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Evidencing non-Bloch dynamics in temporal topolectrical circuits
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One of the core concepts from the non-Hermitian skin effect is the extended complex wave vectors (CW)
in the generalized Brillouin zone (GBZ), while the origin of CW remains elusive, and further experimental
demonstration of GBZ is still lacking. We show that the bulk states of an open system dynamically governed
by the Lindblad master equation exhibit non-Bloch evolution which results in CW. Experimentally, we present
temporal topolectrical circuits to serve as simulators for the dynamics of an open system. By reconstructing
the correspondence between the bulk states of an open system and circuit voltage modes through gauge scale
potentials in the circuit, the non-Bloch evolution is demonstrated. Facilitated by the simulators and proper
approach to characterize the non-Bloch band proposed here, the GBZ is confirmed. Our work may advance
the investigation of the dissipative topological modes and provide a versatile platform for exploring the unique
evolution and topology for both closed and open systems.
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I. INTRODUCTION

In topological matter [1–4], the number of topological
surface states is usually related to the topological struc-
ture of bulk states (or topological invariances), which is
summarized as the bulk-boundary correspondences (BBCs).
Recently, those topological phase studies have been general-
ized to the systems with non-Hermitian (NH) Hamiltonians
[5–7], which usually root in the intrinsic dissipative property
(e.g., inelastic-scattering-induced finite quasiparticle lifetime
[8–10], material gain/loss [11,12], resonator Q factor [13,14],
asymmetric hopping amplitudes [15–17], and complex cou-
pling [18]) or interaction with the surrounding environments
(e.g., Liouvillian dissipators [19,20]). The interplay between
non-Hermiticity and topological boundaries has attracted in-
tense interest, not only because of the exotic phenomena,
such as the delocalizing topological modes [21–23], but also
because of the potential for exciting applications, such as the
NH laser [24,25], the light steering device [26].

Nevertheless, recent studies show that reported BBC the-
ories for Hermitian systems are not well defined in NH
systems. Subsequent investigations revealed that a broad
range of NH models inherently exhibit the non-Hermitian
skin effect (NHSE) [23,27–37], which can be captured math-
ematically by complex wave vectors (CW). Namely, the bulk
eigenstates of the NH Hamiltonian do not extend over the
systems but prefer exponentially localizing (or piling up) at
its boundaries. Accordingly, the Bloch theorem is generalized
to ψk̃(r) = eik̃·ruk̃(r), where k̃ belongs to the generalized
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Brillouin zone (GBZ) [28,34,38–42]. The GBZ provides an
amendment that deals with anomalous BBC by replacing
eik with eik̃ in calculating the topological invariants, e.g.,
the paradigmatic one-dimensional NH SSH model [28,43]
as experimentally demonstrated in [44], NH Chern insula-
tors [45], NH second-order topological insulators [46], and
so on. However, the underlying physical mechanism of this
phenomenon-driven development of CW remains elusive.
Furthermore, owing to the lack of an appropriate approach
to characterize the non-Bloch band, the GBZ has not been
experimentally demonstrated.

In this work we investigate a second-order topological
insulator that interacts with the environment, and thereby its
time evolution follows the Lindblad master equation. We show
the time evolution of the bulk field experiences an additional
space-related negative damping term beyond Bloch theorem
(dubbed the non-Bloch evolution), which leads to CW. Also,
the concept of topolectrical circuits is adapted to emulate the
non-Bloch evolution. By contrast, the gauge scale potentials
in the proposed circuits bridge the bulk field and the voltage
modes, which lay the necessary basis for emulating. More-
over, we reveal that Laplace transform rather than Fourier
transform connects the reciprocal space and the real lat-
tice space for non-Bloch problems, indicating an unexplored
avenue to characterize the non-Bloch band. The above revela-
tion, together with the proposed circuits, finally allows us to
verify the existence of the GBZ experimentally. Importantly,
the measurement of the circuit impedance response allows
us to experimentally verify that the second-order topological
invariance derived from the non-Bloch band.

In a separate work [47], we apply temporal topolectri-
cal circuits to directly observe the nodal-line conversion

2469-9950/2023/107(6)/064307(11) 064307-1 ©2023 American Physical Society

https://orcid.org/0000-0002-3026-8564
https://orcid.org/0000-0001-7718-7756
https://orcid.org/0000-0002-8274-5131
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.107.064307&domain=pdf&date_stamp=2023-02-21
https://doi.org/10.1103/PhysRevB.107.064307


MAOPENG WU et al. PHYSICAL REVIEW B 107, 064307 (2023)

(including node-line [48] conversion and non-Abelian line-
line conversion [49]) determined by the relative homotopy,
which cannot be reached by other platforms.

