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Topological magnon modes of a chain of magnetic spheres in a waveguide
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We study topological features of a bipartite chain of magnetic spheres embedded in a rectangular metallic
waveguide. The coherently coupled chain via the waveguide mode can host two topologically distinct phases
identified by the Zak phase. A finite chain supports a pair of doubly degenerate topological edge states within
the gap when the intercoupling dominates over the intracoupling, demonstrating that despite the strong coupling
to the waveguide mode, the bulk-edge correspondence still holds. The nontrivial (trivial) topological phase is
determined by the intracell and intercell coupling of magnetic spheres which depend on the separation, the
external magnetic inductions, and the waveguide dimensions. Magnetically tunable topological magnon modes

may enable unprecedented topological photonic devices.

DOLI: 10.1103/PhysRevB.107.064401

I. INTRODUCTION

A controllable hybrid light-matter system is appealing for
storage, communication, and processing of quantum informa-
tion. Spin ensembles strongly coupled to microwave photons,
where the coupling rate exceeds the loss rates, offer a versatile
platform to test the fundamental physics and novel applica-
tions [1-4]. Magnons, the quanta of collective excitation in the
ordered magnetic system, can couple strongly to microwave
cavity photons resulting in a hybridized state (magnon polari-
ton) which offers synergistic properties beyond the attractive
features of magnons and photons [5-9]. The coupling of
magnons to microwave photons provides a robust quantum
bus and triggers a long-range coupling between a variety of
matter systems, which is mostly of coherent nature in closed
cavities [10-12] while of dissipative nature in open cavities
and waveguides [13,14].

Harnessing the topologically nontrivial features of collec-
tive excitations provides a way to control hybrid light-matter
systems: The photonic analogous of integer quantum Hall
effect with a built-in protection that hosts chiral states propa-
gating along the edge of a two-dimensional magneto-optical
photonic crystal has been predicted [15] and demonstrated
experimentally [16]. Zeeman-splitted exciton-polariton lat-
tices have been proposed to realize Chern insulators [17-20].
A particle-hole-symmetric magnetoplasmon has been pre-
dicted to have topological properties reminiscent of a two-
dimensional topological superconductor [21]. The photonic
quantum spin Hall effect has also been achieved utilizing vari-
ous hybrid light-matter systems [22—31]. Dynamical tuning of
the properties of the optical and microwave resonators, which
realizes an artificial magnetic field, has opened a new route
to achieve topological nontrivial phases in hybrid systems
[32-35].
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The bosonic counterpart of Su-Schrieffer-Heeger (SSH)
model, which is dedicated to explaining the electronic trans-
port of polyacetylene [36], has been proposed in a variety
of systems. The realization of nontrivial topological states
along with the localized end states are demonstrated in
one-dimensional photonic crystals [37-41], a chain of di-
electric [42—44], and plasmonic [45—49] nanoparticles, and
also in an array of optical [50,51], and plasmonic [52,53]
waveguides coupled by their evanescent fields. The coupled
micropillar cavities with topologically protected polaritonic
end states [54,55] allow to manipulate the subwavelength
electromagnetic localized states. The SSH model has also
been suggested in cold atoms in one-dimensional optical lat-
tices [56], phononic crystal waveguide [57,58], and a chain of
magnetic spheres embedded in the free space [59].

In this paper, we study a bipartite chain of magnetic
spheres without direct interaction inside a rectangular metallic
waveguide (see Fig. 1). The magnetic spheres are subjected
to external static magnetic inductions which are either per-
pendicular or parallel to the chain axis. The coupling to the
confined electromagnetic modes of the waveguide coherently
couple the magnetic spheres. In the dispersive regime, where
the waveguide mode is detuned from the magnonic one, the
system can be mapped into a coupled magnetic chain. Due
to the boundary conditions imposed by the metallic walls of
the waveguide, the photon-mediated interaction of magnetic
spheres in unbounded and bounded spaces are distinct. The
retardation effect due to the finite light velocity also plays a
role. The coupled chain of magnetic spheres, depending on
the dimerization strength, can host two topologically distinct
gapped phases, distinguished by the Zak phase [59], regard-
less of whether the static magnetic inductions are applied
along or perpendicular to the chain. Topologically nontriv-
ial (trivial) gapped phase can be achieved by changing the
intracell and intercell coupling which depend on the position
of the magnetic spheres, the static magnetic inductions, and
the waveguide dimensions. The topological phase transition

©2023 American Physical Society


https://orcid.org/0000-0002-5009-2164
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.107.064401&domain=pdf&date_stamp=2023-02-01
https://doi.org/10.1103/PhysRevB.107.064401

PIRMORADIAN, MIRI, RAMESHTI, AND SAEIDIAN

PHYSICAL REVIEW B 107, 064401 (2023)

