This leads to an INS cross-section that
is separated into three different energy sectors, where the
lowest, central, and highest contributions correspond to pro-
cesses involving two spinons of the lowest band, the two
different bands, and the upper band respectively. Much of
the spectral weight is concentrated in the lower edge of the
two-spinon continuum. This clearly makes the spectral en-
hancement observable especially for the paths I' — X and
I' — L. Finally, the 32 bands of the m/2-flux state lead to
a blurry INS spectrum with a few high-intensity peaks. The
spectral enhancement might not be as obvious as in the -flux
case, but we observe a twofold repetition of high-intensity
peaks at the same energy for the ' — X and I' — L paths.

VI. DISCUSSION AND FUTURE DIRECTIONS

In this paper, we provided an extension of GMFT to clas-
sify all GMFT Aunsditze corresponding to physical spin wave
function respecting a given set of symmetries. In the case
where the physical spin state resulting from the variational
wave function is a deconfined QSL, the theoretical structure
classifies SET phases captured by the GMFT parton construc-
tion. We explained how subtleties that made the application
of ideas from the PSG to GMFT challenging like the origin of
the gauge structure and the mapping of the spin operators to
directed bond variables could be properly taken into account.

Application of the theoretical construction shows that there
only exist two GMFT Ansdtze that respect all lattice symme-
tries, the O0- and m-flux states. There is another chiral QSL
that breaks time-reversal symmetry and is described by either
/2 or 3w /2 fluxes. These states are distinguished by the
way translation symmetries fractionalize. We showed how this
symmetry fractionalization leads to distinct experimental sig-
natures through the spectral enhancement of the two-spinon
density of states. To explicitly confirm that such a signa-
ture should be experimentally accessible, we computed the
spinon contribution to the INS cross-section and confirmed
that the 0-flux state shows no spectral enhancement, whereas
the doubling of the unit cell for the m-flux state is visible. The
fourfold spectral enhancement for the chiral 7 /2-flux state is
also present but might be harder to detect.

The GMFT approach relies on a saddle point approxima-
tion where the gauge field is fixed. One might legitimately
question the relevance of our classification scheme consider-
ing the disregard of any gauge field fluctuations, especially
considering recent indications that the gauge-matter cou-
pling in QSI is stronger than in ordinary QED [75]. Strong
gauge interaction in QSI is a topic of great interest that
will undoubtedly lead to significant phenomenological conse-
quences. For instance, it was recently shown that the gauge
degrees of freedom and their fluctuations are important to
understand qualitative and quantitative features in the dy-
namical correlations of quantum spin ice [34,76]. However,
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we would like to point out two crucial observations as to
why GMFT still provides an essential tool for studying QSI.
First, symmetry fractionalization is believed to be a robust
characteristic of a topologically ordered phase that is stable to
perturbations [13,43]. Accordingly, our classification scheme
and observations regarding the enhanced spectral periodicity
should remain valid in the presence of strong interactions.
Second, the excellent agreement between the dynamical spin
correlations obtained in QMC and GMFT presented in Ap-
pendix H should serve as a convincing piece of evidence that
the correlations obtained in GMFT capture the most impor-
tant features and can be meaningfully used to compare with
experimental results.

Our investigation opens the door to many relevant the-
oretical investigations. First, the framework we introduced
can be used to classify Z, QSLs. This classification is es-
pecially important since the presence of a Z, QSL with
ferromagnetic transverse coupling was recently suggested by
QMC simulations [63]. However, besides its position in the
phase diagram, nothing is known about this prospective Z,
QSL. Furthermore, another recent investigation provided an
underlying mechanism to generate interactions between frac-
tionalized quasiparticles coming from the constraint on the
physical Hilbert space that could lead to the formation of
an intermediate Z, QSL between the deconfined U(1) QSL
and confining magnetically ordered phase just as observed
in QMC [77]. With the numerical hints for the existence of
the phase and a potential underlying mechanism to explain its
origin, our extension of GMFT could then serve to explore the
nature of this intermediate phase. It could be used to classify
possible phases, examine their stability, and compute their
experimental signatures to compare with possible future QMC
results. An interesting question of great current experimental
interest is if a similar scenario, the presence of an intermediate
Z, QSL between the U(1) deconfined and confining phase, is
also realized for antiferromagnetic transverse couplings. Such
a scenario is much harder to investigate since QMC is plagued
by a sign problem in that region of the phase diagram. Still,
we hope that by providing the variational wave function of
prospective states, our work might help shed some light on
this issue.

Our classification scheme can also be applied for less
symmetric variants like the pyrochlore lattice with the appli-
cation of an electric field [78] or the breathing pyrochlore
lattice [25,52,79-83]. There has been a revival of interest
in breathing pyrochlore magnets due to proposals that they
may stabilize QSLs with a rank-2 U(1) tensor gauge structure
and fractonic excitations [8§4—86]. Many candidate pyrochlore
materials have a breathing anisotropy [87-93]. It would be
interesting to see how this breaking of the inversion sym-
metry could lead to potentially new GMFT classes and if a
framework analogous to GMFT could be introduced for tensor
gauge structures.