II. NON-BLOCH EVOLUTION IN OPEN SYSTEMS

Following the Lindblad master equation [50], the time
evolution of a reduced density matrix ρ of an open system
is governed by

dρ

dt
= −i[H0, ρ] +

∑
u

(2LuρL†
u − {L†

uLu, ρ}), (1)

where H0 is the Hermitian Hamiltonian of the original sys-
tem. Lu is the set of dissipators due to environment and
with the translational symmetry Lu can be simplified as
Lu = {Lg

k, Ll
k} in the Brillouin zone (BZ), which includes

the particle gain Lg
k = ψ

†
kDg

k and the loss Ll
k = Dl

kψk, ψk =
(ak,1, ak,2, ..., ak,n)T , ak,i is the annihilation operator, and
n represents the degrees of freedom per unit cell (a con-
crete model, see Appendix A). We further assume the
element constitutions are bosons which are distinct from the
fermions in the commutation relation [51]. The field co-
herences φk,i(t ) = 〈ak,i(t )〉 = Tr[ak,iρ(t )] are employed to
monitor the time evolution of ρ because of its accessibility.
Equation (1) implies that φk,i(t ) evolves under an effective NH
Hamiltonian H :

dφk,i

dt
= −i

∑
m

Hm,nφk, j

H = H0 + i

2

((
Dg†

k Dg
k

)T − Dl†
k Dl

k

)
. (2)

For more details see the Supplemental Material (SM) [52].
Above all, we have the eigenmodes of the field coherences
φk,n(t ):

φk,n(t ) = �k,neiEn (k)t−ik·r, (3)

where �k,n and En(k) are the eigenvectors and eigenvalues of
H , respectively. Notably, H reduces to H0 in the absence of
the coupling.

Without loss of generality, we consider a two-dimensional
(2D) system consisting of four orbitals arranged on a square
lattice [Fig. 1(b)]. This nondissipating model has been used
to study the higher-order topological corner states [53–55].
Heuristically, we note that, to construct an intriguing model
that exhibits the non-Bloch evolution and hosts the topolog-
ical corner states, the dissipators should have the following
properties: (i) ensure H is NH, H �= H†, (ii) introduce certain
(i.e., asymmetric) hopping between the orbitals to enable non-
Bloch behavior; and (iii) ensure H respects certain symmetry
to allow the topological phase. Regarding those properties, the
dissipators considered here are

Dg
k = 2

√
γ

⎛
⎜⎜⎝

1
1

1
1

⎞
⎟⎟⎠,

Dl
k =

√
2γ

⎛
⎜⎜⎝

1 −i
1 i

−i 1
−i 1

⎞
⎟⎟⎠, (4)

and therefore

H = [t + λ cos(kx )]τxσ0 − [λ sin(kx ) + iγ ]τyσz

+ [t + λ cos(ky)]τyσy + [λ sin(ky) + iγ ]τyσx, (5)

where (t,−t ) and (λ,−λ) are the intracell and intercell hop-
ping, respectively, and τi and σi (i = x, y, z) are Pauli matrices.
To present a physical picture of the effective NH Hamiltonian
H , we transform it back into real space shown in Fig. 1(b).
The interactions Lu between the original system and the envi-
ronment can be interpreted as asymmetric intracell hopping,
which accounts for a complex flux threading the unit cell.

Our calculation shows that bulk field coherences of an ex-
citation (like a photon) centered at the lattice prefer to evolve
toward the specific direction, while evolution along the oppo-
site direction is suppressed. In other words, field coherences
experience a negative space-related damping term during the
evolution, which behaves as the increasing number of exci-
tation along the direction it prefers. In an electromagnetic
system, media such as band-gap materials can block some
specific modes, resulting in a spatial concentration of those
modes around the medium’s surface (i.e., the electromagnetic
skin effect). In stark contrast, in the proposed NH systems,
the eigenmodes of the bulk field coherences can propagate
but still exhibit the skin effect. Therefore in the dynamics of
φk,n, we focus on the bulk eigenmodes. The damping term is
independent of boundary condition, quite different from the
eigenvalue spectrum that shows great sensitivity to the bound-
aries. Even so, the system with periodic boundary conditions
never reaches a steady state, as the field coherences will
exponentially and constantly accumulate along the periodic
direction. We remark that the CW caused by non-Bloch evolu-
tion is independent of quantum coherence, which gives rise to
a possibility of emulating the evolution with classical circuits.
In fact, the NHSE (described by CW) may dramatically shape
the long-time Lindblad dynamics after the jump [51].

III. EMULATING NON-BLOCH DYNAMICS WITH
TEMPORAL TOPOLECTRICAL CIRCUITS

For the circuit in a lattice structure [56], its admittance ma-
trix in the BZ can be described as J (w, k) = Y I + J0(w, k),
where the diagonal elements Y I (so-called self-admittances)
are preset to be identical. The node voltages Vk,0(t ) that
change over time are (see SM [52])

Vk(t ) = Vk,0 eiω(k)t−ik·r, (6)

where Vk,0 are the eigenvectors of J (w, k) with respect to the
zero-value eigenvalues, and w is the resonant frequency of the
circuit. The above equation reminds us of Eq. (3) and indicates
that the response of the node voltage can potentially emulate
the evolution of the field coherences, as long as J (w, k) is
appropriately configured to be of the same form as that of H
[a little different from Eq. (3), and we will solve this with
gauge scale potentials].