FIG. 1. A bipartite chain of magnetic spheres with N unit cells
inside a rectangular microwave waveguide with transverse dimen-
sions @ and b. Each unit cell contains two magnetic spheres of
macrospins S; and S,. The intracell and intercell separation between
neighboring spheres are d; and d,, respectively. Each S;- (S,-) type
sphere is subjected to a static magnetic induction B, (B,) which is
(a) perpendicular and (b) parallel to the axis of the chain. The outer-
most left and right spheres experience additional magnetic inductions
8B, and 6By, respectively.

goes along with the closing and reopening of the energy gap.
A finite chain supports a pair of doubly degenerate topological
edge states within the gap when the intracoupling is smaller
than the intercoupling confirming the so-called bulk-edge cor-
respondence in the system.

This paper is organized as follows: In Sec. II we present
the Hamiltonian of a chain of magnetic spheres inside a
microwave waveguide. In Sec. III, we discuss the photon-
mediated interaction of two magnetic spheres. The topological
properties of the magnonic band structure and the formation of
localized edge states in a finite chain of magnetic spheres are
addressed in Sec. IV. In Sec. V we conclude and summarize
our findings.

II. MODEL

We consider a one-dimensional bipartite chain of mag-
netic spheres embedded in a long waveguide (see Fig. 1).
The chain is composed of N unit cells. The unit cell of
the chain consists of two spheres of macrospins S; and ;.
The intracell and intercell separations between neighboring
spheres are d; and d,, respectively. The nth S;-type and
S,>-type magnetic spheres reside at r, = (nd — d,/2, ys, zs)
andr, = (nd + d, /2, ys, zs), respectively, where d = d; + d,
denotes the lattice constant. Without loss of generality, we
assume that the magnetic spheres are in the midplane z; = 0.
We consider a hollow rectangular waveguide with perfectly
conducting walls located at y = £a/2 and z = £b/2. Indeed,
a,b < | where [ denotes the length of the waveguide. The
magnetic spheres are assumed to be small compared with
the photon wavelength such that only the Kittel mode, i.e.,

the uniform precession of the magnetization, couples to the
waveguide mode.

In the following, we present the Hamiltonians Hy,, Hep, and
Hi, for the magnetic spheres, the waveguide fields, and the
Zeeman interaction of magnetic spheres with the waveguide
fields, respectively.

A. Zeeman interaction of magnetic spheres
with the static magnetic inductions

We assume that the nth unit cell accommodates two differ-
ent magnetic spheres with macrospins Sn = (S'fl 8 S‘f) and
S, = (8,8, 87). The magnitudes of macrospins at equiva-
lent sites of the chain are the same, that is, Si =51(81 + A
and Sf = $,(S, + 1)i*. Each S;- (S,-) type magnetic sphere
experiences a static magnetic induction B; (B,). Moreover,
the outermost left (right) sphere is subjected to an additional
static magnetic induction B (§Bgr). The additional magnetic
inductions strikingly influence the edge states of the magnetic
chain [59]. We study two cases, where the external magnetic
inductions are (i) perpendicular and (ii) parallel to the unit
vector n = e, along the chain axis.

The Hamiltonian

N N
Hn=-pn) Bi-S,—pn) B:-§, M
n=1 n=1

describes the Zeeman interaction of magnetic spheres with the
static magnetic inductions. Here u = gupg/h is introduced via
the g factor g and the Bohr magneton up.

First, we consider the case of B;, = Bj e, and §BLr =
8Br re;. In the ground state of the magnetic chain, all
macrospins point in the direction determined by the external
magnetic induction. At low temperatures, however, thermal
fluctuations play a decisive role: macrospins slightly devi-
ate from the ground-state direction. To study the low-energy
collective excitations of the magnetic chain, we use the
Holstein-Primakoff transformation to write the spin operator
S (S’) in terms of the bosonic operator a (f)) as

8t =ny285,4, S =ny25,b,
§™ =ny285,a", § =nrJ/25,b",

$§7=n(S; —a'a), §%=ns,—-b'b). (2)
Here 8§ = 8§ +i8” and §* = §* +i8”. Second, we con-
sider the case of B;, = Bje, and 8B r = 6B re,. We
employ the Holstein-Primakoff transformation

§t =ny285,a, S = nry2S,b,
§™ =ny25,a", 8§ =n/25b, 3)

$*=n(S; —a'a), 8§%=ns,—bb),

with 8% =8 4i8° and §* =8 +£i§%. The magnetic
Hamiltonian in both cases can be rewritten as

N N
Hp = hpBy ) a74, +huBy ) bib,. @
n=1

n=1
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B. Quantized electromagnetic fields inside
a rectangular waveguide

