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Skin effect and dynamical delocalization in non-Hermitian quasicrystals with spin-orbit interaction
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The investigation of the spectral and dynamical delocalization-localization (DL) transitions have revealed
intriguing features in a wide expanse of non-Hermitian systems. The present study aims at exploring the spectral
and the dynamical properties in a non-Hermitian quasiperiodic system with asymmetric hopping, in the presence
of Rashba spin-orbit (RSO) interaction. In particular, in such systems, we have identified that the DL transition is
associated with a concurrent change in the energy spectrum, where the eigenstates always break the time-reversal
symmetry for all strengths of the quasiperiodic potential, contrary to the systems without RSO interaction.
Furthermore, in this work, we have demonstrated that the open boundary energy spectrum in the prototypical 1D
nonreciprocal lattice remains real up to a certain system size and forms complex spectral loops with an increase
in the size of the lattice. We find that the skin effect remains unaltered irrespective of the nature of the spectrum.
In addition, it is illustrated that the spin-flip term in the RSO interaction possesses a tendency to diminish the
directionality of the skin effect. On scrutinizing the dynamical attributes in our non-Hermitian system, we unveil
that in spite of the fact that the spectral DL transition accords with the dynamical phase transition, interestingly,
the system acquires a nonzero transport behavior, and in fact comes across hyperdiffusive and negative diffusion
dynamical regimes depending upon the strength of the RSO interaction, in the spectrally localized regime.
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I. INTRODUCTION

The pioneering work of Anderson localization induced
by random disorder in 1958 [1] has led its way to fasci-
nating discoveries in several domains of physics including
photonics [2–5], acoustics [6,7], superconductors [8–10], soli-
tonics [11,12], and a wide range of condensed matter systems
[13–15]. It was argued from the scaling theory of localiza-
tion that the wave propagation through a random medium
is completely suppressed even for an arbitrarily small disor-
der for systems below the critical dimension (dc = 3), as a
consequence of the interference between the scattering waves
[16]. In contrast to the random lattices described by the An-
derson Hamiltonian, the Aubry-André-Harper (AAH) model
[17–19] stands as a paradigmatic example of quasicrystals
which exhibit a delocalization-localization (DL) transition
separating the metallic and the insulating states, even in one
dimension (1D).

The AAH Hamiltonian for closed quantum systems have
received extensive attention from the researchers in several
works in the last few years [20–23]. On the other hand, a wide
range of physical systems, for example, the cold atoms [24,25]
are seldom isolated, and are typically described by an effective
non-Hermitian Hamiltonian. Since long, such model Hamilto-
nians have been used in exemplifying decaying states [26,27].
In addition, in the last few years, the consequences of dissipa-
tion and drive in open quantum systems have been explored
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[28–31]. Such non-Hermitian systems have also been studied
in the context of many-body localization [32–34]. In the recent
years, a great amount of investigations have been carried
out on the localization, spectral and topological properties,
self-duality, mobility edges, and transport in non-Hermitian
quasiperiodic lattices [33,35–38], while the investigation of
real-time dynamics has been a principal objective in a wide
range of non-Hermitian systems [34,39–42].

The interplay of non-Hermiticity and disorder can lead to
several fascinating results, for example, the prototypical non-
Hermitian Hatano-Nelson Hamiltonian with Anderson-type
disorder and asymmetric hopping, results in a DL transition
[43–45] even in 1D, in contrast to the original Hermitian
Anderson Hamiltonian. Furthermore, it is established that in
the non-Hermitian systems with uncorrelated disorder, the DL
transition accompanies a simultaneous change in the energy
spectrum from complex to real [43,44]. In Refs. [46,47], it is
argued that the complex-conjugate pair of energy eigenvalues
are manifestations of the broken time-reversal symmetry of
the eigenstates. A similar DL transition is also possible when
the random potential is replaced with a quasiperiodic on-
site potential. These non-Hermitian systems with asymmetric
hopping offer uniqueness wherein the boundary conditions
can drastically affect the bulk properties. In particular, under
the periodic boundary condition (PBC), all the eigenstates are
extended below the critical point, whereas for an open bound-
ary condition (OBC) these eigenstates localize at the edges of
the system. This feature, often dubbed as the non-Hermitian
skin effect, violates the bulk-boundary correspondence ob-
served in the Hermitian systems [48–52]. Such a localization
of macroscopic number of eigenstates at the boundary is often
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associated with the emergence of a real energy spectrum, and
is considered as a signature of skin effect [48,53–56]. It is
established that under the PBC, the energies form a loop in the
complex plane, possessing a point gap and a nontrivial topol-
ogy [57,58]. However, under the open boundary condition, the
spectrum becomes real, no longer retaining the point gap, and
the system becomes topologically trivial. In addition, under
the OBC, the generalized Brillouin zone formalism rules out
the formation of a loop that encloses a finite area in the
energy spectrum in the pure 1D non-Hermitian Hamiltonians
with asymmetric hopping [59]. On the other hand, since long,
several works have demonstrated the interdependence of the
spectral properties to the dynamical propagation of the wave
packet in Hermitian systems [60–64]. The concurrent dynam-
ical and spectral phase transitions have also been identified
recently in non-Hermitian quasicrystals [65]. It is then natural
to ask whether this correspondence of the spectral and the
dynamical properties to the DL transition holds true under all
circumstances.