Another exciting direction to take our construction is to ap-
ply it to the dipolar-octupolar case [61,94-96]. There has been
a tremendous interest in this case since the analyses of avail-
able data suggest that the pyrochlore compound Ce,Zr,07 is
in a region of parameter space that is believed to stabilize the
m-flux U(1) octupolar QSI [97-101]. However, even if the po-
sition of Ce,Zr, 07 is well known in parameter space, there are

still doubts regarding the nature its the ground state. Indeed,
the compound is far from the perturbative Ising limit, where
the theoretical prediction for the m-flux U(1) octupolar QSI
ground state is well established. It was further recently shown
that many experimentally observed key features could be ex-
plained by an entirely different Z, QSL state with bosonic
excitations [39]. It would then be interesting to apply our
framework and compute the INS cross-section of the octupo-
lar -flux QSI state to see how it compares to measurements
on CeyZr,05.

A question that requires further investigation is the nat-
uralness of the chiral m/2-flux state. We have discussed
its properties but have not addressed its stability and po-
tential material realization. It could be stable, especially if
one considers coupling constants beyond the XXZ model.
A promising regime to investigate would be any path in the
parameter space of all possible couplings that interpolates
between the classical spin ice Ising limit and a noncoplanar
magnetically ordered state.

Finally, we believe our work might stimulate the devel-
opment of a framework that could compare SET phases
classified in different three-dimensional parton constructions.
More broadly, we hope it might provide insights into the study
of symmetry fractionalization for three-dimensional topolog-
ically ordered phases, a subject still in its infancy.
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APPENDIX A: LOCAL COORDINATES

There are four sites of the pyrochlore lattice within a prim-
itive unit cell. Their position can be expressed by defining
€ = %é,- (i=1,2,3) to be the displacement of the i = 1, 2, 3
sublattices from the i = O sublattice, respectively (where &y =
€y = 0). The basis vectors of the local frame at each of these
sublattice sites are defined in Table I.

TABLE 1. Local sublattice basis vectors.

7 0 1 2 3

z, H0LD  ZAELLD O A -LD R LD
Y %(o,—m) %(0,1,—1) %(0,1,1) %(0,1,1)
%, %(—2,1,1) 3—2(2,1,1) %(2,1,—1) ﬁ(z,—l,l)
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APPENDIX B: TRANSFORMATION OF THE PARTON
OPERATORS

We are considering effective spin-1/2 Kramers dou-
blet [61]. Under the generators of the space group, the
pseudospins transform as

(Bla)
|

T:: {Sg, Sg,;s Sk} = {Stw St St }3

2

Co: {SE,-’ Sk, Sk} {VSgG(R,-)’VSgG(R,-)’ SZ@(R,.)};

(B1b)
S {Sx;Sr- Sk} = {=¥Ssm) —VSswy —Simo -
(Blc)
where y = e*™/3 In terms of the GMFT parton construction,
this corresponds to

1 . 1, .
. T A, T —iAy,
T;' : { _(DrAe TATA+bu CDI‘Aer# , E(DTA‘H)ue TATA+by (I)rA s El‘AqrAeru

1 . 1 .. .
A L(r L (r " t —iA i(rg ). T;(r, i .
— {ECDZ}(I"A)EZ Tj(rp).Tj(xg +by >(DT;(rA+bM)» Eq)Ti(r/ﬁb,L)e AT} (rp). Ty (rp +by >q)T[(rA)’ ETi(rA),Ti(rA"'bM)}’ (B2a)
— 1. . . 1 :
. T Ar T, - Ar T,
C6 . {E(DrAel ATA+Tbu q)l'Aer,, , ECDIA-&-bHe Ary . rp+by (I)rA , ErA,rAer# }
— ZQ)T eiAa,(rAxE(,(rﬁbmq)f Zq) e—iAa(rA)fﬁ(rAermq), E~ _ . (B2b)
2 7 Colra) Co(tatby)’ 5 = Co(rs+b,) Co(ra)? ~Ce(ra),Co(ra+by) [
S - l(DT e Arata+bu P chT e A d.  E
1o ra+b, s ) ra+b, ras Lrara+b,
4 oyl —iASp). 5000 +00) P 7¢T iAS(0).504 ) ¢ E B2
=177 Psaun,)® s =5 Psen® Satb,)s —Es@),saatb,) (- (B2c)

With the vector notation introduced in Eq. (16), we can
rewrite these transformations as in Eq. (19) accompanied by
the gauge field transformations