The electromagnetic fields inside a waveguide obey the
Maxwell equations and the constitutive equations D(r, ¢) =
€oE(r, 1) and B(r, ) = poH(r, t). It is known that the elec-
tromagnetic fields can be written in terms of a vector
potential A(r, t) which obeys the wave equation V?A(r, t) —
Cl—z % = 0 and the Coulomb gauge condition V - A(r, t) =
0. The vector potential can be expanded in terms of the spatial
mode functions ug ; (r) as

A(r,t) = Z Z

q 1=1,2

1
— Qg1 (g (r), ()
€0

where q and A = 1, 2 denote the wave vector and the mode
polarization, respectively. The function Qg , (¢) and the diver-
genceless vector ug ; (r) satisfy the equations

82
T | 02040 =0, (©)
2
uq )\(l') + uq A(r) (7)

A(r, t) is real, thus, Q_ q,\(t) =Q* A(t) w_q = wq, and the
solution of Eq. (6) is Qg1 (t) = Qq, ,\e”“"l’ + Q* e'“a’ where
Qq 5 1s a complex number. On the other hand u_g,(r) =
ug ; (r). Moreover, the tangential component of the electric
field vanishes on the metallic walls, thatis ug ; (x, y = +5, 2) -

e, =0andug;(x,y,z= :l:z) e, = 0. We utilize the follow-
ing spatial mode functions:

2 C i m'm mi . (m'm
=—— ¢ cos| —y )sin| —z )e
v ab Qm,m’ b a Y b °)s

mmw . (mn ) (m’rr > }
— —sin| —y | cos z e, |,
a a b

2
2 Al

«/ Qmm wq

uq,l(r)

uq,2(r)

(%
+ mT sin (%y) cos (mbrr z)e1:|, ®

where =(q, ", M), mm =0,2,4,..., Quuw=

c,/(ﬂ)2 (M)2 and the photon dispersion relation

is g =vc*q*+Q;, . Indeed, transverse electric (TE)
and transverse magnetlc (TM) waves propagating in the
waveguide can be expressed in terms of ug ;(r) and ug(r)
mode functions, respectively. The mode functions ug;(r)
form an orthonormal set:

2

/dVV X g (r) -V ><uq A,(r)_l 5mn8m 0q.401,075

/dV ug (1) - u:‘;w(r) = 18,08 .wdq,q 011 - C)]

Now the Lagrangian of the electromagnetic field Ley, =
fd3r[%eoE(r,t)~E*(r, t)— LB(r,t)B*(r, t)] can be

. 0Q¢.1 () 00—q.1. ()
written as Lem =5 3 ; [ [200) 30000 _, Qa1 (10— (1)].

The Hamiltonian is thus He, = Zq,)\[zz Py (t)P_q (1) +
L2 Qg1 (1)Q-q (1)), Where Py (t) = 174429 denotes the
momentum conjugate to Qg (t). The quantization of the
electromagnetic field proceeds with identifying Qq,k(t) and
ﬁq,,\(t) as operators which obey the commutation relation
[Qq.1(t), Py ()] = i1i8; 3,8, 4. To this end, the Hamiltonian

reads as
Hew = ) Fiogfy , ()fq(0), (10)
q,A
where f], (1) = \/5510-,(1) = 24Py, ()] and Bq,() =

VEE T [Qq W)+ o5 i P,q 2 (t)] are creation and annihilation op-

erators of photons with wave vector q and polarization A,
respectively.

C. Interaction of the magnetic chain with the waveguide field

The Hamiltonian

Hpo=—py B, )-8, —p) Ba,n-§, 1

describes the Zeeman interaction of macrospins with the
waveguide field. Here B(r, 1) is the total magnetic induction
acting on a magnetic sphere, which is due to the quantum
vacuum and the other magnetic spheres.

Powered by the vector potential (5) and the mode functions
(8), we find that the magnetic inductions of TE,, ,» and TM,,, ,,»
modes of the waveguide are

eiqx

B t) =
Ty (6 1) = Z eowqabl szmm,

() o () ()
x | = cos | —y ) cos z)e,
c a b
.m'm mi m'n N

+zq7 cos y sin TZ e, |fy

+H.c.,

Z 2hiwq
€pabl Q

|Q|eiqx
mm' q

(r,1) =

Brm

mm’
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III. PHOTON-MEDIATED INTERACTION
OF TWO MAGNETIC SPHERES

In the following we consider the dispersive regime. We
focus on the magnonic subsystem and eliminate the direct
magnon-photon interaction in favor of the photon-mediated
magnon-magnon interaction.