The unit cell of the circuit designed to emulate φk,i(t )
is specified in Fig. 1(c). Capacitor-inductor pairs (Ct , Lt )
and (Cλ, Lλ) are used to emulate the intracell and intercell
hopping of H . Cλ = λCt and Lλ = Lt/λ so that the pairs
have the same LC resonant frequency w0. Furthermore, we
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FIG. 1. Non-Bloch evolution and its demonstration using a temporal topolectrical circuit. (a) Tight-binding representation of the model.
Each unit cell contains four orbitals (solid blue circles). The green and brown arrows denote the intercell and intracell hopping, respectively.
The dashed arrows have a relative negative sign to account for a flux of π threading each plaquette. The dissipators Ll and Lg describe the
boson loss and gain in a unit cell. (b) The effective Hamiltonian H for φk,i(t ) in real space. The red and black arrows represent the asymmetric
intracell hopping, accounting for an imaginary flux 2iln(γ ). (b) Temporal topolectrical circuit realization of the non-Bloch evolution. (Ct , Lt ) =
(10 nF, 30 μH), λ = 2, γ = 0.5. The configuration of Y0 = iw0C0, C0 = 33 nF is not plotted for clarity. (c) Measured time-resolved voltage
signal of the Hermitian topolectrical circuit (11 × 11 units) after the pulse. The node voltage of the bulk modes propagates in all directions
and behaves as a Bloch wave with forming a quasicylindrical wave front. (d) Time-resolved voltage signal of the NH circuit after pulse. In
contrast, the node voltage propagates chirally toward the corner with the increasing amplitude, confirming the non-Bloch dynamics. Note that
the chirality of the non-Bloch wave is controlled by the dissipators.

implement the negative impedance converters with current
inversion (INIC), which served as an indictor of the coupling
between the system and the environment (see SM [52]). Each
node is grounded via passive elements to guarantee the self-
admittance Y = Y0τ0σ0. The admittance matrix J (w0, k) of
the resulting circuit reads

(iw0Ct )
−1J (w0, k) = Y0τ0σ0 + H. (7)

Neglecting the constant prefactor, H and J (w0, k) take the
same form when Y0τ0σ0 = 0; nevertheless, as we will see,
Y0τ0σ0 �= 0 is essential in our temporal circuit.

The existing topolectrical circuit [57–66] has severe limi-
tations preventing us from exploring non-Bloch evolution and
further GBZ. For normal metamaterials or photonic crystals
[3,4,67,68], the frequency dimension plays a similar role as
the eigenenergy of a solid. However, to keep J (w0, k) the
same form as H , the circuit has to operate at w0. Besides,
the voltage response Vk(t ) [emulating φk,n(t )] is modeled
by Vk,0 with vanishing eigenvalue [Eq. (6)], while in most
cases, the eigenvalue of φk,n(t ) usually is not zero. Here,

we find Y0 functions as the gauge scalar potentials (see SM
[52]). So one can tune the eigenvalue spectrum with the Y0

[Fig. 2(a)], just like tuning Fermi energy with chemical po-
tentials. Note that each node of the circuit has a different
grounded configuration such that the self-admittances Y0 (di-
agonal terms of the admittance matrix) are identical. In other
words, one can select the evolution of the bulk field coher-
ences φk,n(t ) with tuning Y0. As we will see, Y0 does more than
selecting modes, and it also plays an essential role in GBZ
demonstration.

Experimentally, to excite a bulk excitation, a current pulse
signal with Gaussian form is injected into the center of the
circuit (Fig. 3). For direct comparison, the same experiment
was also carried out in a Hermitian circuit. Clearly, in the
NH system [Fig. 1(e)] the field coherences represented by the
voltage response propagate toward the bottom-left corner of
the lattice with a negative damping factor (the amplitude in-
creases as a function of the distance). This is in sharp contrast
to the symmetric propagation phenomenon (referred as Bloch
evolution) observed in a normal Hermitian system [Fig. 1(d)].
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FIG. 2. Selecting the time evolution pattern by adjusting the
gauge scalar potentials Y0 and Y O-enabled FTFS for Bloch band.
(a) Eigenvalue spectrum of the circuit admittance matrix J (w, k).
The red dot denotes the bulk modes whose eigenvalues are zero.
The spectrum is gauge invariant against the diagonal term Y0τ0σ0

of J (w, k), and hence it shifts the spectrum upwards by Y0 =
iw0C0, C0 = 33 nF. (b)–(d) Characterizing circuit band by tuning Y0.
(b) Band structure of H with γ = 0 (Hermitian case), which corre-
sponds to J (w, k). I–IV denote the cut plane with E = 1.8, 2.3, 2.8,

and 3.3, respectively. Their intersections with the band are the isoen-
ergy contours, which are individually shown in (c). (d) Voltage
distribution of the Hermitian circuit (21 by 21 units) in BZ after
the Fourier transform with C0 = 18 nF, 23 nF, 28 nF, and 33 nF,

respectively (for more details see SM [52]).

IV. GBZ DEMONSTRATION

The Gauge scalar potentials Y0 also enable an alternating
approach to character the circuit band, opening up possibilities
for the demonstration of GBZ. In traditional circuits, the cir-

FIG. 3. Schematic of the measurement setup with a photo of
the fabricated circuit. Orange rectangles denote a single cell mod-
ule emulating the original Hermitian system and an INIC module
dominating the coupling between the systems and the environment,
respectively. Each module is assembled by pin header connectors.
Note that the modular design strategy dramatically facilitates circuit
debugging and calibration. The oscilloscope (OSC) records the node
voltage variation over time.