T : Ar, rutb, 7 AT(e) T +b,) (B3a)
66 : Al‘ayl'oan# = Afﬁ(rn),fﬁ(rmtb#) + 27'[/3; (B3b)
St Ar, ro+b, = —As,),sa,+b,) +57/3. (B3c)

APPENDIX C: CLASSIFICATION OF SYMMETRIC U(1)
SPIN LIQUIDS

1. Generalities

To classify symmetry classes, one starts from all algebraic
constraints of the form

O1000---=1, (CDhH
which translate directly to the gauge-enriched relations
01000
= (Gp, 001) o (Gp, 0 Oy)o--- =€V €IGG, (C2)

with ¥ € [0, 27r). We can use the following conjugation rela-
tion:

0i0Gp, 0O " : &,

eino,»tﬁoj [Of](ru)]o
e —inoy o, [0 @] | Vre
0 e 0;P0; i o

>

= [Go,[O; ' x)]]" " T, (C3)

(

to map all these gauge-enriched constraints to phase relations
of the form

90, (ra) + n0,90,[ 07 ' (rs)]

+noln02¢03[051 Oofl(ra)] + = w mOd 27'[
(C4)

The GMFT classes for a given IGG are then obtained by
listing the gauge inequivalent solutions of all phase equa-
tions of the form (C4). That is, it must be impossible to relate
two distinct GMFT classes by a general gauge transformation
G. Under such a gauge transformation, the phase factors are
mapped to

$0(Te) = $o(Te) + ¢6(Xe) — n0¢6(O~'(ra)).  (C5)

To identify inequivalent solutions, all gauge degrees of free-
dom must be fixed in the process of solving the algebraic
equations. Considering spatially isotropic phase factors, there
are two distinct gauge transformations for each sublattice
(o € {A, B}) in every direction (ry, r, and r3)

Gia: 96,4(ry) =Yg, a7iba A (Co6)

G : ¢c,8(Xy) = ¥, ribu,B, (e7))

one constant gauge transformations for every sublattice

GY' ¢ (To) = Yada.a, (C8)
G3' @ ¢ (o) = Ypba.B, (C9)

where ¥, , and v, are defined modulo 2. We are also free
to add a site-independent phase factor to our five SG phases.
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Therefore eight local gauges and six phase factors must be
fixed to get unambiguously inequivalent results.

which correspond to the gauge-enriched operations

(G1T) (G, T (GrT) ™ (G, Tiy1) ™" € IGG, (Clla)

2. Algebraic constraints (GC(, 66)6 € IGG., (C11b)
For the parent diamond lattice, the algebraic constraints are 1
(GsS)* (G, T3) € IGG, (Cllc)
LT 'T =1,i=1,2,3; (C10a) ) o
o1, (C10b) (G¢,Co) (G1,T7) (Ge, Co) (Gm; T41) € IGG,  (Clld)
ST = 1 (C10¢) (GsS)(G1,Ti)(GsS) (G, T3)~ (Gr,T;) € IGG,  (Clle)
CoTiCo ' Ty = 1,i=1,2,3; (C10d) (GsS)(Gr,T3)(GsS)™ (G, T3) ' € IGG, (C11f)
STS'Iy ' T =1,i = 1,2 (C10e) [(Ge,Cs)(GsS)]* € 1GG, (Cllg)
ST =1 (C10f) [(Ge,Co)’(GsS)]” € IGG. (Cl1h)
(CeS)* =1 (C10g) .
o In the case where IGG = U (1), these constraints are ex-
(C2s)" =1, (C10h)  plicitly
|
b1.(xe) + 7., [T (v0)] — b7 [T51 ()] — 7., (Xe) = Y1, (C12a)
e, (Ta) + ¢, [Cq ' (xa)] + ¢, [Co > (ra)] + b, [Co ()] + ¢6,[Co * (ra)] + b, [Co > (ra)] = Ve (C12b)
ps(re) — Ps[S™ (X)) — 1, (ra) = Vs, (C12¢)
be,(xa) + 01,[Co ' ()] — ¢, [Tra1 (0)] + &7, [T (00)] = Y7, (C12d)
bs(re) — r[S™ (xa)] — 5[ Ty ' Ti(ro)] — @1 [Ti(xa)] + 7 [T (ra)] = Vs, (C12e)
b5 (re) — r[S™ ()] — ¢s[ Ty (ra)] — b1 (xe) = Vs, (C12f)
e, (ta) + ¢s[Cq ' ()] — ¢3¢, [(C6S) ™' (ra)] — ¢s[(CeSCo) ™" (xa)] + ¢, [(C6SC6S) ™" (x0)]
+ ¢s[(C6SC6SCo) ™" (re)] — p, [(C6SC6SC6S) ™ (ra)] — ps[(C6SC6SC6SCo) ™' (ra)] = Vg5, (C12g)
e, (0) + 0, [Cs (0] + b, [Cs ()] + 5[ C 3 (0] — b, [(C2S) ™ (xa)]
— e, [(C3SCs) ™ (xa)] — 6, [(CISC2) ™ (xa)] — s[S(xa)] = Vs, (C12h)

where all ¢ € [0,2r), i = 1,2, 3 for Egs. (C12a) and (C12d) and i = 1, 2 for Eq. (C12e). All phase equations are defined
modulo 2. We will not indicate that subtlety explicitly for simplicity’s sake.