The photon-mediated interaction of two magnetic spheres
in the unbounded space reduces to the magnetostatic dipole-
dipole interaction, when the retardation effect is small (see
Appendix A). Here we explore the photon-mediated interac-
tion of two magnetic spheres embedded in the waveguide,
namely, a macrospin S at position r = (x, ys,z) and a
macrospin S at position r' = (x, ys, zs). The Hamiltonian

H=Hm +Hem +Him

=—uB; -8 — By -8 + ) hoogf] By
q,2
—uB(r,1)-S—uB@,1)-§ (13)
describes the dynamics of two macrospins [see Eqgs. (1), (10),
and (11)]. We use the Holstein-Primakoff transformation to
write
H,, = huB,a‘a + iuB,b'D,

Hi =) (Ciqifq:8" +Coqufg b +He,  (14)
q,A
where

Sih c 7
Cl - o igx
1L.q.r=1 “\/;Qm,m'e
() () ()
% cos [ —ys | cos | ——2
c a b
mr <m7T ) (m’j-[ >:|
+g——sm| —ys)cos| —z | |,
a a b
Slha) 1 |CI| i
CL o h q L gx
l,q,A=2 M\/ng,m’ q ¢
mn . (mm m'm (15)
X ——Ssm| —ys ) CosS| —2Zs |,
b a’ b

when the external magnetic inductions are perpendicular to
the chain axis, and

S1h ¢ i
CH _ 5 ki igx
1,q.2=1 MW S-Zm,m’ ¢
|:. mmw (m” ) (m’rr )
X |igq——SIn | —Y5 | COS <
a a b
m/j-[ mi . m/ﬂ
— COS| —YVys S| —Zs ’
9= a’ b
Sihog 1 gl ;
CH s q 1 19l igx
l.q.A=2 M\/;Qm,m’ q ¢

a a b

when the external magnetic inductions are parallel to the chain
axis. (s q,x is obtained from Ci g, by S; — S and x — x'.
Note that we have employed the rotating wave approximation
(RWA) to neglect the quickly rotating terms like f(hﬁT and
B b
Qi - . . .
We use the Schrieffer-Wolff canonical transformation
H = eAHe_A, where A = Zk,l (Ik’)tfk,)‘ﬁf + ‘71(_,,\fky)bbT —
£t a PN _ _ Cika _ _ Coka
L b8 = Db Do = g i and Jr = g, s
Up to second order of C; 2k, indeed H' ~ H, + H] , where

em?

H  can be written only in terms of photon creation and an-
nihilation operators, and the effective magnetic Hamiltonian
reads as

H}, =h(uBy + w1 1)a"a + h(uB; + wy,.)b'D
+ MBI = x1, . 25) + J(Ba, ¥ — x|, ys, 25)1aD
+Hec., (17)
where fiw oL = )y, ﬁ,lcza]{zz—kfﬁ‘;( o Sy, [see Egs. (15) and

(16)] is the Lamb shift of the Larmor frequency uB; » of the
macrospin S 2, and

Cik,k’)h(x’ Vs ZS)CZ,k,A(X/v Vs» Zs)
Fl/LB] — ha)k '

JB, I —xl,y ) =)
k.1
(18)

Here,
C12 = huBy s + hw oL (19)

are “onsite energies” which can be equal if B = B, and
S1 = §». The last term of Eq. (17) describes photon-mediated
interaction of two magnetic spheres.

A few remarks concerning the photon-mediated interaction
of two macrospins are in order. (i) In the dispersive regime,
the magnon and the waveguide modes are detuned from
each other, i.e., |iuB; 2 — hwk| > |Ci 24| (ii) The macrospin
S1.2 precesses about the static magnetic induction B ; with
the Larmor frequency uB;,. The interaction between two
macrospins is retarded by %lr’ —r| which is small when
@W —r| < 1. (iii) The metallic walls impose severe
boundary conditions on the electromagnetic field inside the
waveguide. It follows that the photon-mediated interactions
of two macrospins in unbounded and bounded spaces are
distinct, even when the retardation effect is small (see Ap-
pendixes B and C). (iv) We have assumed that the Zeeman
interaction of a macrospin with the static magnetic induction
hiuB) 5 is much greater than its photon-mediated interaction
with the neighboring macrospins w; ;. In other words, only
the external magnetic induction, whether perpendicular or
parallel to the chain axis, determines the ground state of the
system. For example, when S}, = 10'°, Bi,=01T,d =
0.5 mm, @ = b =10 mm, y; = %, and z; = 0, then |w; 2| ~
10~#/auB) . (v) It is noteworthy that weak magnetic induc-
tions are not able to dictate the ground state. In this regime,
the chain of magnetic spheres exhibits shape anisotropy [60].
This anisotropy manifests to some extent in the collective spin
wave modes of the system [61,62]. (vi) We have assumed that
each magnetic sphere acts as a macrospin. This is reasonable
when magnetic spheres are not too close to each other: each
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magnetic sphere generates an almost uniform magnetic induc-
tion inside its neighbors.