To address this question, in this work, we consider a time-
reversal symmetric non-Hermitian counterpart of the tight-
binding AAH Hamiltonian with Rashba spin-orbit (RSO)
interaction. The time-reversal symmetry of the Hamiltonian
remains unaffected with the addition of RSO interaction.
Surprisingly, as contrasted to the situation without RSO in-
teraction, we have observed that in the presence of RSO, the
eigenstates possess complex energies, even in the spectrally
localized regime. Moreover, we find evidences of the non-
Hermitian skin effect with complex energies forming loops
under the OBC in the pure 1D non-Hermitian quasicrystals
with asymmetric hopping, in contrary to the previous obser-
vation of the skin effect that has frequently been associated
to the existence of either completely real eigenenergies, or
complex energies without loops in the spectrum. Interestingly,
we have observed that the connection of the skin effect to
the reality in the energy spectrum is purely a system-size
dependent behavior in the quasiperiodic systems without RSO
interaction. Furthermore, we find evidences that the direc-
tionality of the skin effect significantly diminishes when the
amplitude of the spin-flip is greater than the spin-conserving
term in the RSO Hamiltonian. In addition, we demonstrate
that although the spectral and the dynamical phase transi-
tions coincide in the Hamiltonian considered in this work,
the interplay of the non-Hermiticity with the RSO interaction
leads to exotic dynamical features in the spectrally localized
regime. In particular, on estimating the diffusive exponent,
we have observed dynamical delocalization behavior with
hyperdiffusive transport in the localized regime when the RSO
interaction amplitudes in the non-Hermitian Hamiltonian are
nonvanishing, in contrast to the Hermitian counterpart of the
same Hamiltonian. In addition, we have obtained a negative
diffusion exponent in the spectrally localized regime in the
presence of strong RSO interaction. Finally, using the measure
of Shannon entropy that has often been informative in the
notion of steady state equilibrium [66,67], we have inferred
that beyond the DL transition, there exists metastable state(s)
prior to reaching the final equilibrium.

To the best of our knowledge, such a complex-complex
spectral transition concurrent with the DL transition, and
the possibility of existence of skin-modes in pure 1D

nonreciprocal models possessing complex spectral loops (un-
der the OBC) have not been reported in the non-Hermitian
systems so far. Moreover, the spin-dependent hyperdiffusive
transport and the negative diffusion traits remain less ex-
plored till date. The studies of the spin-dependent transport
have played a central role in fabricating spintronic devices
in heterostructures, chaotic quantum dots and semiconductors
[68–70]. In this line, our results in non-Hermitian systems will
be beneficial for experimental realizations of such devices in
spin-photonic lattices [71–73].

The rest of the work is organized as follows. In Sec. II A,
we define our time-dependent non-Hermitian Hamiltonian in
the presence of RSO interaction, followed by the analysis
of the energy spectrum in Sec. II B. We have discussed the
skin effect for our system in details in Sec. II C. Section III
elaborately demonstrates the dynamics of an excited spin-
up fermion and its propagation in the lattice with time. In
Sec. III A, we discuss the mean square displacement (MSD)
and the wave-packet spreading velocity, along with the esti-
mated diffusion exponents for various strengths of the RSO
interaction. Section III B is devoted to determine the stability
using the Shannon entropy in the spectrally localized regime
for different modulations of the RSO interaction. We conclude
our results and main findings of this work in Sec. IV.

II. THE NON-HERMITIAN QUASIPERIODIC
HAMILTONIAN WITH RASHBA

SPIN-ORBIT INTERACTION

A. The non-Hermitian model

The Hamiltonian considered in this work is a non-
Hermitian extension of the one-dimensional AAH model
[17,18] with a quasiperiodic potential that is incommensurate
to the underlying lattice period, and in the presence of the
RSO interaction. Similar to the Hatano-Nelson Hamiltonian,
the non-Hermiticity arises due to the asymmetric hopping
amplitudes. Recently, the dynamical phase transitions in such
a protypical model without the RSO interaction has been
discussed in Ref. [65]. In the presence of RSO interaction
[74,75], the Hamiltonian is defined as

H = JR

∑
n,σ

c†
n+1,σ cn,σ + JL

∑
n,σ

c†
n,σ cn+1,σ

+
∑
n,σ

Vnc†
n,σ cn,σ − αz

∑
n,σ,σ ′

(c†
n+1,σ (iσy)σ,σ ′cn,σ ′ + H.c.)

