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Nonlinear spin current of photoexcited magnons in collinear antiferromagnets
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We study the nonlinear magnon spin current induced by an ac electric field under light irradiation in collinear
antiferromagnets with broken inversion symmetry. For linearly polarized light, we find that a dc spin current
appears through “the magnon spin shift current” mechanism, which is driven by a spin polarization generation
in the two magnon creation process and has a close relationship to the geometry of magnon bands through
Berry connection. For circularly polarized light, a dc spin current appears through “the spin injection current”
mechanism, which is proportional to the relaxation time of magnons and can be large when the magnon lifetime
is long. We demonstrate the generation of the magnon spin shift and injection currents, based on a few toy models
and a realistic model for a multiferroic material M2Mo3O8.
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I. INTRODUCTION

Spin transport plays a central role in reseaches of spintron-
ics [1,2]. In particular, the magnon transport is attracting a
keen attention since magnons have a long lifetime and are
able to transfer energy and spin angular momentum without
Joule heating. Utilizing these advantages of magnons led to a
research field of magnon spintronics [3]. Typical methods to
create magnons in spin systems include spin pumping with
an application of a microwave [4,5] and thermal responses
by the application of a temperature gradient [6–21]. Among
the thermal responses of magnons, the thermal Hall responses
are closely related to the geometry of the magnon band. For
example, the Berry curvature of the magnon bands induce the
thermal Hall effect and the spin Nernst effect [22–26], and
the Berry curvature dipole of the magnon bands leads to the
nonlinear spin Nernst effect [27].

Besides the spin pumping and thermal responses, it has
been proposed that photoirradiation generates magnon spin
current through a nonlinear response [28–30]. Such nonlin-
ear magnon spin current is analogous to a nonlinear current
response of electrons to an external electric field. Electron
systems with broken inversion symmetry exhibit photovoltaic
effects, such as shift current [31–35] and injection current
[32,36,37]. In particular, shift current is governed by a ge-
ometric quantity called the shift vector which quantifies the
shift of the Bloch wave packet in optical transition. Simi-
larly, in spin systems, the application of gigahertz (GHz) or
terahertz (THz) laser light can create magnons and leads to
magnon spin currents. The application of circularly polariza-
tion light generates magnon excitations through injection of
angular momentum to spin systems [28]. Furthermore, the lin-
early polarized light is predicted to generate the magnon spin
current even without angular-momentum transfer [29,30].
Generation of those magnon spin currents relies on a coupling
of spins to the magnetic field component of light, because
magnons are charge neutral and their coupling to the electric

field is not considered usually. Since the magnetic field of
light is small, large spin current responses through the above
mechanisms require high intensity of light.

Spin systems with a broken inversion symmetry generally
support electrical polarization, exhibiting a multiferroic nature
[38,39]. As a consequence, an electric field can directly couple
with spins and generate magnetic excitations. For example,
nonlinear responses to the electric field were studied using
the spinon description for 1D systems, which includes dc
spin current generation [40,41] and high harmonic generations
[42,43]. In higher dimensions, the low-energy excitations of
the ordered magnets are usually magnons, and the magnons in
multiferroic materials accompany electric polarization, known
as electromagnons [44–46]. In particular, electromagnons can
be optically excited through their coupling to the electric
field, leading to optical magnetoelectric effects, such as di-
rectional dichroism [46–48], and can be potentially applied
for electric field control of magnetic orders [49,50]. Recently,
the application of circularly polarized light was predicted to
generate spin current via a two magnon Raman process with
the coupling to the electric field [51]. Also, it was predicted
that optical excitation of electromagnons supports the electric
current generation through the shift current mechanism [52].
Yet, the magnon transport induced by the electric field has not
been fully explored. In particular, the relationship between the
nontrivial geometry of magnon bands and nonlinear magnon
current responses is still unclear.

In this paper, we study the magnon spin current induced
by the electric field in collinear antiferromagnets with broken
inversion symmetry. Here, we focus on the dc spin current
responses, and we derive the formula for the magnon spin
current induced by the linearly and circularly polarized lights,
using the Holstein-Primakoff transformation and the resulting
magnon Hamiltonian. For linearly polarized light, we find
that a dc spin current appears through “the magnon spin shift
current” mechanism. The magnon spin shift current can be
described by a geometric quantity called the shift vector of
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FIG. 1. The schematic picture of the magnon spin shift current.
The electric field creates a pair of magnons with up (red) and down
spins (blue). The shift vector R measures the positional displacement
of magnons with up and down spins.

the magnon band which represents the positional shift of
magnons. In addition to the shift of magnons of the same spin
in the usual interband transitions, the shift vector of magnons
also incorporates the positional shift between the up-spin
magnon and the down-spin magnon associated with the two-
magnon excitation, which is schematically illustrated in Fig. 1
and becomes dominant in the low-temperature limit. For cir-
cularly polarized light, a dc spin current appears through “the
spin injection current” mechanism. The spin injection current
is proportional to the relaxation time which is expected to ex-
hibit a large spin current response when the magnon lifetime
is long. We demonstrate the magnon spin shift current and
injection current numerically based on a few toy models and
realistic models for multiferroics.

The rest of the paper is organized as follows. In Sec. II,
we study the nonlinear magnon spin conductivity and in par-
ticular obtain nonlinear conductivities for the magnon spin
shift and injection currents. We present numerical results
in Secs. III and IV. In Sec. III, we apply our theory to a
Heisenberg model with alternating coupling constants. In
Sec. IV, we study the magnon spin shift current in a more
realistic model for the multiferroic material M2Mo3O8. In
Sec. V, we give a brief discussion.