IV. A CHAIN OF MAGNETIC SPHERES
INSIDE A WAVEGUIDE

Now we write the Hamiltonian

N N
H), = Y (€41, + 0bb,) + Y (wia,b] + H.e)
n=1 n=1
N-1
+ Z(w2§n+lbz + H.c.) (20)

n=1

to describe the low-energy collective excitations of a bipartite
chain of magnetic spheres with N unit cells embedded in a
waveguide. Note that the Lamb shift of the outermost left and
right macrospins of the chain may be different from that of
the bulk macrospins. We have assumed that the additional
magnetic inductions §B;, and §By are applied to ensure that
the onsite energies of equivalent sites of the bipartite chain
are equal. This allows topologically protected edge states to
bloom [59]. Moreover, the Hamiltonian includes the photon-
mediated interaction of magnetic spheres. Here

_ J(By,dy,ys,z5) +J(Ba, di, ys, 2s)

wi 2 )
J(By, d>, s, J(Ba, d, s,
Wy = (B1,dy,y Zs)'; (B2, da, ys, 25) @1

describe intracoupling of macrospins at a distance d;, and
intercoupling of macrospins at a distance d,, respectively.

We first concentrate on an infinite chain of magnetic
spheres inside a waveguide. Indeed the properties of an infi-
nite system are independent of its ends, thus we adopt periodic
boundary conditions to rewrite the Hamiltonian (20) in the
momentum space. The Hamiltonian in the basis dDz = (ﬁz, BZ)

isH, =%, @,T(H;n(k)cbk, where

Hl/n(k) — |:§1 r’k}, (22)

U
k is the lattice momentum, and n; = w; + woe *¢. The
Hamiltonian has an inversion symmetry when ¢; = {»: ex-
plicitly, I’H:n(k)I‘1 = H,,(—k) where T = 1, (t; are Pauli
matrices and T is the identity matrix).

The Hamiltonian H,, can be diagonalized by a Bogoliubov
transformation, given by

&y = oy + pucby,
& = ondy + puby. (23)

Rewritten in terms of the introduced quasiparticles the Hamil-
tonian takes the form

H), = (B e + Exééx). (24)
k

The commutation relations [élk,@;k] = [éZk,égk] =1 and
the Heisenberg equations of motion [&;x, H,,] = E1x¢x and
[€, H,,] = E» &y lead to the following eigenproblem:

¢t g || ona 01,2k
’ =F ’ 25
|:77k & || Pk B2 b 25)

: b
@) NI
g 1001 4
S c
~
B =
[rj 1.000 N
0.999
01By Ln
() — = wyfwy > 1 1.0 ()
— w/wy =1
Py === wyfwy < 1
g 1001 %
£ e
~
= )
5 1000 3
0.999
01B, [|n
- 0 T 0.75 1.0 1.25
kd wy/wo

FIG. 2. (a) The energy spectrum of the Bogoliubov quasiparticle
excitations of the chain E 5 versus kd for d; € {0.4,0.5, 0.6} mm.
(b) The Zak phase ¢,, versus w;/w,. Here By L n. Similar plots
for the case of By || m are in (c) and (d). In all plots §; = S, = 106,
By=0.1T,d, =0.5mm,a =5b =10 mm, y, = %,andzs =0.

whose solution straightforwardly provides the coefficients
0121 and pj 2k, and the energies

1 1
an=;a+mi§ﬂa—mu4mﬁ (26)

The spectrum has an overall nonzero gap. However, the gap
can be closed at kd = o if first By = B, and S; = S, to
ensure that onsite energies are equal, and second w; = wy.
Hereafter, we assume that B; = B, = By.

There is a strong similarity between the chain of magnetic
spheres inside a waveguide and the SSH system. The two
limiting cases of w; # 0, w, = 0 and w; = 0, w, # 0, with
dominant intracoupling and intercoupling, respectively, cor-
respond to distinct dimerized regimes of the SSH system. A
topological transition somewhere in-between these two limits
is thus expected. We find that two topologically distinct phases
of the chain emerge for w;/w, > 1 and w;/w, < 1, and the
transition is characterized by closing and reopening the gap at
wi/wy = 1. To confirm this, we calculate the Zak phase [63]

Or = —i/ (W11 |0k W1, 21 ) dk, 27
1st BZ

where |W; o) = [01.2, p1,2k]T and the integral is taken over
the first Brillouin zone. The Zak phase has been used in
study of various magnonic crystals (see, e.g., Ref. [64] and
references therein).