+αy

∑
n,σ,σ ′

(c†
n+1,σ (iσz )σ,σ ′cn,σ ′ + H.c.), (1)

where JR and JL indicate the nearest neighbor hopping am-
plitudes when the electrons move towards the right and left
directions, respectively. N is the number of sites in the lattice,
n denotes the lattice site index, and the size of the lattice
L = Na (where the lattice period a = 1 in arb. units). L is
approximated as L = Fn−1/Fn, where Fn and Fn−1 are the
nth and (n − 1)th numbers in the Fibonacci sequence. c†

n,σ

and cn,σ are the fermionic creation and annihilation operators
with spin configuration σ (↑,↓). αy and αz denote the spin-
conserving and spin-flip hopping amplitudes due to the RSO
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FIG. 1. The energy spectrum in the complex plane for the four distinct non-Hermitian (JL/JR = 0.5) cases: (a) without the RSO interaction
(αy = 0.0 and αz = 0.0), (b) with the spin-conserving RSO interaction (αy = 0.5 and αz = 0.0), (c) in the presence of the spin-flip part of the
RSO interaction (αy = 0.0 and αz = 0.5), and (d) in the presence of both the RSO interaction terms (αy = 0.5 and αz = 0.4). The dark-blue and
dark-green markers depict the energy spectrum in the spectrally delocalized and localized regimes respectively, as determined in Appendix A 2.
Here, we have employed the periodic boundary condition on a lattice with 610 sites.

interaction, whereas σy and σz are the components of Pauli’s
spin-matrices.

The quasi-periodic on-site potential Vn in Eq. (1) is given
by

Vn = V cos(2παn),

where α is the inverse of the golden ratio given by α =
(
√

5 − 1)/2. After setting |ψ (t )〉 = ∑
n,σ aσ

n (t )|nσ 〉, the time-
dependent coupled Schrödinger equations for the amplitudes
(an) of the two spin orientations derived from Eq. (1) can be
written as

Ha↑
n = (JR + iαy)a↑

n−1 + (JL − iαy)a↑
n+1

+αz(a↓
n+1 − a↓

n−1) + V cos(2παn)a↑
n = i

da↑
n

dt
(2)

and
Ha↓

n = (JR − iαy)a↓
n−1 + (JL + iαy)a↓

n+1

−αz(a↑
n+1 − a↑

n−1) + V cos(2παn)a↓
n = i

da↓
n

dt
. (3)

B. Delocalization-localization transition
and the energy spectrum

The special case of Hermiticity sets in when JL/JR = 1
in Eq. (1). In such systems (without RSO interaction), the
DL transition occurs at the critical point Vc = 2JL/R [17], and
the energy spectrum remains real in both the delocalized and
localized regimes, even in the presence of RSO interaction.
We introduce the non-Hermiticity by considering JL/JR =
0.5. All the parameters of the Hamiltonian are measured with
respect to JR, where we set JR = 1. In Ref. [65], it is demon-
strated that for such systems (for any value of JL, provided that
JR > JL), the DL phase transition occurs at the critical value
of the quasiperiodic potential given by

Vc = 2JR. (4)

In the presence of RSO interaction, we expect a simi-
lar transition at a rescaled value of JR (depending upon the
strength of the RSO interaction). In Appendix A, we have
obtained the critical value Vc of the spectral transition with
the RSO interaction via both analytical and numerical ap-
proaches, which will be used for the discussions hereafter. In
Appendix A 1, the analytical value of the critical point when
either αy or αz of the RSO interaction is zero is illustrated.
However, the analytical expression in the presence of nonzero
values of both the RSO interaction strengths could not be

achieved. In such cases, we rely on the numerical estimates
as determined in Appendix A 2. The DL transition and critical
point Vc for different modulations of RSO interaction has been
discussed elaborately in Appendices A 1 and A 2.