II. FORMALISM OF NONLINEAR MAGNON RESPONSE

In this section, we derive the formulas of the dc magnon
spin current induced by an external ac electric field. We first
summarize notations and then derive the nonlinear magnon
spin current conductivity for collinear magnets from a stan-
dard perturbation theory. Under the effective time-reversal
symmetry (TRS), we obtain a concise expression for the
magnon spin shift current conductivity which reveals the re-
lationship between the magnon spin shift current and the shift
vector of magnon bands that reflects a nontrivial geometry
of the magnon bands. In addition, we derive the magnon
spin injection current conductivity induced by the circularly
polarized light.

A. Magnon Hamiltonian and diagonalization

We consider collinear antiferromagnets described by the
spin Hamiltonian

HS =
∑
i, j

Ji jSi · S j +
∑

i

�i
(
Sz

i

)2
, (1)

where Si is a spin operator at ith site. We note that our
theory is also applicable to more general Hamiltonian, such
as the XXZ model. Hereafter, we take the z axis parallel to
the spin direction. The low-energy excitations of the ordered
magnets are usually magnons, thus we consider magnons via
the Holstein Primakoff transformation [53]

S+
i � h̄

√
2Sai, S−

i � h̄
√

2Sa†
i , Sz

i = h̄(S − a†
i ai )

for
〈
Sz

i

〉 = S
S+

i � h̄
√

2Sb†
i , S−

i � h̄
√

2Sbi, Sz
i = h̄(−S + b†

i bi )
for

〈
Sz

i

〉 = −S

, (2)

where S is a spin of Si, and a†
i and b†

i are creation operators of
the magnon of the ith site. Hereafter, we set h̄ = 1. By using
the Holstein Primakoff transformation, we obtain the magnon
Hamiltonian

Ĥ =
∑
R,R′

�
†
RHR,R′�R′ . (3)

Here �
†
R = (a†

R1
· · · a†

RN
, bR′

1
· · · bR′

M
) and R is a position of the

unit cell. a†
Ri

b†
Ri

is a creation operator of the magnon of the ith
site of the unit cell at R, and Ri = R + ri denotes the position
of the ith site in the unitcell at R. The magnon Hamiltonian in
the momentum space is

Ĥ =
∑

k

�
†
k Hk�k, (4)

where �
†
k = (a†

1k · · · a†
Nk, b1−k · · · bM−k ). Here, a†

i (k) =
1√
N

∑
R a†

Ri
eik·(R+ri ) and b†

i (k) = 1√
N

∑
R b†

Ri
eik·(Ri+ri ), and N

is the total number of unit cells.
We can diagonalize the Hamiltonian by the paraunitary

matrix Vk which satisfies V †
k BVk = B. Here, B is a diagonal

matrix

B = diag(ηa), (5)

where ηa = 1 if (�†
k )a is a creation operator and ηa = −1

if (�†
k )a is a annihilation operator. Thus B satisfies (B)ab =

[(�k)a, (�†
k )b] and we obtain

Ĥ =
∑

k

�
†
kV †−1

k EkV −1
k �k

=
∑

k

�
†
kEk�k. (6)

Here, Ek is diagonal matrix

Ek = V †
k HkVk (7)

and �k is a transformed operator

�k = V −1
k �k, (8)

and �k satisfies a commutation relation [(�k)a, (�†
k)b] =

(B)ab. Matrix elements of Ek are positive when the ground
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state is stable, and matrix elements of Ek have physical mean-
ing as the excitation energies of magnons.

Here, we consider the distribution function

ρka = 〈�†
ka�ka〉, (9)

where 〈O〉 is the expectation value of O in the equilibrium
state. Since �k is the basis of the diagonalized form of the
Hamiltonian, we obtain

ρka = 1/(exp β(Ek)aa − 1) for [(�k)a, (�†
k)a] = 1

ρka = −1/(exp −β(Ek)aa − 1) for [(�k)a, (�†
k)a] = −1

.

(10)
To simplify ρka, we introduce εk

εk = BEk = BV †
k HkVk = V −1

k BHkVk, (11)

and we can write ρka = Baa/(exp βεka − 1) where εka is a
simplified notation for (εk)aa.

Now, we consider the general operator

Ô =
∑

k

�
†
kOk�k

=
∑

k

�
†
kBÕk�k, (12)

where we define

Õk ≡ V −1
k BOkVk. (13)

Here, we note that Õk is generally non-Hermitian matrix.
However, matrix elements of Õk satisfies

(Õk)ab = BaaBbb(Õk)∗ba. (14)

B. Polarization and spin current

Based on the above conventions, let us study the non-
linear spin current induced by an external light field. The
electric field E creates magnon excitations via the coupling
to the electric polarization in magnetic systems. The total
Hamiltonian in the presence of the external electric field can
be written as

Ĥtot = Ĥ − E · P̂, (15)

where P̂ is the polarization operator

P̂ = −
∑

k

�
†
k�k�k. (16)

Thus the spin current J defined via the continuity
equation −∇J = ∂t Sz = −i[Sz, H] is expressed as [26,28]

Ĵμ =
∑

k

�
†
k

∂Hk

∂kμ

�k +
∑

k

�
†
k

∂�k · E
∂kμ

�k

= Ĵμ
1 +

∑
α

Ĵμα
2 Eα. (17)