As a concrete example, we take S| =S, = 10'6, By =
01T do=05mm, a=>b=10 mm, yszf‘T, and z, = 0.
Figure 2(a) depicts the bulk excitation spectrum of the chain
E1 2 as a function of kd when By L n. The closing and
reopening the gap occurs at w;/w, = 1. Figure 2(b) shows the
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1.001

lv/%

1.0001--
By n

.25 1 2 0.25 1 2
wy/ws w1 /W,

E/(huBo)

0,998

FIG. 3. The energies of a finite chain with N = 5 unit cells versus
w;/w,. The energies of bulk states (in black solid) and localized end
modes (in dashed) for the case of (a) By L n and (b) B || n. All the
other parameters are the same as in Fig. 2.

Zak phase as a function of w; /w,. The Zak phase is quantized,
revealing two topologically distinct phases for w;/w, < 1 and
wi/wy > 1. Figures 2(c) and 2(d) pertaining to the case of
By || n convey the same message.

Up to now, we have studied topologically distinct phases
of an infinite chain of magnetic spheres inside the waveg-
uide. However, the physical consequence of different Zak
phases, i.e., the bulk invariant, becomes more apparent for
a finite chain. Here we consider a finite chain of N unit
cells, and examine the link between the quantized Zak phase
and the presence of topologically protected end states. We
remind that it has been recently recognized that even Her-
mitian topological materials can exhibit breakdown of the
bulk-edge correspondence [65-67]. We numerically diagonal-
ize the quadratic bosonic Hamiltonian (20). As a concrete
example, we take N = 5. Figure 3 demonstrates that all states
are singly degenerate delocalized states when w;/w, > 0.45.
Remarkably, a pair of doubly degenerate localized modes
which are topological edge states appear within the gap when
wi/wy < 0.45, which reveals a connection between the bulk
invariant and the boundary invariant, i.e., the number of edge
states. For the case of N = 40, the wave functions of the
localized edge states are depicted in Fig. 4. This confirms the
bulk-boundary correspondence: For w;/w, < 1, the system
is in a topological phase characterized by ¢,, = 7 and is
expected to host topologically protected localized edge states.
Now it is legitimate to assert that for w;/w, > 1 the finite
chain is in a topologically trivial phase, while for w;/w, < 1
the finite chain is in a topological phase.

Byln

Bj | n
0 20 40 60 80 0 20 40 60 80

site number site number

FIG. 4. Wave functions v, (in red) and v (in blue) with energy
huBy, for the case of (a) By L. n and (b) By || n. Here N = 40 and
d; = 0.6 mm. All the other parameters are the same as in Fig. 2.

V. CONCLUSION

In conclusion, we have studied a one-dimensional bipar-
tite chain of magnetic spheres inside a rectangular metallic
waveguide. The magnetic spheres are subjected to external
static magnetic inductions which are either perpendicular or
parallel to the chain axis. In the dispersive regime, the waveg-
uide photon-mediated interaction, which is quite different
from that in the free space, between magnetic spheres turn the
chain into a magnonic crystal. The magnonic crystal exhibits
two topologically distinct gapped phases, and the transition is
characterized by closing and reopening the gap. Topological
end states form at the boundaries of the magnonic crystal in
accordance with the bulk-boundary correspondence. Magnet-
ically funable topological magnon modes may secure their
place in future applications.

Generally speaking, the interactions of electric and mag-
netic dipoles are quite similar. Indeed, bipartite chains of
metallic nanoparticles [48] and magnetic microspheres [59]
embedded in the free space share some common topological
features. A recent study of a chain of plasmonic nanoparticles
inside a metallic waveguide has concluded that the strong
light-matter coupling leads to breakdown of the bulk-edge
correspondence. The Hamiltonian of the chain of plasmonic
nanoparticles consists of three terms, namely, the dipolar
Hamiltonian Hg, which includes the dipole-dipole interac-
tions, the photonic Hamiltonian Hpp, and the light-matter
coupling Hamiltonian Hy,pn [68]. It deserves a further study
of whether this approach overweights the first term of the
Hamiltonian since the photon-mediated electric dipole-dipole
interaction is already a consequence of the interaction of the
electric dipoles with the photonic field.

APPENDIX A: INTERACTION OF TWO MAGNETIC
SPHERES IN THE UNBOUNDED SPACE

Here we focus on the photon-mediated interaction of
two magnetic spheres in the unbounded space, namely, a
macrospin S at position r and a macrospin S’ at position r’.
The Hamiltonian H describes the dynamics of the system [see
Eq. (13)].