The Hamiltonian in Eq. (1) is symmetric under the time-
reversal, given by the condition T H∗T −1 = H [57], where T
is the time-reversal symmetry operator defined as T = iσy ⊗
I. In time-reversal symmetric non-Hermitian Hamiltonians,
the existence of the symmetry in the eigenstates is associ-
ated with the reality of the corresponding energy eigenvalues,
whereas the energies for the symmetry-breaking eigenstates
occur in complex conjugate pairs [46,47,77]. In both the
Hermitian and the non-Hermitian quasiperiodic Hamiltoni-
ans, the exponentially localized eigenstates are illustrated to
have a real point spectrum [65,78,79]. Figure 1 portrays the
energy spectrum in the complex plane for the Hamiltonian
defined in Eq. (1), for different strengths of the RSO inter-
action. In the absence of the RSO interaction [Fig. 1(a)], it
is established that under the periodic boundary conditions,
below the critical point Vc = 2.0, the states remain extended
and the energy spectrum is complex (eigenstates break the
time-reversal symmetry), similar to the Hatano-Nelson model
with random potentials [43,44]. The spectrum becomes real
(eigenstates preserve the time-reversal symmetry) after the
DL transition. In the presence of a single RSO interaction
hopping amplitude (αy = 0.5, αz = 0 and vice versa) the DL
transition is pushed to a higher value of Vc 	 2.24. However,
in contrast to the system without RSO interaction, in this
case, the energy spectrum remains complex even after the DL
transition [Figs. 1(b) and 1(c)]. It is evident that although the
non-Hermitian Hamiltonian with RSO as defined in Eq. (1),
retains its intrinsic symmetry under the time reversal, the
states spontaneously break the symmetry. Moreover, it is clear
from Figs. 1(b) and 1(c) that both the spin conserving and
the spin-flip interaction exhibit identical spectral attributes.
Figure 1(d) illustrates the spectrum in the presence of both
the RSO interaction terms. In this case, the overall spectral
features still remain the same. However, the critical point is
pushed to an even higher value of Vc 	 2.37. From Figs. 1(b)–
1(d), it is evident that in the presence of RSO interaction (even
a single nonvanishing RSO coupling amplitude), the eigen-
states remain in the broken time-reversal symmetric regime
for all strengths of the quasiperiodic potential. Such a complex
spectrum beyond Vc is expected to lead to unusual dynamical
features in the spectrally localized regime in systems with
RSO interactions.
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FIG. 2. The energy spectrum of the Hamiltonian given in Eq. (1) with JL/JR = 0.5, along with the density profile of the eigenstates (insets)
in the delocalized regime (V = 1.50). (a) The complex energy spectrum for a nonreciprocal lattice without RSO interaction (αy = 0.0 and
αz = 0.0) with 55 sites under PBC (in blue), and the corresponding real energy spetrum under OBC (in black), according to Refs. [56,76]. The
inset shows the skin modes localized at the right end. (b) The system-size dependence of the energy spectrum (under OBC) for the same set of
parameters as in (a). The inset shows the existence of skin modes, corresponding to 610 sites. (c) The energy spectrum (under OBC) and the
existence of skin modes in the presence of only the spin-conserving RSO interaction term (αy = 0.5 and αz = 0.0). (d) The energy spectrum
(under OBC) and the existence of skin modes in the presence of both the spin-conserving and spin-flip RSO interaction terms (αy = 0.5
and αz = 0.4). In the last three panels, the energy spectrum is plotted for N = 55, 377 and 610, which are shown in black, green and brown
respectively.

In addition, the topology of the non-Hermitian system cor-
responding to Figs. 1(a)–1(d) has been investigated in details
in Figs. 10(a)–10(d) of Appendix B. For the asymmetric non-
Hermitian system, there exists a topological transition from a
nontrivial (w = −1) to a trivial (w = 0) phase, since JR > JL

in our case. Such a topological transition is also concurrent
to the DL transition, which is clear from the complex-real
transition of the energy spectrum in Fig. 1(a). Moreover, it
is evident that in the presence of RSO interaction, there is
a topological transition from a topologically nontrivial (w =
−2) to a topologically trivial (w = 0) phase, which is also
expected from the winding of the complex spectrum in two
loops as shown in Figs. 1(b)–1(d). An elaborate discussion
on the topology and the topological phase diagram has been
carried out in Appendix B.

C. Skin effect in the non-Hermitian model with RSO

The skin effect discovered in the recent years [48–52],
reveals extreme sensitivity of the spectrum to the bound-
ary condition in non-Hermitian systems. The bulk Bloch
modes observed under the periodic boundaries localize at
one of the edges of the system under the OBC, violating the
bulk-boundary correspondence observed in Hermitian coun-
terparts. It has been recently demonstrated [56] that under the
PBC, and without any disorder, the complex energy spectrum
lies on an ellipse following a Fourier transformation [shown
in Fig. 12(a) of Appendix C]. In contrast, under the OBC, the
system can be mapped to a Hermitian analog via an imag-
inary Gauge transformation and a similarity transformation,
yielding completely real eigenspectrum whose eigenstates are
localized at a boundary. In Ref. [80], the formation of complex
spectral loops under the OBC was observed with an increase
in the size of a weakly coupled system consisting of two
Hatano-Nelson chains. On the other hand, in contrast, in a
recently developed generalized Brillouin zone approach that
restores the bulk-boundary correspondence in non-Hermitian
systems using a complex momentum deformation, it has been
demonstrated that the open boundary spectra of a single pure
1D Hatano-Nelson chain can lie on the complex plane, al-
though it can atmost form arcs and cannot exhibit loops [59].
Therefore one of the key objectives in this work is to explore
whether the complex spectral loops still exist in the decoupled