3. Solution of the constraints
a. Interunit cell part

Let us first consider the constraints coming from the com-
mutativity of the translation operators given in Eq. (C12a).
Using our gauge freedom, we can set ¢r,(ry, 2, 13)y =
¢1,(0, 12, 13)0 = ¢71(0, 0, 13)y = 0, which then leads to

¢r,(ry) =0, (C13a)
o1, (ry) = —Ypr1, (C13b)
o1, (re) = Ypr — Y12, (C13c)

Plugging this into Eq. (C12d), we get

Ve, = 9¢,(r. . m3)a — G (1, 12 + 1, r3)e — 1y,
(Cl4a)
Ve, = ¢¢,(ri. . r3)a — ¢g (r1,r2, 13 + D
+Ynr —Ynr + Y, (C14b)
Ve, = 9¢,(ri. 2. r3)a — ¢, (n + 1,12, 13)a
+ ¥ — Yni. (Cl4c)

[
This yields ¥, = ¥, = ¥r, and

%G(roz) = %G(Oa) - rzlﬁarl - rﬂhféTz
— g, — Y (rira — rnirs). (C15)

We can then replace the translation phase factors in the con-
straints (C12e) and (C12f) to find
Vst = ¢s(r1, 12, 13)a — s + 1,12, 13 — D
+(=1—=r1 +r)¥r,
Vs, = @s(r1,r2, 13)a — Ps(ri, r2+ 1,3 — 1)y
+ 1 =3r + )Y,

Ysty, = ¢s(r1, 12, 13)a — @s(r1, 72,73 — 1),.

(Cl6a)

(C16b)
(C16¢)

These equations impose ¥, = nyw with n; € {0, 1} and
¢s(ro) = ¢s(0) — riYsy, — 2 Ysm,
+imm(—r +r+2rrn =17 +13)

+ (r1 + 2 + r3)¥sr,. (C17)
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Having the general form of the phase factors for the five
space group generators, we can find all other constraints by
replacing these in the remaining equations. The finite order of
the rotoreflection Cg expressed in (C12b) leads to

3¢¢,(04) + 3¢, (05) = Vg, - (C18a)
Equation (C12c) yields
Vs = —2rYsr, — 2rist, + (11 + r)Ysy
+ ¢s(04) — ¢s(0p), (C19a)

Vs = —2rVsn, — 2rYsy, + (1 + 711+ m)¥sy

— ¢s(04) + ¢s(0p), (C19b)
which leads to
Ysry, = 2¥st,, (C20a)
Vst = Vst (C20b)
Vs = Vsn, (C20c)
#s5(04) — ¢s(0p) = Ys13- (C204)
Equation (C12g) gives
0= 2(’#6@ - 1//€6T2 - ’aﬁ@n - 21//ST2)» (C21a)
Veos = Ve, — Yeor — Yeor, — 2Vsn, (C21b)
which is equivalent to
ne s = wa,T, - wfﬁrz - wa,T} — 2vYsr, (C22)
with ng ¢ € {0, 1}. At last, Eq. (C12h) gives
Ve, = Ve, — Ve, — Ve, — 2¥sn,  (C23a)
0=1vYer — Ve, — Ve, —2¥sr,.  (C23b)
Using the previous constraints, these imply
Ve, — Yeon — Vegr, — 2¥sn =0, (C24a)
ng.s =0, (C24b)
Vse, = 0. (C24c)

b. Gauge fixing and intraunit cell part

Now that all constraints coming from the space group
have been determined, we need to fix all remaining gauge
degrees of freedom and solve the intraunit cell equations.
Let us briefly summarize the results we have determined thus
far. From the space group constraints, we obtained the phase
equations (C13), (C15), and (C17), and the constraints

3¢¢,(04) + 3¢, (08) = Ve, (C25a)
¢s(04) — ps(0p) = Ys7,,  (C25b)
Ve, — Ve, — Ve, — 2¥s, = 0. (C25¢)

These constraints can be simplified by fixing some gauge
degrees of freedom to remove redundant solutions. The phase
associated with Ti, 75, and 75 appear an odd number of times
in Eq. (C12d). Similarly, 73 is also present an odd number
of times in Eq. (C12e). Consequently, we can make use of
our gauge freedom and IGG structure (i.e., po — ¢o + X,
where x € [0, 27)) for ¢r;, ¢7, and ¢r, to set Yg, 1, = Y&, 1, =
Vst, = 0. Such a gauge fixing also implies Yz, 7, = 0 from