Here, we decompose Ĵμ into Ĵμ
1 and Ĵμ

2 . Ĵμ
1 is a term consisting

of the k derivative of Ĥk and Ĵμ
2 is a term consisting of the k

derivative of external field E · �k. The nonlinear magnon spin
current response Jμ(2) can be written as

〈Jμ(ω)〉 = σμ,αβ (ω,ω1, ω2)Eα (ω1)Eβ (ω2), (18)

By using the Green function formalism (for details, see
Appendix), we obtain the nonlinear magnon spin conductivity
σμ,αβ (0, ω,−ω) as

σμ,αβ (0, ω,−ω) = −
∫

dk
(2π )d

⎡
⎣∑

a,b

J̃2
μα

ab �̃
β

ba

fab

εab + ω + iδ

+
∑
a,b,c

J̃1
μ

ac�̃
α
cb�̃

β

ba

εac + 2iδ

(
fab

εab + ω + iδ
+ fcb

εbc − ω + iδ

)⎤
⎦ + (α, ω ↔ β,−ω). (19)

Here, εab = εka − εkb is the difference of the band dispersion and fab = f (εka) − f (εkb), where f (εka) = (exp βεka − 1)−1 =
Baaρka. In the low-temperature limit, we obtain ρka = 0 when εka is positive and ρka = 1 when εka is negative. Here we note
that we use εka instead of using the excitation energy Ek = Bεk. Thus we have a formulation which counts states with εka < 0
by “negative counts” via f (εka) = Baaρka. The last term of (19) diverges as ∝ 1/δ when a = c and is analog of the magnon spin
injection current.

C. Magnon spin shift current

Now, we consider the shift current

Jμ

shift(ω) = σ
μ,αα

shift (0, ω,−ω)Eα (ω)Eα (−ω), (20)

under the effective TRS: Hk = H∗
−k and �α

k = (�α
−k)∗. From the effective TRS, matrix elements satisfy

J̃μ

1k = −(J̃μ

1−k)∗, (21a)

J̃μα

2k = −(J̃μα

2−k)∗, (21b)

εka = ε−ka. (21c)
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Using Eq. (21) and the relation 1
x+iδ = P 1

x − iπδ(x) with P representing the principal value, terms containing principal value
are odd in k and vanish. Thus we obtain

σ
μ,αα

shift (0, ω,−ω) = −π

∫
dk

(2π )d

⎡
⎣∑

ab

Im
[
J̃2

μα

ab �̃α
ba

]
fabδ(εab − ω) +

∑
a,b,c

Im
[
J̃1

μ

ac�̃
α
cb�̃

α
ba

]
εac + 2iδ

( fabδ(εab + ω) + fcbδ(εbc − ω))

⎤
⎦

+ (ω ↔ −ω). (22)

The last term vanishes when a = c under the effective TRS, and we can remove 2iδ in the denominator of the last term. By using
Eq. (14), Eq. (22) can be written as

σ
μ,αα

shift (0, ω,−ω) = −2π

∫
dk

(2π )d

⎡
⎣∑

ab

Im
[
J̃2

μα

ab �̃α
ba

]
fabδ(εab − ω) +

∑
a,b,c

Im
[
J̃1

μ

ac�̃
α
cb�̃

α
ba

] fab

εac
(δ(εab + ω) + δ(εab − ω))

⎤
⎦.

(23)

Furthermore, we can rewrite J̃1
μ

and J̃2
μ

by using the expression for the gauge covariant derivative,

∂̃Ok

∂kμ

≡ V −1
k B

∂Ok

∂kα

Vk

= ∂Õk

∂kμ

− ÕkV −1
k

∂Vk

∂kμ

− ∂V −1
k

∂kμ

VkÕk

= ∂Õk

∂kμ

− [
iAμ

k , Õk
]
, (24)

where Aμ

k = iV −1
k

∂Vk
∂kμ

= iBV †
k B ∂Vk

∂kμ
is a Berry connection. By using Eq. (24) for Hk and �k, we can rewrite Eq. (23) as

σ
μ,αα

shift (0, ω,−ω) =−2π

∫
dk

(2π )d

∑
k

∑
a,b

Im

⎡
⎣∣∣�̃α

ab

∣∣2(
∂kμ

ln �̃α
ab − i

(
Aμ

aa − Aμ

bb

))

− �̃α
ba

⎛
⎝∑

c �=a

iAμ
ac�̃

α
cb −

∑
c �=b

iAμ

cb�̃
α
ac

⎞
⎠ + �̃α

ba

⎛
⎝∑

c �=a

iAμ
ac�̃

α
cb −

∑
c �=b

iAμ

cb�̃
α
ac

⎞
⎠

⎤
⎦ fabδ(εab − ω)

=−2π

∫
dk

(2π )d

∑
a,b

∣∣�̃α
ab

∣∣2
Rμ fabδ(εab − ω). (25)

Here, Rμ = Im[∂kμ
ln �̃α

ab − i(Aμ
aa − Aμ

bb)], which can be re-
garded as an analog of a shift vector that appears in the
expression for electronic shift current in semiconductors [32].
This magnon shift vector contains the difference of Berry
connections of two magnon bands involved in the optical
transition and is a gauge invariant quantity as a whole, which
effectively measures the spin polarization induced by the two
optically created magnons. The shift vector of magnons in-
corporates the positional shift between the up-spin magnon
and the down-spin magnon associated with the two-magnon
excitation, in addition to the shift of magnons of the same spin
in the usual interband transitions (Fig. 1). One clear difference
between the magnon shift current and electronic shift current
is that the expression for the electronic shift current involves
the square of the absolute value of the velocity operator,
the shift vector, and the Fermi distribution function, whereas
Eq. (25) for the magnon shift current involves the square
of the absolute value of the polarization operator, magnon
shift vector, and the Bose distribution function. This arises
from the difference in the statistical properties of magnons

and electrons and their couplings to the electric field. The
interaction with the electric field E is described as P · E
in both systems, but the polarization P differs between the
electron and magnon systems. In the electronic system, P is
proportional to the position r in the real space. However, in the
magnon system, P is defined at each bond and not necessarily
proportional to the position r.