FIG. 4. Failure of the FTFS for a non-Bloch band and charac-
terizing the non-Bloch band with Laplace transform. (a) Non-Bloch
band of H with γ = 0.5. V and VI denote the cut plane with
E = 1.8 and 3.3, respectively. (b) Calculated voltage response due
to a centered point source (not shown) in real space (C0 = 18 nF).
(c) Corresponding voltage distribution in BZ after the Fourier trans-
form. Clearly, a Fourier transform cannot be used to characterize the
non-Bloch band. (d) Corresponding voltage distribution in GBZ after
the Laplace transform. The distribution is in great accord with the
isocontour [V in (a)]. As for VI, see Fig. 5(d).

cuit bands are obtained through the (or block) diagonalization
of the measured impedance matrix. The diagonalization ap-
proach has tremendous convenience in studying the sensitivity
of the spectrums [59,63], but it fails in demonstrating GBZ
as GBZ is a prerequisite in the diagonalization process. The
desired approach is the Fourier-transformed field scan (FTFS)
if the field distribution (e.g., field coherences) is accessible.
FTFS is widely used in artificial crystals and metamaterials,
such as [69–71]. As mentioned above, the bulk field distri-
bution is accessible and can be selected at will by adjusting
Y0, thus enabling FTFS to character the Bloch circuit band
[Figs. 2(b)–2(d)].

FTFS is not applicable for the non-Bloch band. Without
NHSE, FTFS allows one to retrieve the band structure by
applying the Fourier transform to the measured spatial field
patterns [see Figs. 2(b)–2(d), and to avoid NHSE we take γ =
0]. Because the degeneracy modes with identical eigenenergy
are simultaneously excited, the obtained distribution in mo-
mentum space is the iso-energy contour of the band. However,
Fourier transforms of the non-Bloch wave are divergent when
FTFS is applied [Fig. 4(c)]. This divergence arises from the
limitation of the Dirichlet conditions [72]. Therefore FTFS is
still far from demonstrating GBZ (also see Appendix B).

For non-Bloch problems, we find that the Laplace trans-
form rather than Fourier transform can map eigenvectors in
real space to that in GBZ [Fig. 4(d)]. In order to make a
convergent transformation, an exponential decay (or growth)
factor is usually introduced to the integral kennel, leading to
the eik̃·r → es·r, s ⊂ C. This is well known as the bilateral
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FIG. 5. Experimental demonstration of GBZ. (a), (c) Measured
voltage distribution (due to a centered point source) of the Hermi-
tian system in real space and its isofrequency contour after Fourier
transform. (b), (d) Measured voltage distribution of the NH system in
real space and its isofrequency contour after the Laplace transform.
The voltage distribution in (d) is localized at the corner as a result of
the NHSE. Gray dash lines indicate the calculated contour. For more
numerical data see Appendix B.

Laplace transformation (more details see Appendix B). In our
generalized theory, we interpret the complex argument s is
as CW, then accordingly, the Laplace transformation decom-
poses the wave function ψn(r) in real space into that in GBZ:

ψ ′
n(k̃) = L [ψn(r)] =

∫
r
ψneik̃·rdr. (8)

Figures 5(b) and 5(d) present the measured voltage distribu-
tion and the voltage profile after the Laplace transformation,
which is in great agreement with the theoretical analysis (for
more data about GBZ demonstration, see the SM [52]). As a
control for GBZ, we also measure the voltage field distribu-
tion of the Hermitian systems (γ = 0) and transform it into
momentum space using the Fourier transform [Figs. 5(a) and
5(c)]. Clearly, GBZ is experimentally demonstrated. Here, the
H (k̃) in GBZ is assumed in the calculation of the non-Bloch
band shown in Fig. 4(a), and the non-Bloch band is obtained
by analytic continuation [73]: H (k) → H (k̃), k̃ ∈ GBZ. This
assumption is based on real space and guarantees the energy
levels are continuous for a large open lattice [38].

V. EXPERIMENTALLY DEMONSTRATING
TOPOLOGY REDEFINED IN GBZ

As stated above, we revealed how the NHSE and the
GBZ arise due to non-Bloch dynamics. In this section we
demonstrate that the GBZ leads to the generalized topological
invariance of the NH Hamiltonian in complex momentum
space. As an insight into the generalized topology, we calcu-
late second-order topology diagrams for our model associated

with the Bloch band [Fig. 6(a)] according to [53] and the non-
Bloch band [Fig. 6(b)] according to [46]. As shown in Fig. 6,
the Bloch and the non-Bloch topological phase diagrams of
the second order are significantly different. In particular, the
non-Bloch diagram predicts the topologically trivial phase
when (γ , λ) = (0.6, 0.6), while the Bloch one exhibits a topo-
logical phase under the same conditions.