pure 1D chain with asymmetric hopping, and examine the
dependence of the spectral behavior upon the system size
and the associated skin effect. Figure 2(a) illustrates the be-
havior of the eigenspectrum under the PBC (in blue) and
the OBC (in black), showing the transition of the spectrum
for a lattice with 55 sites in the presence of a disorder, and
without the RSO interaction. The eigenstates (called the skin
modes) are localized at the right end as a consequence of the
unidirectionality of the electrons towards the right. However,
surprisingly, we find that the reality exists only for small sys-
tem sizes [Fig. 2(b)], and the spectrum under OBC becomes
complex, forming loops as the number of sites in the lattice
are increased. Furthermore, it is numerically verified that there
exists skin modes even when the spectrum forms complex
spectral loops [shown in the inset of Fig. 2(b)], in contrary to
the observations of skin effect in the absence of complex loops
as discussed in the previous works. Interestingly, in stark con-
trast to the situation without RSO interaction [Fig. 2(b)], in the
presence of the RSO interaction, we find that the eigenenergy
spectrum is always complex under OBC, irrespective of the
system size, as evident from Figs. 2(c)–2(d). It is clear that the
skin effect persists even in the presence of the RSO interaction
(for different combinations of αy and αz). Furthermore, we
have verified that the observations of the skin effect with com-
plex eigenspectrum persist in the presence of RSO interaction,
even in systems without disorder. The skin effect has been
further discussed in Appendix C.

To obtain a clearer quantitative picture of the boundary
localization, we employ a recently developed method of the
directional-IPR (dIPR) defined as [81]

dIPR(ψ j ) = P (ψ j )

∑
n,σ

∣∣ψσ
j,n

∣∣4

(∑
n,σ

∣∣ψσ
j,n

∣∣2
)2 , (5)

Here, P (ψ j ) determines whether the states are localized to-
wards the left or the right boundary depending upon the sign
of the sgn function and is given as

P (ψ j ) = sgn

[ ∑
n,σ

(n − L/2 − δ′)
∣∣ψσ

j,n

∣∣]. (6)

δ′ can take values in between 0 and 0.5. It is important
to note that the dIPR is 0 when the states are delocalized,
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FIG. 3. The behavior of dMIPR demonstrating the degree of
boundary localization due to the skin effect in the spectrally delocal-
ized regime as a function of αy and αz. We have used open boundary
condition on a lattice with 610 sites. Here JL/JR = 0.5 and V = 1.50.

whereas for right (left) boundary localization, dIPR is positive
(negative). The average of dIPR is then given as

dMIPR = 1

L

∑
j

dIPR(ψ j ). (7)

The dMIPR ranges from +1 to −1, when either JL or
JR vanishes, implying complete directionality in the system.
We have presented the behavior of the dMIPR for different
strengths of the RSO interaction (αy and αz) in Fig. 3. It is
clear that when the system encounters a spin-flip interaction
(αz) stronger than the spin-conserving interaction (αy), the
directionality of the skin effect (towards the right boundary)
becomes subdued, which is manifested by the light-blue sec-
tion in Fig. 3. This phenomenon might therefore be atrributed
to the rotation of the fermionic spins (due to αz), leading to a
reduced directionality of the skin effect.

III. DYNAMICS OF AN INITIALLY
LOCALIZED WAVE-PACKET

From the discussions of the previous section, it is evi-
dent that the RSO interaction introduces nontrivial spectral
features in non-Hermitian systems with asymmetric hopping.
It is then natural to ask whether the RSO interaction af-
fects the dynamical attributes of such systems at long times.
To address this issue, we study the dynamics of a spin-up
electron initially localized around the center of the lattice
n0, under PBC. In Appendix D, we have verified that al-
though the spectral features are sensitive to the boundary
conditions, the dynamics of such an excitation is indepen-
dent of it. To generate the desired excitation, we consider a
single-particle basis and choose the Wannier state |n, σ 〉 =
|. . . 0↑, 0↑, 1↑, 0↑, 0↑ . . . , . . . 0↓, 0↓, 0↓, 0↓, 0↓ . . .〉. The exci-
tation of the wave-packet is thus a delta function δn,n0 in the
up-spin channel, concentrated at the center. The wave-packet
is released at time t = 0 and its dynamics is governed by
Eqs. (2) and (3). The time-evolved Bloch states are obtained
by superposing the evolved coefficients [82] and is given by