D. Magnon spin injection current under the circular
polarization light

Now, we consider the injection current by focusing on the
a = c term in Eq. (19). For linearly polarized light, this term
vanishes under the effective TRS as seen in Sec. II C. Thus
we consider the circularly polarized light E(ω) = E0(ω)α̂ +
iE0(ω)β̂ as the external field to break the effective TRS.
Here, α̂ (β̂) is a unit vector of direction α (β). The injection
current can be described by the conductivity σ

μ,αβ

inj , which is
defined by

Jμ

inj = σ
μ,αβ

inj Eα (ω)Eβ (−ω), (26)
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Since we consider the circularly polarized light, the a = c term in Eq. (19) is given by

σ
μ,αβ

inj (0, ω,−ω) = −2i
∫

dk
(2π )d

∑
b,a=c

J̃μ
ac�̃

α
cb�̃

β

ba

εac + 2iδ

(
fab

εab + ω + iδ
+ fcb

εbc − ω + iδ

)
+ (α, ω ↔ β,−ω)

= −2i
∫

dk
(2π )d

∑
a,b

J̃μ
aa�̃

α
ab�̃

β

ba

2iδ
fab

(
1

εab + ω + iδ
− 1

εab + ω − iδ

)
+ (α, ω ↔ β,−ω).

With the relation 1
x+iδ = P 1

x − iπδ(x), only resonant terms containing the delta function becomes nonzero and we obtain

σ
μ,αβ

inj (0, ω,−ω) = − 4π

∫
dk

(2π )d

∑
a,b

J̃μ
aa�̃

α
ab�̃

β

ba

2iδ
fabδ(εab + ω) + (α, ω ↔ β,−ω)

= − 2πτ

∫
dk

(2π )d

∑
a,b

(J̃μ
aa − J̃μ

bb)Im
[
�̃

β

ba�̃
α
ab

]
fabδ(εab + ω). (27)

Here, we introduce the relaxation time τ = 1/δ. This ex-
pression is analogous to that for the injection current in the
electronic system [32,36]. We note that, in the electronic case,
the above expression had a geometrical meaning in the two
band limit in that the term Im[�̃β

ba�̃
α
ab] reduces to the Berry

curvature of the electronic bands [36]. In the present case, the
polarization operator P is not necessarily proportional to the
position operator r and the term Im[�̃β

ba�̃
α
ab] does not have a

direct relationship to the Berry curvature of magnon bands.

III. 2D MODEL

To demonstrate the magnon spin shift current and injec-
tion current, we consider an inversion-broken 2D model on
a square lattice obtained as an extension of the Rice-Mele
Hubbard model [52,54] into the two dimensions. Specifically,
we introduce a staggered potential and staggered hopping on
the square-lattice Hubbard model, which leads to the broken
inversion symmetry and nonvanishing polarization.

A. Definition of the model

First, we consider the inversion broken Hubbard model on
the square lattice defined by

Ĥ0 =
∑
ix,iy,s

[{tx + (−1)ix+iyδtx}c†
ix+1,iy,s

cix,iy,s + H.c.

+{ty + (−1)ix+iyδty}c†
ix,iy+1,scix,iy,s + H.c.

+ (−1)ix+iy mc†
ix,iy,s

cix,iy,s
] + U

∑
ix,iy

nix,iy,↑nix,iy,↓, (28)

where cix,iy,s is an annihilation operator of the electrons at
(ix, iy)th site and spin s =↑,↓, and nix,iy,s = c†

ix,iy,s
cix,iy,s is a

density operator. tx (ty) is the overall hopping strength for
x (y) direction, δtx (δty) is the hopping alternation for x (y) di-
rection, m is a staggered potential, and U is a onsite Coulomb
potential. For sufficiently large U , the ground state is in the
Mott-insulating phase, and we can derive effective spin model.
Figure 2 shows the schematic picture of the spin model.

Now, we apply the electric field E and consider the strong
coupling expansion. Hereafter, we set electric charge e as e =
1. The electric field plays an role of a site-dependent onsite

potential, and we obtain the effective spin model as shown in
Fig. 2(a) as

ĤS =
∑
ix,iy

[Jx,iSix+1,iy · Six,iy + Jy,iSix,iy+1 · Six,iy ]

+
∑
ix,iy

[Ex�x,iSix+1,iy · Six,iy

+ Ey�y,iSix,iy+1 · Six,iy ] + O(E2), (29)

where i is a simplified notation of (ix, iy) and

Jα,i = 2(tα + (−1)ix+iyδtα )2

(
1

U − 2m
+ 1

U + 2m

)
, (30a)

FIG. 2. Schematic picture of the Heisenberg model with alter-
nating exchange interaction. (a) 2D model with 4 types of exchange
interactions: Jx,e, Jy,e, Jx,o, and Jy,o. (b) Schematic picture of the 1D
limit. when Jy,e and Jy,o are negligible, the 2D model reduces to a
stack of Heisenberg chains with alternating couplings.
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�α,i = 2aα (tα + (−1)ix+iyδtα )2