Eq. (C25c¢), and ¢5(04) = ¢s(05) from Eq. (C25b). Next, we
can use a constant sublattice-dependent gauge transformation
of the form

¢(ry) = o,

As the phase factor transform according to ¢o(ry,) —
do(ry) + ¢(ry) — npd[O~'(ry,)] for a general gauge trans-
formation, our initial gauge fixing for ¢r,, ¢r,, and ¢, are
unaffected by the gauge transformation of Eq. (C26), while
¢¢, and ¢s are mapped to

#c,(0) = Na(Pa — ¢p) + dg, (0o),
¢s(0a) = (P4 + P5) + ¢ps(0c).

We can then choose ¢, and make use of our IGG freedom for
¢¢, and s to fix

#e,(08) = ¢, (04) = ¢5(04) = 0.

where a € {A, B}. (C26)

(C27a)
(C27b)

(C28)

This implies that Yz = 0 from Eq. (C25a).
We conclude that there are only two GMFT classes given
by the phase factors summarized in Eq. (23).

APPENDIX D: CLASSIFICATION OF CHIRAL U(1)
SPIN LIQUIDS

1. Even subgroup

We are interested in finding the even subgroup x. € SG
of transformations. To do so, a parity is associated with every
transformation. This parity indicates if the GMFT Ansatz re-
spects that symmetry directly (i.e., o = 1 for all O € x,) or
modulo a time-reversal operation (i.e., ¢p = —1 for all O €
Xo). It is first trivial to notice that, since €> = 1 for € = +1,
all SG generator squared are elements of the even subgroup
(T2, T2, T2, %, Co=C;'} € .. Next, all SG algebraic
constraints expressed in Eq. (C10) can be translated into the
following equations for the parity of the SG generators:

erer, €rer, = 1L, i=1,2,3; (Dla)
e =1 (D1b)

eker, = 1; (Dlc)
ec.€recer,, = 1,1 =1,2,3; (D1d)
esereserer, = 1,i=1,2; (Dle)
esereser, = 1; (D1f)
(ces)' =15 (Dlg)
(es) = 1. (D1h)

Most of these equations are trivial. However, Eqs. (Dlc)—
(Dle) imply €7, = €7, = €7, = 1 while Cg and S remain of
undetermined parity. From this point, new generators of x,
can be found by using the fact that

0-10,0, € x. (D2)

for any O, and O, € x.. We can then proceed iteratively for
any O, and O, until no new generators of x, are produced. In
this case, the only new generator of x, that can be found this
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way is

G, =578 = $7'(Cy)S. (D3)

These correspond to the following gauge-enriched operations:

-1
G T)(Gr,, T GrT; Gr,, T, € IGG, (D5a)
In summary, {T}, T», T3, C3, C}} € x. are the generators for the ( ! )( i +l)( f ) ( fist +])
even subgroup of spatial transformations. (GC3 C3)3 € IGG, (D5b)
3
2. Algebraic constraints (Gcéc ) € 1GG, (D5¢)
The algebraic constraints on the even subgroup generators (Ge,G3) (G, C3) (G, G3) (G, Gy) € 1GG, (D5d)
determined in Appendix D 1 are
_ ) (GCBC3)(GT T) (GC3C3) (GT ,H) € IGG, (DS5e)
LT T T, =1,i=1,273; (D4a) 1
=t (Ddb) (G, C3) (G, Th) (G, C3) (GTI T)(GnT)  €IGG,
P =1 (Déc) 1 (D5f)
(G = 1 (D4d) (Ge,C3) (G T2) (G, C5) (GrTh) € IGG, (D5g)
’ -1 -1
GTCy'T =1,i=1,2,3; (D4e) (Ge,C3) (G T3) (G, C5) (G 1) (G T3) € IGG.
CGT(CH ', =1, (D4f) (D5h)
/ /\—1 1.
GLG) T =1 (Ddg) When IGG = U(1), these constraints lead to the following
CiT5(Cy)™'Ty T3’1 = 1. (D4h)  phase equations:
|
¢rlte] + 61, [T ()] = 01151 (0] — @1, (101 = V7, (D6a)
e [Fal + ¢, [CF (r)] + ¢, [C3(ra)] = Ve, (D6b)
s [Xa] + b [(C ()] + Gy [(CE)] = Yy (D6c)
pcs[ral + e [(C3) 7 (X)) + ¢, [(CC) X)) + ¢e;[Ci(ra)] = Ve (D6d)
e, el + ¢G5 ()] = ¢, [ 171 (x)] = bz, [ra] = Yeur, (D6e)
dey[ral + 1, 1(CH ' )] — ¢ [T1Ty ' (v)] + 61, [T ' (r0)] — b [ra] = Yoy, (D6f)
dc;[ral + 1, [(CH ™ (X)) — i [T (xa)] + b1, [T ()] = Yy, (D6g)
peilra] + ¢, [(CH T ()] — ¢ [Ty ()] + ¢1, [T1 Ty ' (r0)] — dn[xa] = vy, (D6h)
where all Y € [0,27) and i = 1, 2, 3 for Egs. (D6a) and (D6e).
[
3. Solution of the constraints which enforces Y, = Y7, = ¥r, and
a. Interunit cell part ¢, (ry) = ¢c,(0) + Yo, + 3o
Proceeding in a similar way to the fully symmetric classifi- + rive,r, — Y (rir — rir3). (D9)