With the appropriate configuration, the impedance res-
onance of the topolectrical circuit consistently indicates
the presence of corner states, which allows us to identify
the correct phase diagram experimentally. On the one hand,
the impedance response Za0 at node a against the ground can
be acquired mathematically by inverse as shown in Eq. (6)
(see SM [52]):

Za0(w) = Ja0(w)−1 =
∑

n

ψn,aφ
∗
n,a

jn
, (9)

where ψn,a and φn,a are the nth right and left eigenvectors
of Ja0(w), which obey the biorthogonal normalization condi-
tion 〈φn,a|ψm,a〉 = δnm. The impedance Za0 becomes infinite if
there exists a finite density of nonvanishing eigenmodes with
jn = 0. In practical systems, owing to parasitic resistances,
such divergences (infinite Za0) appear as impedance reso-
nances rather than infinity. On the other hand, the eigenvalues
of topological corner states, which are located at the band gap,
are always pinned at zero if the onsite potential on each site
vanishes, which is predetermined by the chiral symmetry of
the Hamiltonian. Therefore the impedance peak around the
corner at the resonant frequency is a definite and reliable
indicator of the presence of corner states. We remark that
this one-to-one correspondence follows the exiting topolec-
trical circuits [59,63], but the special time domain property
of our circuits, which is crucial for evidencing the non-Bloch
evolution and GBZ demonstration, cannot be found there.
Figure 6(c) plots a comparison between the measured results
and the simulations from LTSPICE. A strong impedance res-
onance peak is identified when (γ , λ) = (0.6, 0.6), revealing
not only the breakdown of the conventional BBC, but also that
the non-Bloch topological invariance can precisely predict the
corner modes.

VI. CONCLUSION

Non-Hermitian systems promise a pathway to expand the
parameter space (such as complex wave vectors) into the
complex realm. Here we show that the non-Bloch evolution
of the open systems can result in complex wave vectors and
experimentally demonstrate the GBZ, which accommodates
the complex wave vectors. The temporal topolectrical circuit
developed in our work provides a simple-to-realize platform
to study the dynamics and topology of open quantum systems
(and of course closed systems, such as [47]). Our works could
advance the application of topological systems, such as topo-
logical lasers whose topological lasing modes extend over the
bulk or directional amplification with excellent isolation.

Note added. We recently became aware of works which
study the hybrid higher-order [74], interaction-induced [75]
skin effect, and second-order skin effects identified by ma-
chine learning [76].
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FIG. 6. Experimental demonstration of BBC breakdown and the redefined topology. (a) Bloch second-order topological phase diagram
without considering the NH corner effect. (b) Non-Bloch second-order topological phase diagram defined over a closed manifold in complex
momentum space. The gray region represents the topologically trivial phase, while the blue region represents the second-order topological
phase that hosts corner states. As for (γ , λ) = (0.5, 2), both diagrams predict the topological phase, while they contradict each other for
(γ , λ) = (0.6, 0.6). (c) Frequency scan of the impedance against ground at the bottom-left corner of the lattice. Solid lines denote the
measurement, and dash lines denote the results from LTSPICE simulation. The results indicate that the phase is topological for (γ , λ) = (0.5, 2)
and trivial for (γ , λ) = (0.6, 0.6), suggesting the second-order non-Bloch topology. The self-admittance Y0τ0σ0 is set to be zero such that the
admittance matrix J (w, k) respects chiral symmetry. For more data, see Appendix D
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APPENDIX A: CONCRETE MODELS

Here we give a concrete and intuitive model of ultra-
cold atoms described by Eq. (1) to show the correspondence
between the cold atom model and circuits. This is not
the central work of our paper and is largely based on
Refs. [15,46,53,77,78].

The key idea is introducing effect hopping (including Her-
mitian and non-Hermitian hopping) between two isolated
atoms (or atom clusters) by an auxiliary state [Fig. 7(a)]. To
illustrate that consider two isolated states |ω〉, and each state
couples to a third auxiliary state |〉 with amplitudes � and
�eiθ , respectively. The resulting Hamiltonian reads

H =
⎛
⎝ω 0 �

0 ω keiθ

� e−iθ 

⎞
⎠, (A1)

where we set  = �2/ω − ω for the sake of simplicity.
Assuming ω � �, we find two interesting eigenmodes of
H : (eiθ , 1,−2ω/� ≈ 0)T and (1,−e−iθ , 0)T corresponding to
eigenvalue −w and w, respectively. If we neglect the auxiliary
states, those eigenmodes are effectively described by

Heff =
(

0 ωeiθ

ωe−iθ 0

)
. (A2)

Thus an effect Hermitian hopping ωeiθ with an Aharonov-
Bohm phase between two states is realized.

Note that we can realize a non-Hermitian effect hopping
(e.g., asymmetric hopping) if |〉 has a finite lifetime. Consid-
ering the dissipation of the auxiliary state, the Lindblad master
equation of the system shown in Fig. 7(a) reads

dρ

dt
= −i[H, ρ] + α(2a3ρa†

3 − {a†
3a3, ρ}), (A3)

where a3 is the annihilation operator in the auxiliary, and α

is the decay rate. If we ignore the fast decay mode in the
auxiliary, at mean-field level the dynamics is governed by the
effect of the non-Hermitian Hamiltonian

Heff = H − iγ L†L, (A4)

L = a1 + ia2, (A5)

FIG. 7. Model of cold atoms. (a) Induced effect hopping with
Aharonov-Bohm phase between two isolated states |ω〉. (b) Hermi-
tian limit H0. A pair of running waves (ki, ωi ) (i = 1, 2) is injected to
restore the tunneling. (c) Dissipators Lu. The applied running waves
are not shown for simplicity.
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where γ = �2/2α. The Hamiltonian Heff has asymmetric
hopping terms that break Hermiticity.