×
(

− (−1)ix+iy

(U − 2m)2
+ (−1)ix+iy

(U + 2m)2

)
. (30b)

Here, α denotes the direction x or y, and aα is a
lattice constant. For simplification of notation, we in-
troduce Jα = (Jα,e + Jα,o)/2, δJα = (Jα,o − Jα,e)/2, �α =
(�α,e + �α,o)/2, and δ�α = (�α,o − �α,e)/2. Here Jα,e

(Jα,o) denotes Jα,i where ix + iy is even (odd).
Now, we assume 〈Sz

i 〉 = S for even sites and 〈Sz
i 〉 = −S for

odd sites, and apply Holstein-Primakoff transformation (2) to
obtain the magnon Hamiltonian

Hk = 2S

(
Jx + Jy γx(kx ) + γy(ky)

γ ∗
x (kx ) + γ ∗

y (ky) Jx + Jy

)
. (31)

Here, γx(kx ) = Jx cos (kxax ) − iδJx sin (kxax ) and γy(ky) =
Jy cos (kyay) − iδJy sin (kyay). The polarization is given by

�k = 2S

(
�x + �y ηx(kx ) + ηy(ky)

η∗
x (kx ) + η∗

y (ky) �x + �y

)
. (32)

Here, ηx(kx ) = �x cos (kxax ) − iδ�x sin (kxax ) and
ηy(ky) = �y cos (kyay) − iδ�y sin (kyay). By diagonalizing
the Hamiltonian (31), we obtain the energy dispersion
Ek = 2S

√
(Jx + Jy)2 − |γx(kx ) + γy(ky)|2.

B. Photoinduced spin current

Next, we study the photoinduced spin current of the shift
and injection origins in this model. Since the spin shift current
appears along the polar direction with the linearly polarized
light, we consider the 1D limit of the above model as a
minimum setup for spin shift current, for simplicity. In the
presence of effective TRS, the spin injection current appears
with the circularly polarized light and requires the 2D nature
of the model. Therefore we treat the full 2D model to demon-
strate the spin injection current.

1. Spin shift current in the 1D limit

Now, we consider the magnon spin shift conductivity
σ x,xx

shift . In this section, for simplicity, we consider the 1D
limit, namely, the case where Jy and δJy are weak as shown
in Fig. 2(b). We show the magnon dispersion and magnon
spin shift conductivity in Fig. 3. In the 1D limit, the excitation
energy of magnons is Ek = 2S

√
J2 − δJ2| sin kxax| as shown

in Fig. 3(a), and we can derive the analytical expression as

σ x,xx
shift (0, ω,−ω)

= −δJ (Jδ� − δJ�)2ω

2Sax(J2 − δJ2)2
√

4(J2 − δJ2) − (ω/2S)2
. (33)

From this analytical expression, σ x,xx
shift (0, ω,−ω) has a peak

around the resonant frequency ω = 4S
√

J2 − δJ2| sin (kxax )|
which is associated with two-magnon excitations around kx =
π/2ax. Around kx = π/2ax, the magnon dispersion has a
maximum value and the density of states of magnons is large.

We show σ x,xx
shift (0, ω,−ω) in Fig. 3(b) with various damp-

ing δ. For a large δ (δ = 0.1J), the peak is broadened.
However, σ x,xx

shift (0, ω,−ω) does not show much dependence on
δ in the region where ω is small (ω/2SJ < 1.5). In particular,

FIG. 3. Magnon dispersion and the magnon spin shift conduc-
tivity σ x,xx

shift (0, ω,−ω) for the 1D Heisenberg model with broken
inversion symmetry. (a) Magnon dispersion. (b) The magnon spin
shift conductivity σ x,xx

shift (0, ω,−ω). The solid back curve represents
the analytical result for δ = 0 and other curves are numerical results
for δ = 0.1, 0.01, 0.005. We use parameters 2SJ = 1, 2SδJ = 0.2,
2S� = 1, and 2Sδ� = 0.1.

when the damping δ is smaller than 0.01, σ x,xx
shift (0, ω,−ω)

is almost independent of δ except for ω/2SJ ∼ 2. Thus
σ x,xx

shift (0, ω,−ω) is a shift current that is not depend on the
damping δ.

The origin of the shift current is a broken inversion symme-
try. Indeed, the analytical expression (33) shows that σ x,xx

shift = 0
when the system has a inversion symmetry, namely, δJ = 0.
In the inversion-broken system, magnons accompany nonzero
polarization and excited by the light, and the shift of the
magnon wave packet contribute to the spin current.

2. Magnon spin injection current

Now, we consider the magnon spin injection current in-
duced by the circular polarization light in 2D model depicted
in Fig. 2(a). Figure 4 shows the magnon dispersion and the
magnon spin injection current. We show the 2D model in the
reciprocal space in Fig. 4(a). For simplicity, we assume that
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FIG. 4. The magnon spin injection current in the 2D Heisenberg model with broken inversion symmetry. (a) The reciprocal space for
the 2D model. The dashed red line shows the first Brillouin zone. (b) Magnon dispersion along the arrow in (a). (c) Magnon spin injection
conductivity. We plot σ

x,xy
inj (0, ω, −ω)/τ for δ = 0.1, 0.01, 0.005 since the injection current is proportional to τ . We use parameters 2SJx =

2SJy = 1, 2SδJx = 2SδJy = 0.2, 2S�x = 1.0, 2S�y = 1, 2Sδ�x = 0.1, and 2Sδ�y = 0.3.