cation, we can use our gauge freedom to set ¢z, (r1, 12, 13)y =
61,0, 12, 73)0 = ¢71(0, 0, 73) = 0. This leads to

ér,(ro) = 0, (D7a)
¢, (re) = =Y, (D7b)
o1, (xe) = Yryr1 — Y2 (D7¢)
From Eq. (D6e), we get
Ve = ¢y (r1, 12, 13)a — Gcy (11, 12 — 1, 13)0 + 11y,

(D8a)

Vo = ¢c(r1, 12, 13)a — Qs (11, 12, 13 — g
—nyn +nyn —nyn, (D8b)

Vo = ¢c(r1, 12, 13)e — ¢y (rn — 1,12, 13)a
— ¥, + 1y, (D8c)

Replacing the translation phase factors in Eqs. (D6f)—(D6h)
gives

Vo = ¢cy(ri, 12, 13)a — Gy (i + 1,12 — 1, 13)e + 11y,
(D10a)
Ve, = ¢cy(r1, 2, 13)e — Gy (1 + 1,12, 13)0 — 121y,
(D10b)
Ve, = ¢cy(ri, r2, r3)a — ¢y (i + 1,12, 13 — g

+ (84,0 + 312 4 13).

Solving these equations, we get that 417, = 0 which implies
v, = =4

Ve (ry) = —
+ nven

(D10c)

s Ly

T
(r2ry + 12— 1)) + r3(1 + 2840 +13)

— (n+nrn+r)V¥ern + Yo
(DI11)
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The finite order of the Cs operation expressed in Eq. (D6b)
gives the equation

Yo, = (r +ro+r3)Wer + Vo + Yorn) + 3éc,(0),

(D12)

which leads to the constraints
Ve +Yor +Ver = 0, (D13a)
3¢c,(0,) = Y, fora € {A,B}. (D13b)

Similarly, Eq. (D6c) associated with the finite order of Cj
imposes

'(//C3 = —}"3(@”6‘%7‘] + wCyTz - 3wCQTZ) + 3¢C% (Oa)

nypr
+ (~ven + 2en - 25 Vo0 D14)
After solving the finite difference equation, one finds
0= Ve + Ve — ey (D15a)

nypmw
Ve, = —Yon + 2¥cn —

Ve, = 3¢c;(0p).

Replacing all the space group generator phase factors in
Eq. (D6d) results in

Ve, = (n +r)(Yen — Ve + Yo — Yo,
+ Yon + Yor) + (Yon — Yen)dueo
+2(¢c; (00) + ¢, (02)).

which is equivalent to the constraints

+3¢c;(04), (D15b)
(D15c¢)

(D16)

0=9vYcrn —Yon +Yor, — Yor + VYon + Vo,

(D17a)
Ve, = (Yor — Yan) + 2(6c,(04) + ¢, (04)),

(D17b)
Ve, = 2(¢c,(08) + ¢ (05)). (D17¢)

b. Gauge fixing and intraunit cell part

In summary, we have the phase equations (D9), (D7),
and (D11), with the following constraints

0=vYern +von + Vo, (D18a)
Ve, = 3¢c,(04), (D18b)
Ve, = 3¢, (0p), (D18c)
0=9vYen +Yon —3Yaorn, (D18d)
Ve, = Ve +2Vcn — 27 4 3¢, (0,),  (D18e)
Ve, = 3¢c;(0p), (D18f)

0=9vYcrn —Yon +Yor, — Yor +VYon + Vo,

(D18g)
Ve,op = (Yo — Yen) + 2(dc, (04) + ¢c;(04)),  (D18h)
Ve, = 2(éc;,(08) + ¢c;(05)). (D181)

First, from Egs. (D18a) and (D18d)

1ﬁC3T1 = _wC3T2 - 1#C3T37 (Dlga)
Vo = —Yorn + 3Yer. (D19b)
Next, from Eqgs. (D18b) and (D18c),
6, (04) = ‘%C (D20a)
¢, (0p) = ‘[’3@. (D20b)