Hermitian limit H0 with γ = 0. Figure 7(b) shows the
optical lattice created by three mutually orthogonal standing
waves. A magnetic field gradient along x generates a uniform
energy offset δ between neighboring sites such that tunneling
is forbidden. The effect of tunneling is restored by a pair of
running waves (ki, ωi ) (i = 1, 2). The local optical potential
created by the waves is proportional to

cos2

(
k1 − k2

2
· r + ω1 − ω2

2
t

)
. (A6)

The time-dependent term of the potential gives the coupling
� (�′) between states and the auxiliary state due to Rabi
oscillation, while the rest spatial term leads to the spatially
dependent coupling phases (e.g., eiπ ). Here we use two LC
pairs (Ct , Lt ) and (Cλ, Lλ) to realize such lattices.

Dissipators Lu. A similar setup can apply to construct
dissipators, and the difference from above is that we assume
the auxiliary states dissipate at a rate of α [Fig. 7(c)]. If we
ignore the fast decay modes in the auxiliary, we can obtain the
master equation of Eq. (1), where

L1 =
√

2γ (a3 + ia1), L2 =
√

2γ (a1 + ia4),

L3 =
√

2γ (a2 + ia3), L4 =
√

2γ (a2 + ia4), (A7)

where γ = �2/(2α) and Dl
k = ∑4

i=1L†
i Li. In the main article,

we also consider a uniform pump Dg
k to cancel for the back-

ground loss induced by the Li (i = 1, ..., 4). We use INIC to
emulate the dissipators.

APPENDIX B: REVIEW OF LAPLACE TRANSFORM

For the sake of simplicity, we only consider one-
dimensional systems. The integral transform can be easily
generalized to high dimensions by replacing kx → k · r.

Fourier transform. The Fourier transform of f (x) is defined
by

F [ f (x)] = 1√
2π

∫ ∞

−∞
e−ikx f (x)dx. (B1)

F [ f (x)] exits if f (x) satisfies Dirichlet’s conditions:
(1) f (x) has only a finite number of finite discontinuities

and has no infinite discontinuities;
(2) f (x) has only a finite number of maxima and minima;
(3) f (x) is absolutely integrable:

∫ ∞
−∞ | f (x)|dx < ∞.

The Fourier transform F [ψk̃ (r)] for the states ψk̃ (r) with
complex wave numbers k̃ does not exist, as the states are not
absolutely integrable [also see Fig. 4(c)].

Laplace transform. Based on the Fourier transform, the
bilateral Laplace transform is defined as

L [ f (x)] =
∫ ∞

−∞
s−sx f (x)dx, (B2)

where s is the transform variable which is a complex num-
ber. The definition differs slightly from the unilateral Fourier
transform, whose integral interval is [0,∞). This difference
comes from the fact that in engineering and other sciences
one can always set f (x) = 0 in (−∞, 0], but for the skin
effect problem, f (x) �= 0 in (−∞, 0]. Besides the Dirichlet’s

FIG. 8. Laplace transform characters GBZ. (a) Band structure of
the effective non-Hamiltonian H with γ = 0.5t in GBZ. I–IV de-
note the cut plane of the band structure with E = 1.8, 2.3, 2.8, 3.3,
respectively. The intersections between the cut plane and the band
structure are the isoenergy contours, which are individually shown
in (b), (e), (h), and (k). (d), (g), (j), and (m) show the numer-
ically calculated voltage response distribution of the NH circuit
system (21 by 21 units) in real space with Y0 = iw0C0, where C0 =
18 nF, 23 nF, 28 nF, 33 nF, respectively. Here we adjust the eigen-
values of the systems with the self-admittance Y0 to choose the bulk
modes of interest. A pulse (not shown in figure) is injected into the
center of the circuit to excite the voltage response, and their corre-
sponding voltage distribution in GBZ after the Laplace transform are
shown in (c), (f), (i), and (j). The voltage distribution is localized
at the corner as a result of the NH corner effect. The imaginary
parts of the complex vectors are [Im(k̃x ), Im(k̃y )] = (β0, β0), β0 =√|(t − γ )/(t + γ )|.

conditions, the existence of the Laplace transform requires
f (x) to be of exponential order a: | f (x)| � ξeax, if there exists
a positive constant ξ .

Given the wave function ψk̃ (r) = eik̃xuk̃ (x) from the gener-
alized Bloch theory, one can always find a positive constant
ξ such that |uk̃| � ξ . Hence ψk̃ (r) is of exponential order
−Im(k̃). Then L [ψk̃ (r)] exists for all s when (i) Re(s) �
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FIG. 9. Calculated Brillouin zone and generalized Brillouin
zone. (a) Modulated phase factor eik and eĩk in BZ and GBZ,
respectively. Abs(eĩk ) = e−Im(̃k), Arg(eĩk ) = Re(̃k). For a Hermitian
system, Abs(eik̃n ) = 1, n = x, y, which corresponds to the real wave
vectors. In the GBZ, Abs(eĩk ) determines the preference direction
of the non-Bloch states, i.e., |βx| = |eik̃x | < 1 and |βx| > 1 corre-
spond to the direction of −x and x, and |βx| = 1 suggests symmetric
propagation of the Bloch wave. As indicated in the picture (gray
sphere), our model prefers to propagate toward the bottom-left corner
with constant Im(̃k). In the Methods section, we consider a more
complicated model whose Im(̃k) varies. (b) Profile of the modulated
phase factor with Re(ik̃y ) = π

2 .