Jx = Jy and δJx = δJy. Thus the magnon dispersion has max-
imum points Ek = 4SJx at (kxax, kyay) = (±π, 0), (0,±π )
as shown in Fig. 4(b). Around the X ′ point, a saddle
point exists. Figure 4(c) shows the frequency and δ depen-
dence of the magnon spin injection conductivity divided by
τ σ

x,xy
inj (0, ω,−ω)/τ . As with the magnon spin shift current,

σ
x,xy
inj (0, ω,−ω)/τ has a peak around the resonant frequency

ω = 4SJ and does not depend on δ except around the peak.
However, the magnon relaxation time τ = 1/δ depends on δ

and σ
x,xy
inj (0, ω,−ω) is proportional to τ = 1/δ. Thus, when

the magnon relaxation time is long, σ
x,xy
inj (0, ω,−ω) can be

large and becomes the dominant contribution for the photoin-
duced spin current. We estimate the order of the magnon spin
injection current in Sec. V.

IV. MAGNON SPIN SHIFT CURRENT IN M2Mo3O8

In this section, we consider M2Mo3O8 (M: 3d transition
metal) [55–59] as a candidate system for the photoinduced
spin current since M2Mo3O8 exhibits a collinear magnetic
order and an electric polarization. The crystal structure of
M2Mo3O8 is composed of the alternative stacking of the M
layer and Mo layer. Due to the trimerization of the Mo ions,
the Mo ions are nonmagnetic, while M ions have magnetic
moments. In the magnetic M layer, M ions compose a hon-
eycomb lattice and have two types of distinct coordination,
denoted as A and B sites with tetrahedral and octahedral coor-
dination of oxygen atoms, respectively. We show a schematic
spin structure of Mn2Mo3O8, magnon dispersion, and the
magnon spin shift conductivity in Fig. 5. The ground state
of Mn2Mo3O8 shows a ferrimagnetic spin structure [59] as
sketched in Fig. 5(a). The A sites and B sites are inequivalent
and magnitudes of spins at the A sites (SA) and B sites (SB)
are generally different. However, it is reported that sponta-
neous magnetization asymptotically decreases to zero at zero
temperature [56,59]. Thus, as far as we focus on spin cur-
rent responses in low temperatures, we can approximately set
SA = SB as we do so in the following. Here we note that even
if SA �= SB, the formula (25) for spin shift current in terms
of the magnon shift vector is still valid since the spin current
operator is expressed with the k derivative of the Hamiltonian
as in Eq. (17) in the case of collinear ferrimagnets with an-

tiferromagnetic orders. Furthermore, Fe2Mo3O8 also has the
ferrimagnetic phase as the ground state when a magnetic field
H || c is applied or when doped with Zn [57,58]. This ferri-
magnetic order allows the polarization P || c. Below, we focus
on the polarization along the c axis and study the magnon spin
shift current induced by the linear polarized light along the
c axis. We note that spin injection current under the circularly
polarized light requires a nonzero polarization operator along
either a or b direction, so that the spin shift current is the only
contribution to the spin current in this case.

Now, we consider the spin model of the M2Mo3O8, follow-
ing Ref. [60], as

Hs = 1

2

∑
i, j

Ji jSi · S j + �A

∑
i∈A

(
Sz

i

)2 + �B

∑
i∈B

(
Sz

i

)2
. (34)

Here, the bond exchange interaction Ji j has four different
nonzero values depending on the type of bonds: intralayer
nearest neighbor coupling J1, interlayer nearest neighbor
coupling J2 and J ′

2, and interlayer nearest neighbor cou-
pling between tetrahedrally coordinated spins J3 as shown
in Fig. 5(a). While parameters of J2 = J ′

2 are adopted in
Ref. [60], the different interspin distances associated with the
tetrahedral configuration either above or below the octahedral
configuration can lead to J2 �= J ′

2 [61], which we adopt below.
Now, we consider the polarization operator. We focus on

the exchange striction mechanism and assume that exchange
striction is the dominant contribution to the electric polariza-
tion. In this case, the polarization operator can be written as

Ps = −1

2

∑
i, j

�i jSi · S j . (35)

Here, the polarization �i j has four different nonzero values
depending on the type of bonds as well as Ji j .

According to the first-principles calculations in Ref. [60],
we adopt the parameters J1 = 1, J2/J1 ∼ 0.4, J ′

2/J1 ∼ 0.3,
J3/J1 ∼ 0.006, �A/J1 ∼ −0.05, �B/J1 ∼ 0.008, and SA =
SB = 5/2. Here, for numerical stability, we use the larger
value of |�A| than the value of [60]. For the electric polar-
ization from the exchange striction mechanism, we used the
parameters �1 = 1, �2 = 0.2, �′

2 = 0.1, and �3 = 0.005.
These parameters are chosen so that the relative magnitude
for the four type of bonds are consistent with the magnitudes
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FIG. 5. The magnon spin shift current in the noncentrosymmetric collinear magnet Mn2Mo3O8. (a) The magnetic structure of Mn2Mo3O8.
Red balls represent Mn ions and blue balls represent O ions. The ferrimagnetic spin configuration is indicated by the orange arrows. (b) Magnon
dispersion in the kz = 0 plane. A cut of the Brillouin zone in the kz plane corresponds to that for a 2D honeycomb lattice. Note that the extrema
in this 1D plot does not necessarily coincide with the extrema in the full 3D dispersion. (c) The magnon spin shift conductivity σ z,zz

shift(0, ω,−ω).
We use parameters, J1 = 1, J2 = 0.4, J ′

2 = 0.3, J3 = 0.006, �A = −0.05, �B = 0.008, �1 = 1, �2 = 0.2, �′
2 = 0.1, �3 = 0.005, and δ = 0.1

of the Heisenberg couplings. Here the minus sign reflects the
negative polarization of M2Mo3O8 along the c axis.