We can use our gauge freedom for ¢y, ¢z, and ¢, to fix
Yo = Yo, = Yo, = 0 since the phase factors for T, T2,
and 73 appear an odd number of times in Eq. (D6e). Next, with
Eq. (D18g), we get

”C§T37T
5
where ner, € {0, 1, 2, 3}. We can then use our IGG degree
of freedom to fix ¢, = 0 because the phase factor for C;
appears an odd number of times in Eq. (D6b). The sublattice-
dependent constant gauge degree of freedom ¢ge(ry) =
¥gdyp can also be fixed. Under such a gauge transformation,
the phase factors of the symmetry generators transform as

¢1,(re) = ¢1.(re), (D22a)
b, (ra) = ¢c; (Xa), (D22b)
e, (F) = e, (Be) + 2(Wadas + Vadap). (D220)
Therefore we may use it to fix ¢c;(04) = ¢c;(05) = 0.
Egs. (D18f)—(D18i) now directly imply ¥¢; = ¥rc,c; = 0. Fi-
nally, Eq. (D18e) yields nc;r, = ni.
In conclusion, we find four GMFT classes characterized by
the phase factors of Eq. (24).

Vo = (D21)

APPENDIX E: RELATION BETWEEN GAUGE FIELD
ON DIFFERENT BONDS

As explained in Sec. IV E, we need to pick a specific repre-
sentative bond and then map it to all other bonds of the lattice
to find the gauge field configuration for all Ansdtze. We take
the bond (04 — 03) to be the representative bond of reference
and set the corresponding gauge field to an arbitrary value A.
Then we can find a mapping from it to the three other bonds
of the primitive diamond unit cell: (04 — (1,0, 0)g), (04 —
(0,1,0)p), and (04 — (0,0, 1)g). All other lattice bonds can
be obtained by iterative application of the translation operators
from these four primitive bonds.

1. Symmetric classification

For the fully symmetric case, the four bonds of the dia-
mond lattice primitive unit cell are related by the following
composition of the symmetry generators

E:(04— 0p)— (04 — 0p), (Ela)
Co080Cq: (04— 0p) > (04 — (1,0,0)), (Elb)
CioSoCy: (04— 05) > (04 — (0,1,0)), (Elc)

SoCp: (04 — 05) > (04 — (0,0, 1)g). (Eld)
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From these transformations, the mapping of the gauge field
between different bonds expressed in Eq. (25), and the phases
in Eq. (23), we get the following relations for the gauge field
on all bonds of the diamond lattice

A0.0,04.00,0, = A; (E2a)
Atrrrn iy, = A; (E2b)
Z(r,,rz,r3)A,(r1+1,rz,r3)B =—A+nn(rn+r) ([E2l)
Ay (it Ly = —A + nyrs; (E2d)
Ay = —A. (E2e)

2. Chiral classification

The quotient group associated with the even subgroup (i.e.,
Xe/To, where Ty is the abelian normal subgroup of trans-
lations generated by 7;, 75, and T3) has two generators Cs
and T; o C;. The following operations relate the bonds of the
primitive diamond unit cell

E: (04— 0g)—~ (04 — 0p), (E3a)

Ty 0 Cy: (04 — 03) > (04 — (1,0,0)p), (E3b)

(Ty 0 C})* : (04 — 0p) > (04 — (0,1,0)5), (E3c)

Cs 0 (Ty 0 Cy)* : (04 — 05) > (04 — (0,0, 1)5). (E3d)

Using these transformations and the phase factors for the
chiral classification of Eq. (24), we find that the gauge fields
on different bonds of the diamond lattice are given by

A0.004,00.05 = A3 (E4a)
Ay = A (E4b)
Z(V]ervVS)Av(rl‘Q‘lJ'ZJS)B =A+ %(”3 —n);, (EBdeo)
Ay s+l = A — n1/227t r3; (E4d)
Z(l‘lyrz,r3)/\,(r1,r2,r3+1)g =A. (Ede)

Fixing A = 0, we get the unit cell illustrated in Fig. 3.

APPENDIX F: CONSTRUCTING THE SADDLE
POINT ACTION

To write down the GMFT action at the saddle point, we
define the Fourier transform of the spinon field operator as

1 .
CI)T — q)k.' - e—t(w,lr—kra)’ (Fl)
ry /—,BNu,c, % Xk: iw, o

J

G (k) = % G (ki) =) —
Y

iw,

2. Self-consistency condition

The sublattice-dependent Lagrange multiplier A* needs to
be fixed such that the constraint

1 T —
Nd.u.c Z <CDrn ch‘a> -

rLi

(G3)

J2Ug, (UL (K)
————————CO
£ (k)

where N, is the number of unit cells, 8 = 1/kgT is the
inverse temperature, and the position on the diamond lattice
is