ψ (t ) =
∑
n,σ

exp
( − iEσ

n t/h̄
)
aσ

n (0)ψσ
n (0) (8)

where, aσ
n (0)’s are the initial coefficients of the wave packet

ψσ
n (t = 0).
It is well-known that the non-Hermitian systems ex-

change energy with the environment, leading to a nonunitary
dynamics. Such systems also violate the conservation of

probability, and the norm expands/shrinks with time. The
evolution of the wave function after an interval dt is thus
achieved by a two-step process,

|ψ (t + dt )〉 = exp(−iHdt/h̄)|ψ (t )〉,
followed by

|ψ (t + dt )〉 = |ψ (t + dt )〉
|||ψ (t + dt )〉|| . (9)

To gain some qualitative insights of the dynamics, we present
the amplitude of the time-evolved state (|ψn(t )|) for different
lattice sites as a function of time in Fig. 4. Figures 4(a)–4(c)
illustrate the change in the wave-profile with symmetric (Her-
mitian) hopping and RSO interaction (αy = 0.5, αz = 0), in
the order of increasing strengths of the quasiperiodic poten-
tial. In this case, there is a DL transition at a critical value
of Vc 	 2.24, as determined in Appendix A 2. It is impor-
tant to note that the qualitative features of the dynamics are
identical to a Hermitian system without the RSO interaction,
where Vc = 2.0. From Fig. 4(a), it is clear that the excita-
tion propagates throughout the lattice even at a long time, as
expected in the spectrally delocalized regime. On the other
hand, from Fig. 4(c), it is evident that the wave-packet is
dynamically localized at the site where it was initially released
(n0), concurrent with the spectral localization. Figure 4(b) is
an indicative of the multifractal character in the critical regime
[83]. We have verified that the interchange in the magnitudes
of the RSO interaction (αy = 0.0, αz = 0.5) neither changes
the critical value (Vc), nor the qualitative dynamical features.
Moreover, such overall dynamical characteristics remain unal-
tered in the presence of both the spin-conserving and spin-flip
amplitudes of the RSO interaction (αy = 0.5, αz = 0.4), ex-
cept that the critical point is pushed to a higher strength
(Vc 	 2.37) of the quasiperiodic potential as already discussed
in Sec. II B. It is thus primarily established that the addition
of RSO interaction in such Hermitian systems induces no
qualitative change in the wave-packet evolution. This trivial
behavior in the dynamics can also be understood in terms
of a gauge transformation [84], which maps the Hermitian
Hamiltonian in the presence of RSO interaction to a free
particle Hamiltonian via a unitary transformation using a non-
Abelian gauge field. However, in general, we cannot expect
a similar unitary gauge transformation for the non-Hermitian
system. Thus, the RSO interaction in the non-Hermitian sys-
tems is expected to demonstrate a nontrivial behavior, even in
terms of its dynamics which is established from the following
discussion.

To understand the dynamical propagation of the excitation
in a non-Hermitian system, we begin by switching the RSO
interaction strengths to zero, demonstrated in Figs. 4(d)–4(f).
Figures 4(d) and 4(f) convey similar qualitative attributes be-
low and above the critical point (Vc = 2.0) as in Figs. 4(a)
and 4(c), except the unidirectional light-cone nature of the
wave evolution due to the asymmetric hopping (JL/JR =
0.5). The preferential one-way propagation arises because
of the unbalanced amplification/attenuation of the counter-
propagating wave-packets [73]. Although, it is evident that the
non-Hermitian systems without RSO interaction undergoes
a dynamical transition accompanying the spectral transition
similar to its Hermitian counterpart, the nature of the wave
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FIG. 4. The amplitude of the wave profile (|ψn(t )|) for different cases. [(a)–(c)] Hermitian system (JL = JR = 1) with RSO interaction
(αy = 0.5 and αz = 0.0). From left to right, the strengths of the quasiperiodic potential are V = 1.50 (spectrally delocalized regime),
2.24 (critical point Vc as determined in Appendix A 2) and 3.50 (spectrally localized regime) respectively. [(d)–(f)] Non-Hermitian system
(JL/JR = 0.5) without RSO interaction (αy = 0.0 and αz = 0.0). From left to right, the strengths of the quasiperiodic potential are V = 1.50
(spectrally delocalized regime), 2.00 (critical point), and 3.50 (spectrally localized regime), respectively. (g) Non-Hermitian system (JL/JR =
0.5) with only the spin-conserving RSO interaction term (αy = 0.5 and αz = 0.0) in the spectrally localized regime (where Vc 	 2.24). (h)
Non-Hermitian system (JL/JR = 0.5) with both the spin-conserving and the spin-flip RSO interaction terms (αy = 0.5 and αz = 0.4) in the
spectrally localized regime (where Vc 	 2.37). (i) Non-Hermitian system (JL/JR = 0.5) with strong RSO interaction (αy = 0.9 and αz = 0.8)
in the spectrally localized regime (where Vc 	 3.13). In all the cases, we have considered a lattice of 610 sites and employed the periodic
boundary conditions. Here, the wave-packet dynamics is demonstrated for 200 secs.

packet spreading at the critical point are not identical as can
be seen from Figs. 4(b) and 4(e).