Since the unit cell of the Mn2Mo3O8 contains 4 Mn ions,
the magnon Hamiltonian of Eq. (34) is a 4 × 4 Hamiltonian.
Thus the magnon dispersion consists of two positive energy
modes and two negative energy modes. Magnon bands of
the positive energy modes in the kz = 0 plane are shown in
Fig. 5(b). Here, we note that Mn ions compose a honey-
comb lattice in kz = 0 plane. We show the magnon spin shift
conductivity σ z,zz

shift(0, ω,−ω) in Fig. 5(c). The magnon spin
shift conductivity σ z,zz

shift(0, ω,−ω) has a broad peak structure
around ω = 15 ∼ 18J where the interband optical transition
is large. As in the 1D case in Fig. 3(c), the peak structure
around ω ∼ 18J corresponds to twice the maximum value of
the magnon dispersion. Furthermore, Fig. 5(c) shows a shoul-
der structure around ω ∼ 15J which corresponds to twice the
minimum values of the top magnon band.

We note on the magnitude of δ. Because of computational
complexity in 3D systems, we used a relatively large value of
δ = 0.1. As we show in Fig. 3(c), σshift(0, ω,−ω) is expected
to show a qualitatively same behavior with those for smaller δ,
except around the peak. The peak structure is expected to be
sharper for smaller δ and σ z,zz

shift(0, ω,−ω) in the peak region
becomes larger by reducing δ.

V. DISCUSSION

We have derived the expression of the second-order
magnon spin conductivity and clarify the relationship be-
tween the magnon spin shift current and the shift vector,
for collinear magnets. In noncentrosymmetric systems, the
electric field can generally excite electromagnons, where pho-
toinduced magnons exhibit a positional shift and induce spin
polarization. Furthermore, we have studied the magnon spin
injection current which is proportional to the relaxation time
τ . Our numerical calculation demonstrates that the collinear
spin systems with an electric polarization from the exchange
striction mechanism support the magnon spin shift current and
injection current.

The magnon spin current can be experimentally observed
using setups with Kerr rotation or Faraday effect, or a two-

terminal setup with a noncentrosymmetric magnetic insulator
sandwiched between two metallic leads, as suggested in the
previous theoretical proposasl [29]. The nonlinear magnon
spin conductivity and the strength of the electric field to sup-
port a realistic value of spin current, which is of the order of
Js = 10−16 J/cm2 [29,40,62], can be estimated as follows.

First, we consider the magnitude of the magnon spin shift
conductivity σshift. One candidate material for magnon spin
current is M2Mo3O8, as we detailed in Sec. IV. The parame-
ters for Mn2Mo3O8 are given as follows: The lattice constants
in the in-plane and perpendicular directions are aa ∼ 6 Å and
ac ∼ 10 Å, respectively [55]. The exchange interaction J1

is 0.8 meV [60]. The spin-induced spontaneous polarization
of M2Mo3O8 at low temperature P − PTc ∼ −1500 μC/m2.
Assuming that �1 gives a dominant term for the electric
polarization operator, and given that the number of intralayer
nearest neighbor bonds is 6 in the unit cell, we estimate
6�1/V ∼ −1500 μC/m2 from the above value of P − PTc ,
where V is a volume of the unit cell. The value of �1/V ∼
−250 μC/m2 is consistent with that of �1 in Fe2Mo3O8

calculated from the first-principles calculations [63]. From
these values and our numerical result in Fig. 5(c), we obtain
σshift ∼ 5 × 10−24 C2/J, which indicates that applying an ac
electric field of E ∼ 104 V/cm leads to an experimentally
detectable magnon spin current of Js ∼ 5 × 10−16 J/cm2.

Next, let us estimate the order of the magnon spin injec-
tion conductivity σ

μ,αβ

inj (0, ω,−ω). The magnon spin injection
current can be greater than the shift current when the relax-
ation time is long. We use the antiferromagnetic spin model
in Sec. III for the estimation. We assume the energy gap
εab � Jx = Jy of the order of �10 meV, the exchange striction
with �x/V = �y/V = 250 μC/m2, and the lattice constant
a ∼ 5Å. The relaxation time τ can be estimated from τ =
1/αω, where α is Gilbert damping constant. Using the pa-
rameter α = 2 × 10−4 for the antiferromagnet NiO [64] and
the resonant frequency ω ∼ εab � 10 meV, we estimate τ as
3 × 10−10 s. From these values and the result in Fig. 4(c), we
obtain σinj ∼ 3 × 10−22 C2/J. If we apply the ac electric field
E ∼ 104 V/cm, the estimated magnon spin current amounts
to Js ∼ 3 × 10−14 J/cm2, which shows that the magnon spin
injection current is much larger than the magnon spin shift
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current. Since the energy scale of the magnon is around
10 meV which corresponds to a few THz in the frequency
range, the magnon spin current is well feasible for experimen-
tal detection with an irradiation of the THz light field of the
order of 103 ∼ 104 V/cm.