Ty = Fye + 15 — %abo (F2)

with ry.. and r; labeling the position of the GMFT Ansatz
unit cell and sublattice, respectively. The wave-vector sum
is performed over the reduced first Brillouin zone associated
with a GMFT Ansatz. For the 0, 7, and /2 fluxs, there are
respectively 1, 4, and 16 sublattices per GMFT unit cell, as
can be seen from Fig. 3. To write down the action in of the
- and 7 /2-flux states in a compact form, we introduce the
spinon field vector notation of Eq. (27) for both A and B dia-
mond sublattices. After introducing these Fourier transformed
vector fields, the GMFT action takes the general form given in
Eq. (26). The spinon hopping matrix is defined by the relation

Z Z aSlt,iw,,.otMOt (k)c_lsk,iwn,a

K,iw, @

_ = o* . .
- 4 K, i@y, T+ 10,0 K, ion X+naé, 0

K,iw, Ty,

X exp [_ina (k (é/l. - év) - (er,rs-&-nabv _er,rsﬁ-']abu))]-
(F3)

APPENDIX G: EVALUATION OF OBSERVABLES
1. Green’s function
The spinon Matsubara Green’s function can be explicitly

written by diagonalizing the spinon hopping matrix and in-
verting the right-hand side of Eq. (28) to get
o . AT 4
%W(k, iw,) = <q>k,iw,,.u,a qu,iwn,v,a)
27, U8, (U (k)

Y

- XV: w2 + 20 (A + &8 k)’

(G

where the U*(k) contains the eigenvector of M“(k)
and ¢&%(k) are the corresponding eigenvalues (i.e.,
U (KM (K)U*(K) = diag(ey (k), . .., &y, (K))). Performing
an analytical continuation iw, — @ + in* and identifying
the poles of the retarded Green’s function, we get the spinon
dispersion S;j‘ k) = ./2J (A% + s;‘,‘(k)).

Performing the Matsubara sum and taking the 7 — 0 limit
yields

o(k LU (KU (k
th<ﬂ5y2( )) T;()ZJN U, (U5 4 -

£ (k)

(

is respected for both « € {A, B}. Performing the sum and
taking the 7 — 0 limit leads to

1 . T—0 1 J
= IBNd.u.c Z %:g:y,(k’ lwn) - Nd.u.c zk: Zy: g;‘z(k)

k,iw,

(G4
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APPENDIX H: COMPARISON OF THE 0-FLUX STATE
DYNAMICAL SPIN STRUCTURE FACTOR WITH
QUANTUM MONTE CARLO

We want to compare the dynamic correlations we ob-
tain with GMFT for the O-flux state with the QMC results
presented in Ref. [65]. In this QMC investigation, the
sublattice-dependent dynamical correlations are defined as

Sy (q,0) =

1 , , .
¥ Z elq-(R#_Rp) / dtelwt<sﬁ-u(t)sl;‘c (O)),
" ORGR]
(HI)

where R, and R, label all sites of one of the four pyrochlore
sublattices (i.e., u, v € {0, 1, 2, 3}) for the whole lattice and
the spins are written in the local frame. The investigation
reports the diagonal part of the dynamical spin structure factor
> u S;“l; (q, w) for the XXZ model with J1. /J,, = 0.046 along
the ' - X and I' — L directions. To directly compare to
these results, we compute the diagonal part of the dynamical
spin structure factor for the 0-flux state with GMFT for the
same coupling and along the same path in the first Brillouin
zone. The results are presented in Fig. 5. These results are
in surprisingly good agreement with QMC. First, the upper
and lower bounds on the two-spinon continuum match. On
top of being in the same energy range, subtle details like the
flat upper edge of the two-spinon continuum along I' — X
in comparison to a minor decrease for the I' — L path and a
slightly lower position of the lower edge of the continuum at
the L compared to the X points are captured. Next, the spectral
weight behaves the same way. In both calculations, a broad

1 1.0
1.2 ;
E
1.0 08
: 1 2
i [ <
, 08 i (0.6 —
N ! : 3
R | il =
3 0.6 j 1 = I;
| | | 0.4 42
0.4 ; ; Al
] : 0.2
0.21 e :
0.0 1 LN
X r L

FIG. 5. Diagonal part of the dynamical spin structure factor in
the local frame for the 0-flux state with J../J., = 0.046. The results
can be directly compared with the QMC calculations presented in
Ref. [65].

continuum with most of the spectral weight close to the upper
edge of the two-spinon continuum is observed. The spectral
intensity increase along the paths I' — L and ' — X with
maxima at the X and L points reported in QMC is further re-
produced within GMFT. This surprising correspondence with
QMC results should be taken as a compelling testimony to
the reliability of GMFT. We again stress that this similarity is
only possible with k = 2 for the rotor length self-consistency
equation. With the usual choice of k = 1, the position of
the two-spinon continuum is approximately twice as large, in
complete disagreement with QMC.
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