The third panel of Fig. 4 depicts the evolution of the
wave-packet in non-Hermitian systems for different strengths
of the RSO interaction. In stark contrast to Figs. 4(c) and
(f) in the spectrally localized regime, we observe that the
wave slides to a nearby lattice site (n = 315) in Fig. 4(g)
when either the spin-conserving or the spin-flip hopping am-
plitudes of the RSO interaction are nonzero, i.e., αy(αz ) = 0.5
and αz(αy) = 0.0, where Vc 	 2.24. Furthermore, as evi-
dent from Fig. 4(h), this feature remains intact beyond the
critical point (Vc 	 2.37) in such non-Hermitian systems with
both the components of the RSO interaction being nonzero
(αy = 0.5, αz = 0.4). Interestingly, however, in both the above
cases, the excitation possesses some tendency to propagate

even beyond the critical thresholds in the spectrally local-
ized regime. Such a drift from the initial site of excitation
in the spectrally localized regime is in contrast to the be-
havior of being completely localized at n0 as observed in
Figs. 4(c) and 4(f). This characteristic is typical of non-
Hermitian systems, and is termed as a non-Hermitian jump
[37,83]. Moreover, Fig. 4(i) clearly suggests the absence of
complete localization even at long time in the spectrally lo-
calized regime (beyond Vc 	 3.13) when the RSO interaction
strengths are sufficiently strong enough (αy = 0.9, αz = 0.8).
From these discussions, it is evident that the interplay be-
tween the non-Hermiticity and the RSO interaction renders
unusual dynamical properties, which requires further quan-
titative analysis, and will be dealt with in the forthcoming
sections.
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A. The mean square displacement, diffusivity,
and spreading velocity

To assess the dynamics at a long time, we begin with the
general definition of the mean square displacement (MSD) for
the two spin-orientations given as [65,72,83,85],

σ 2(t ) =
∑

n,σ (n − n0)2
∣∣ψσ

n (t )
∣∣2

∑
n,σ

∣∣ψσ
n (t )

∣∣2 . (10)

Equation (10) gives the positional variance of the wave packet
and describes the temporal spreading around the initially ex-
cited lattice site n0. The asymptotic dependence of MSD upon
time is given as [82]

σ 2(t ) = t2δ 	 tμ, (11)

where δ = μ/2 is identified as the diffusion exponent and
describes the nature of wave-packet spreading. The elec-
tron transport is termed as ballistic when μ 	 2, whereas
it is diffusive when μ 	 1. Moreover, the transport may be
subdiffusive, superdiffusive, and hyperdiffusive when μ < 1,
1 < μ < 2, and μ > 2, respectively. Typically, it is expected
that when the strength of the quasiperiodic potential exceeds
the critical value(V > Vc), the wave-packet is confined at its
initial site of release, giving rise to complete dynamical local-
ization for all times (μ = 0). Furthermore, as a general rule,
the diffusion takes place from the region of high concentration
of the mobile charge carriers to a region of a comparatively
lower concentration.

In Ref. [65], the author has introduced spreading velocity
as a measure to determine the dynamical phase transition. The
spreading velocity of the initial excitation is defined as

v(t ) ∼ σ (t )

t
. (12)

A nonvanishing speed indicates a ballistic motion, whereas
in the absence of transport, v(V ) = 0 for all times. At the
dynamical phase transition (V = Vc), the transport is interme-
diate between the completely localized and ballistic regimes
(μ 	 1). Such dynamical measures often find applications in
photonic lattices [86–88].

In Figs. 5(a) and 5(b), we have demonstrated the behav-
ior of the MSD with time and its corresponding dynamical
phase transition for a Hermitian system with RSO interaction,
where we consider the spreading velocity v(V ) as an order
parameter. The behavior of the MSD in Fig. 5(a) clearly in-
dicates the anticipated values of the diffusion exponent, i.e.,
δ(= μ/2) = 0.94, 0.48, and 0 for the delocalized, critical and
localized regimes respectively. The speed of propagation in
Fig. 5(b) decreases continuously with V , and vanishes in the
localized regime (V > Vc) due to the suppression of the wave
packet spreading after the dynamical phase transition, that
indicates a second order phase transition. Figures 5(c) and
5(d) demonstrates the behavior of a non-Hermitian system
(JL/JR = 0.5) in the absence of RSO interaction. The diffusive
exponent as shown in Fig. 5(c) exhibits an almost similar
behavior as in Fig. 5(a), except that the wave-packet spreading
in the critical regime is superdiffusive with δ = 0.66. This
finding is consistent with the observations of the wave profile
discussed in the preceding section. However, the discontinuity
in Fig. 5(d) is suggestive of a first-order phase transition and