Finally, we comment on the validity of our expression of
the magnon spin shift current in terms of the shift vector. In
deriving Eq. (25), we relied on the fact that the spin current
can be written as the k derivative of the Hamiltonian, which is
true for collinear magnets. However, in the noncollinear mag-
nets, the magnon Hamiltonian contains three-magnon terms
and the spin current operator cannot be written as the k deriva-
tive of the Hamiltonian. Furthermore, in the noncollinear
magnets, there are contributions of the single-magnon reso-
nance to the spin conductivity, which is not considered in our
research. Thus our geometric description of the magnon shift
current is only valid for collinear magnets, and its extension
for more general cases is left for a future work.
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APPENDIX: DERIVATION OF THE NONLINEAR SPIN
CONDUCTIVITY IN Eq. (19)

In this Appendix, we present a derivation of the nonlinear
spin conductivity in Eq. (19) from a standard perturbation the-
ory. To this end, we introduce the Matsubara Green function

of the magnon

Ga,b(τ, k) = −〈T [(�k(τ ))a(�†
k (0))b]〉 (A1)

= −
∑
c,d

(Vk)ac(V †
k )db〈T [(�k(τ ))c(�†

k(0))d ]〉.

(A2)

Here, τ is the imaginary time and T is the time-ordered
product. Since the transformed operator �k is the basis of the
diagonalized Hamiltonian, we obtain

− ∂

∂τ
〈T [(�k(τ ))c(�†

k(0))d ]〉

= Bc,d − Bcc(Ek)cc〈T [(�k(τ ))c(�†
k(0))d ]〉. (A3)

By using the Fourier transformation, the Matsubara Green
function can be written as

Ga,b(iω, k) = −
∑
c,d

(Vk)ac(V †
k )db

Bcd

iω − (BEk)cd

=
(

Vk
B

iω − BEk
V †

k

)
ab

. (A4)

Thus we obtain

G(iω, k) = Vk(iω − εk)−1BV †
k

= Vk(iω − εk)−1V −1
k B (A5)

= (iω − BHk)−1B, (A6)

where we used the diagonalized representation as in Eq. (11).
Now we express the second-order conductivity by using

the Green function. First, we consider the J1 term of the
spin current. The contribution of the J1 term to the second-
order magnon spin conductivity σμ,αβ (i�m + i�n, i�m, i�n)
is given by

σ
μ,αβ

1 (i�m + i�n, i�m, i�n)

=
∫

dk
(2π )d

∫
c

dz

2π i
F (z)Tr

[
Jμ

1kG(z + i�m + i�n, k)�α
k G(z + i�m, k)�β

k G(z, k)
] + (α,�m ↔ β,�n), (A7)

where σ
μ,αβ

1 (i�m + i�n, i�m, i�n) is the contribution of J1 to σμ,αβ (i�m + i�n, i�m, i�n). Here, �m is a Matsubara frequency
of boson and F (z) = β

2 coth βz
2 is a Matsubara weighting function. We rewrite the Green funtion by using Eq. (A6) and perform

the Matsubara frequency summation, we obtain

σ
μ,αβ

1 (i�m + i�n, i�m, i�n) =
∫

dk
(2π )d

∫
c

dz

2π i
F (z)Tr

[
Jμ

1k(z + i�m + i�n − BHk)−1B�α
k (z + i�m − BHk)−1

×B�
β

k (z − BHk)−1B
] + (α,�m ↔ β,�n)

=
∫

dk
(2π )d

∑
a,b,c

∫
c

dz

2π i
F (z)

J̃μ
1ac�̃

α
ba�̃

β

cb

(z + i�m + i�n − εc)(z + i�m − εb)(z − εa)
+ (α,�m ↔ β,�n)

= −
∫

dk
(2π )d

∑
a,b,c

J̃μ
1ac�̃

α
ba�̃

β

cb

i�m + i�n + εac

(
fab

εab + i�m
+ fcb

εbc + i�n

)
+ (α,�m ↔ β,�n). (A8)
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Next, we consider the contribution of the J2 term which is a first-order term with respect to the electric field. As in the
case of J1 term, we can write σ

μ,αβ

2 (i�m + i�n, i�m, i�n) as the contribution of J2 to σμ,αβ (i�m + i�n, i�m, i�n) and
obtain

σ
μ,αβ

2 (i�m + i�n, i�m, i�n) =
∫

dk
(2π )d

∫
c

dz

2π i
F (z)Tr

[
Jμ,α

2k G(z, k)�β

k G(z + i�m, k)
] + (α,�m ↔ β,�n)

=
∫

dk
(2π )d

∫
c

dz

2π i

∑
ab

F (z)
J̃μ,α

2ab �̃
β

ba

(z + i�m − εb)(z − εa)
+ (α,�m ↔ β,�n)

= −
∫

dk
(2π )d

∑
ab

J̃μ,α

2ab �̃
β

ba

fab

i�m + εab
+ (α,�m ↔ β,�n). (A9)

The second-order magnon spin conductivity can be obtained by combining these two contributions as

σμ,αβ (i�m + i�n, i�m, i�n) = σ
μ,αβ

1 (i�m + i�n, i�m, i�n) + σ
μ,αβ

2 (i�m + i�n, i�m, i�n), (A10)

which directly leads to Eq. (19) by performing analytic continuation of the Matsubara frequency �m → ω + iδ and �n →
−ω + iδ.
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