−Im(k̃), provided that ψk̃ (r) is right localized; (ii) Re(s) �
−Im(k̃), provided that ψk̃ (r) is left-localized. We remark
that L [ψk̃ (r)] always exists in GBZ: Re(s) = −Im(k̃), and
this might provide a general algorithm to calculate the
high-dimensional GBZ. Figure 8 shows more numerical ev-
idence for the GBZ demonstration with help of the Laplace
transform.

APPENDIX C: GBZ CALCULATION

The previously reported studies on high-dimensional NH
systems are restricted to fine-tuned models in which Im(̃k)
is a constant, and there is no general approach to calculate
the high-dimensional GBZ where Im(̃k) varies. In the Sup-
plemental Material, we have developed a dimension-reducing
approach for calculating the high-dimensional GBZ for more
complicated systems. Using this approach we have calcu-
lated the GBZ of the proposed system (Fig. 9), achieving
good agreement with the analytical solution where Im(̃k) =
(β0, β0), β0 = √|(t − γ )/(t + γ )|. It is worth noting that the
global material loss and scattering in the medium will attenu-
ate the wave during propagation and can also lead to complex
wave vectors. However, those wave vectors are still within the
framework of conventional band theory and topology [1–4].

APPENDIX D: SECOND-ORDER TOPOLOGY
REDEFINED IN GBZ

In Hermitian topolectrical circuits, this node impedance
response is widely used to detect the presence of zero-energy
topological boundary states [57–64], which locates at the band
gap. However, we find that this approach to detect topologi-
cal states cannot be generalized to NH topolectrical circuits
unless (i) the eigenvalues of the topological boundary states
are pinned to zero in the relatively large band gap; (ii) the
eigenvalues of the circuit admittance are real numbers, not

FIG. 10. Frequency scan of the impedance against ground at the
corner from simulation. The color bar denotes the impedance value.
The impedance peak at the resonance frequency f0 indicates the
presence of corner states. The red and the green arrows indicate
the phase transition points predicted by the Bloch phase diagram
and the non-Bloch one, respectively. The red and the green stars
are the points where impedance resonance starts to occur, which
are predicted by the Bloch phase diagram and the non-Bloch one.
(a) (γ , λ) = (0.6t, λ) and phase transition at (γ , λ) = (0.6t, 0.8t );
(b) (γ , λ) = (γ , 0.6t ) and phase transition at (γ , λ) = (0.6t, 0.8t ).
Clearly, the non-Bloch phase diagram can correctly capture the phase
transition.

only because the complex eigenvalues lead the circuit to un-
stable states but also the pure imaginary eigenvalues of the
bulk states interfere with the detection.

Here our model has a chiral symmetry σ−1
z J (w, k)σz =

−J (w, k), which ensures that the eigenvalues appear in pairs
(−E , E ) and the eigenvalues of the topological corner states
are pinned to zero (corresponding to condition i). Besides, our
model is also pseudo-Hermitian η−1Jη = J with

η =

⎛
⎜⎜⎜⎜⎝

0 0 . . . 0 σy

0 0 . . . σy 0
...

...
. . .

...
...

0 σy . . . 0 0
σy 0 . . . 0 0

⎞
⎟⎟⎟⎟⎠, (D1)

and J is the circuit admittance under open boundary condition.
The pseudo-Hermiticity of J ensures that all the eigenvalues
are real [corresponding to condition (ii)]. So, in our circuit, the
impedance peak around the corner at the resonance frequency
is a definite and reliable indicator of the presence of corner
states.

In the main article we have measured the impedance
response of differently configurated topological circuits.
For configuration (γ , λ) = (0.5t, 2t ), the measured response
shows a strong impedance resonance around the circuit corner
at LC frequency while no resonance for (γ , λ) = (0.6t, 0.6t ),
suggesting (γ , λ) = (0.5t, 2t ) is a topological phase and
(γ , λ) = (0.6t, 0.6t ) is a trivial phase. We compare the above
experimental results to the phase diagrams and find the non-
Bloch phase diagram can precisely capture the topological
phases. Also, to avoid the finite-size effects due to the limited
samples, we have picked a set of continuous parameter values
and numerically calculated the impedance response as shown
in Fig. 10. Those additional data provide further supports for
our conclusion.
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FIG. 11. Sensitivity of the non-Bloch band to the boundary condition. (a)–(c) Realization of different boundary conditions. (a) OBC,
(mx, my ) = (0, 0). (b) Semi-OBC, (mx, my ) = (2, 0), which is periodic along x and open along y, respectively. (c) PBC, (mx, my ) = (2, 2).
(d) and (e) Spectral flow of H in the complex plane, which evolves from OBC, semi-OBC, to PBC. The blue-magenta flow represents OBC-PBC
interpolation, which is quantified by one of the boundaries intracell hopping mx or my. Dots with the same color (mx or my is constant) indicate
the spectrum of the system with the specific boundary. The pattern of the spectral distribution varies as the imposed boundary. (d) Flow from
OBC (pink rhombi) to semi-PBC (orange dots). For the OBC and the semi-PBC, all the eigenvalues distribute on the several spectral arcs (only
one arc is plotted). (e) Flow from semi-PBC to PBC (orange triangles), while for the PBC, the eigenvalues distribute evenly in the spectral
region. (f) and (g) Measured complex admittance spectrum of J0(w0, k), which emulates H . Each node of the circuit is grounded by a resistor
R = 51 � due to the stability consideration, thus Y0 = 1/R. (f) Admittance spectrum of the OBC (pink rhombi), semi-PBC (orange dots), and
PBC (orange triangles). (g) Admittance spectrum of the semi-PBC and the PBC in j − ky space. A prerequisite of the NH corner effect in our
model is the OBC, since the Bloch wave behavior recovers along the periodic direction. Hence, for the semi-PBC and PBC, here Im(k̃y ) = 0.