We choose three mutually perpendicular unit vectors nj,
ny, and n3 || B; », and express the spin operators in terms of
the bosonic operator as

. S, 4S5
§$.n = —++ ——\/Z?(a—i—af)
. S, —S_
§om=2 1 aga—an
21 21
S-n;=AS, —a'a). (A1)

We write the magnetic induction in a cubic region of space of
volume V — oo as

N [ ok P At
B(r,t) = Zi Moszk ew (fic o™ — fi e
kA

Here wy = ck and ey, =Kk x e;, in yvhich three mutually per-
pendicular unit vectors e, e, and k specify the polarization
and direction of propagation of the mode (k, A = 1, 2). We

—ik-r)‘

(A2)
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use the identity

v-u=(v-n)-n)+(v-m)(u-ny)+ (v-n3)(u-nz)

(A3)
to rewrite Hy, and H;, [see Eq. (14)]. Here
. S1pohwy (m +imp) 4
C — Fl e . 2 .r’
1k, A i oV kA \/E e
. S o hawy (g +imp) 4
C = — h e . K.r . A4
2k, i AL 7 e (A4)

We use the Schrieffer-Wolff canonical transformation

to write H' ~ H! + H_ [see Eq. (17)]. The task is now
to calculate J(By, v’ —r|) =Y, ﬁ;gl*cz';i We choose

three mutually perpendicular unit vectors w;, u;, and
us; = (r' —r)/|r' —r|. We represent k = ksin6 cos pu; +
k sin 6 sin puy + k cos fus in this coordinate system and con-
vert the summation over k to an integration, that is, Zk =

h VAT T
o V51 2/ / e* T 5in 0 do
32733 [LB] - a)k 0

« / [+ (ns - K)Ido. (A3)
0

We note that

2

(n; - k)’dg
= m[(n3 - uy )2 + (nj3 - uz)z] sin 6 + 2w (ng - u3)2 cos’ 6

=7[l — (n3-u3)*]sin’0 + 27 (n3 - uz)*>cos’ 6.  (A6)

Moreover,

i 4 2 sink
b [k = ol [wRden ;7 dg [ sin6 de. Tt follows fitkr) = / sin 9™ c0%0 g9 — S:l .
that ° g
J(Bi, ¥ —r]) fHlkr) = / sin @ cos® B % 4
0
__ Z 72 12 ok A/S152 [(en ) + (e )] D) _ 2sinkr N 4 coskr 4 sinkr (A7)
o VB — o0 Tk (ke k)
R 2 pow/S1S S
- Z M[l + (n3 - k)20 Thus,
— 4V (uB) — wx) |
R 1104/S1S T i —rloos
JBr I —r]) = - 2/ / HITHIe Y sin O[3 — (3 - u3)’] — [1 = 3(n; - u3)*] cos” 6146
T*C /,LBl —a)k 0
RTRITOVATE , ,
=~y Z[MB 113 = (s - LA = ¥l) = [1 = 303 - ) "1 kI = r)ldon
. —
2 o/SiS x3
— ettt f g A — 1= 30wVl
2 o/S1S uB
- 16n|r(:—;|32fdd(_1|r - ')’ (A8)
where
faa(x) =[3 — (03 - uz)*Ix? cosx — [1 — 3(n3 - u3)?](x? cosx + 2x sinx — 2 cos x). (A9)

We remind that n3 is a unit vector in the dierection of major components of macrospins S| and S5, and uj3 is a unit vector in the

direction from S, to S,. 1B » is the Larmor precession frequency. The retardation effect is small when @ Ir' — r| < 1. In this
limit,
R 1 1o4/S152
T L R [ (D (A10)
' 8m|r —rf?

represents the celebrated magnetostatic dipole-dipole interaction in the unbounded space.

APPENDIX B: EXPLICIT FORM OF J(By, |x' — x|, ¥s, Zs)

Here we present the explicit form of J(By, |x" — x|, ys, zs) for two magnetic spheres embedded in the waveguide:

JJ_(Blv |X/ —.X|, Vs ZS) =

ik, (x—x")

R 1* /S S L\ ' o0 L
s 192 Z ( : ) cos? (ﬂys> cos® (ﬂzs)/ e—de
2megab — c a b oo Wk(UB1 — wy)

2 2 / o 12,k (x—x)
T T b4 k
+ ¢ mr sin® m—yS cos? m—zs f ’“e—dkx
Qo a a b —o0 Wk(UB — k)
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mmw . (mw
—2—sin (—ys> cos <
a a
L 1 (ma\* ., (mn , (m'm
—— ) sin” [ —y ) cos
oz \ b a’ b

5 m' T [es] k etk (x—x")
_ys) COS ( Zs)/ R — kx
a b wx(uB1 — wy)

%) ik, (x—x")
) / T B1)
0o MBI —

when the external magnetic inductions are perpendicular to the chain axis, and

mim

hZMZ /SS C 2
J”(Bl,lx’—xl,ys,zs)Z—]ZZ ( ><_

2megab Q.