APPENDIX E: SENSITIVITY
TO BOUNDARY CONDITIONS

The Born–von Karman boundary theory suggests that the
introduction of boundaries into a lattice will not significantly
influence the bulk states (exceptions are given for edge states).
However, the complex energy spectrum of a NH system can
exhibit high sensitivity to the imposed boundary conditions.
Unlike open boundary conditions (OBCs), periodic boundary
conditions (PBCs) assume that the atoms around the boundary
still have complete interaction with their neighbors, so they
are ignorant of the boundary. For example, in our model,
when mx(or my) = 2, we have exact PBC along y (or x) that
possesses translation symmetry, and we have OBC that breaks
translational invariance when mx(or my) = 0 [Figs. 11(a) and
11(c)]. To show this violation, we interpolate between the
OBC and the PBC by adiabatically increasing the boundary
hopping amplitude mx or my from zero up to normal via com-
plex fluxes [Figs. 11(d) and 11(e)]. This interpolation allows
us to understand how the spectrum of our model evolves from
OBCs to semi-OBCs to PBCs. As shown in Figs. 11(d) and
11(e), the OBC spectrum traces out arcs in the complex energy
plane, and the pattern of the spectrum distribution is gradually
deformed from an arclike shape to a regionlike shape under
the aforementioned spectral flow evolution. Experimentally,
to assess the different boundary conditions, the topolectrical
circuits were “bent” as depicted in Figs. 11(a)–11(c). We

note that, based on Kirchhoff’s law, the deformations of the
topolectrical circuits were achieved by simply wiring the de-
sired nodes at the boundaries of the system. Figures 11(f) and
11(g) plot the corresponding measured admittance eigenval-
ues of the three systems. They show that the spectrum of the
system with OBC differs drastically from those observed in
the systems with PBC and semi-PBC. Note that JOBC with
OBC has a real spectrum (all eigenvalues are real numbers)
due to the pseudo-Hermitian η−1Jη = J .

APPENDIX F: EXPERIMENTAL MEASUREMENTS

In the main article, we employ temporal topolectrical cir-
cuits to emulate the NH dynamics in open systems. Therein,
to demonstrate the non-Bloch evolution of the NH systems,
which is the origin of the NH corner effect, we monitor the
time-resolved voltage response over the time at each node
after a Gaussian pulse current signal is injected into the center
of the circuit. As shown in Figs. 1(d) and 1(e) in the main
article, the node voltage propagates chirally toward the corner
with increasing amplitude, verifying the non-Bloch dynam-
ics. To get the time-resolved voltage response, one needs to
measure all the voltage at each node simultaneously after
the pulse has been injected, e.g., for our circuit, we need to
measure 11*11*4 nodes simultaneously, which is not feasible.
Instead of simultaneous measurement, we decompose this into
11*11*4 times individual measurements. In the following we
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FIG. 12. Schematics of the time-resolved voltage response:
(a) nth measurement, (c) input Gaussian pulse signal, and (d) node
N voltage response for N th measurement. (b) N+1-th measurement.
(e) Input Gaussian pulse signal and (f) node N + 1 voltage response
for N + 1-th measurement.

detail two of the individual measurements for illustrating (see
Fig. 12).

For the N th measurement, we record the input pulse and the
voltage response at node N . The same procedure repeats for
the N+1-th measure, except that the voltage response at node
N + 1 is recorded. The departure time and amplitude of the in-
put pulse may vary during the individual measurements (e.g.,
τ (N+1)

s �= τN
s , a(N+1)

s �= aN
s ). However, the group delay and the

ratio amplitude between pulse and the response are constant
because they are determined by the intrinsic property of the
circuit (e.g., the group delay and ratio amplitude between V N

2
and V N

1 ). Hence we can use the input pulse recorded each time
to calibrate (normalize) the voltage response of the nodes:

V ′N+1
2 (t ) = V N+1

2

(
τN+1

s − τN
s + t

)aN+1
s

aN
s

. (F1)

With all calibrated node voltage responses, one can finally
obtain the time-resolved voltage signals of the topolectrical
circuits that respond to a “single” Gaussian pulse. The videos
appended show the measured time-dependent voltage distri-
bution when a pulse is injected to the center of the circuit.
(The first video is of the Hermitian circuit, while the second
video is of the non-Hermitian circuit.)
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