k2 iky(x—x")

2 / 00 iky (x—x'
) sin® (ﬂys> cos’ <mzs)/ "e—dk
a b —oo Wk (UB1 — k)
2, 4 \2
+ (== 2T cos? =
Qm,m’ b a )

k2 ik (x—x")

/ o0 (X —.
) sin2 (MZS> / ’“e—dkx
b —o0 Wk(UB — k)

1 mm \ 2 mm m'm 0 ek =3
+ — ) cos® [ =y ) sin® [ ——2z k—dkx
2
QL a b oo MB1 — wx

1 I 2 e I %) iky (x—x")
+ = n sin® m—yS cos? m—zs / Ldkx , (B2)
Qv \ b a b oo MB1 — wx

when the external magnetic inductions are parallel to the chain axis. The evaluation of the above integrals is presented in the

next Appendix.

APPENDIX C: EVALUATION OF INTEGRALS

Let us assume that @ > 0 and 1 > 8 > 0. The following

integrals are of particular use:

Ei(x) = / J:Z—ﬁdk = 2Ko(|e]),
00 ika
B )= | o dk = 2Kolal) + Lia B).

(ChH

Here K, denotes the modified Bessel function of order zero,
and

27.[/3 e e—\alcosht
L(a, B) = —— — e lIVI=F _ g2 /0 —smhzt—l—ﬁzdt
(C2)

contains an integral which can be easily numerically evalu-
ated. Now it is straightforward to compute

e} ika 1 E
Oy = [ gy = LB
oo VK2 + 1 i Jdo
0 peika 1 9Ex(a, B)
Ceh=] T e
e} 2 ika 2E
Eay= [ g = TE@
o VK2 + 1 9%
[ee) kZeika 82E2(a,,3)
E4(a, = —dk=———+—-. (C3
R SNV gy TE

The case of o < 0 introduces no complications: By their
definition, E; >34 and O;, are even and odd functions of «,
respectively.

In the following we prove Eq. (C1) using the residue the-
orem from the theory of functions of a complex variable.

(

o . _ eizoz _
We consider the function f(z) = NesEre The contour I' =

I'ul, U---UTl and the adopted branch cut configuration

for the multivalued function +/z2 + 1 are shown in Fig. 5.
According to the residue theorem

/ fldz =

In the limit R — oo and € — 0 indeed

—'0"«/ (C4)

f(R)dz = Ex(a, B),
r
/ f(@dz =0. (CS5)
I,.I4.Tg

For '3, z =is and /(z — i)(z + i) = iv/s> — 1, whereas for
['s, z =isand /(z — i)(z + i) = —i+/s2 — 1, resulting in

1 e*5|0l|
dz = —id
r3f(Z) ‘ oo ivs2 — —ﬂl ’
e8] e—s\a\
dz = ——————ids. C6
st(z) N (o)

Now we substitute s = cosht and use the integral representa-
tion Ky(lae|) = 5~ e711 d to write

oo ,Befla\ cosht

dz = —K j —dt,
r3f(Z) z o(lae]) +i | sinhr P
oo ,Befla\cosht
f@dz = —Ko(la|) — i ———dt.  (CT)
T's 0 sinht — 1/3

To this end, Eqgs. (C4)—(C7) confirm Eq. (C1).
Indeed, the integrals appearing in Eqs. (B1) and (B2) can
be expressed in terms of the above Ej 5 3.4 and O, functions.
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(a)

b S g1
> 0
[ %
z—1i=red Ty
2+ i = ryeif2 0,
—l £

FIG.5. (a) The contour '=TUT,U---UIls and (b) the
adopted branch cut configuration for the multivalued function

2 + 1 for the evaluation of the integral ¢ dz. Note that
V2 + valu gral | NI

3 k14 k14 3
7<01<Eand 5<92<7.

For example,
00 eikl(xfx’)
/ —dk,
—oo Wk(B] — wk)
00 eikx(x—x’) 00 eikx(x—x’)
/ —dk, + / — dk,
—00 MBjax —o0 UB1(UB) — @)
1 /OO K =)
= e c m,m
uBic J

1 1
VT R -

_ ! [E] (|x —x’|szm,mf>
uBic c

- /Qmm’ B
_E2(|x X1 1 1>] )
C Qm,m’

As another example,

[e'S) ik (x—x")
[O4
/ DTk,

dk

0o MBI — wi
o , © B eikx(xfx’)
—_ / Mg, 4 / B2C ik,
oo —0o MB1 — wx
B — X | B
=—2ms(x—x’)—QE2(|x XS ‘).
c c Qe
(C9)

However, the position of neigboring magnetic spheres is dis-
tinct, i.e., x — x’ % 0 and thus here §(x — x") = 0.
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