FIG. 5. The mean square displacement(MSD) as a function of
time in double-logarithmic scale and its corresponding dynamical
phase transition (velocity v(t ) with an increasing strength of the
quasiperiodic potential) in a lattice with 610 sites for two cases:
(i) (a) and (b) are for a Hermitian system (JL = JR = 1) with
RSO interaction (αy = 0.5 and αz = 0.0). (ii) (c) and (d) are for a
non-Hermitian system (JL/JR = 0.5) without RSO interaction (αy =
0.0 and αz = 0.0). In the left panels, the dark-blue, dark-red, and
dark-green indicate the spectrally delocalized, critical, and localized
regimes, respectively. The values of μ [in Eq. (11)] have been de-
termined by using linear fitting (indicated by dashed lines). In the
right panels, the vertical black line indicates the dynamical phase
transition estimated at t = 150 secs.

has been recently reported in Ref. [65]. It is important to
note that in both the scenarios, the dynamical phase transition
coincides with the spectral phase transition and follows the
general expectation, which is demonstrated in Appendix A 2.

However, this anticipated behavior changes significantly
when we consider the non-Hermitian system in the presence
of RSO interaction. Figure 6 illustrates the nontrivial behavior
of our asymmetric non-Hermitian Hamiltonian in the presence
of RSO interaction. Figures 6(a) and 6(e) demonstrates the
behavior of the dynamical attributes when the spin-conserving
RSO interaction amplitude is nonzero. From Fig. 6(a), it is
evident that when αy = 0.5, the initially excited spin-up elec-
tron has a tendency to diffuse even in the spectrally localized
regime (as shown in dark-green line). Moreover, the behavior
is hyperdiffusive for t 	 20–100 secs (δ = 1.76). However,
such a diffusion is confined only to the nearby lattice sites
as discussed in the initial results of Sec. III. Thereafter, the
wave packet is observed to localize at all times. We have
verified the absence of finite-size effect on the MSD estimates
in Appendix D.

Figures 6(b) and 6(f) illustrate the dynamical behavior of
the wave packet in the presence of only the spin-flip hopping
amplitude (αz = 0.5). It is discernible that the presence of
either the spin-conserving or spin-flip hopping amplitude of
the RSO interaction renders dynamical delocalization with
similar traits, except that the localization occurs after a longer
time (t 	 220 secs) in the latter case. Figures 6(c) and 6(g)
convey the same observations when both αy and αz in the RSO
interaction are nonvanishing, except that in this case there is
an additional subdiffusive regime before the hyperdiffusive
transport sets in. A similar tendency of hyperdiffusivity in the
localized regime has been pointed out in a recent work [83].
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FIG. 6. The MSD as a function of time in double-logarithmic scale in (a)–(d) and its corresponding dynamical phase transition in (e)–(h)
for the different non-Hermitian (JL/JR = 0.5) cases: (i) (a) and (e) are in the presence of only the spin-conserving hopping amplitude in the
RSO interaction (αy = 0.5 and αz = 0.0). (ii) (b) and (f) are in the presence of only the spin-flip hopping amplitude in the RSO interaction
(αy = 0.0 and αz = 0.5). (iii) (c) and (g) are in the presence of both the spin-conserving and spin-flip hopping amplitudes in the RSO interaction
(αy = 0.5 and αz = 0.4). (iv) (d) and (h) are in the presence of strong RSO interaction (αy = 0.9 and αz = 0.8). Similar to Fig. (5), in the upper
panels, the dark-blue, dark-red, and dark-green indicate the spectrally delocalized, critical, and localized regimes, respectively. In the bottom
panels, the vertical black line indicates the dynamical phase transition calculated at t = 150 secs. Here, we have applied the periodic boundary
condition on a lattice with 610 sites.

In addition, such a dynamical delocalization has been realized
experimentally [89]. However, the authors of Ref. [83] have
attributed the hyperdiffusive transport to the breaking of PT
symmetry and attributed its existence only in the broken PT -
symmetric regime. In contrast, in our non-Hermitian system
(which is intrinsically in the broken PT -symmetric regime
due to asymmetric hopping amplitudes), we have illustrated
in Fig. 5(c), that this hyperdiffusive transport does not appear
even when the PT -symmetry is broken. On the other hand,
it is clear from Fig. 5(a), that the dynamical delocalization
is absent in Hermitian systems even in the presence of RSO
interaction. Hence, we can infer that in our non-Hermitian
Hamiltonian the unusual dynamical features in the spec-
trally loclalized regime appears due to the combined effects
of non-Hermiticity and the RSO interaction, as observed in
Figs. 6(a)–6(c). A discussion of the MSD calculations with
varying JL/JR ratios governing the non-Hermiticity has been
relegated to Appendix E.

We find an even more surprising dynamical feature when
we consider the non-Hermitian system with strong RSO in-
teraction amplitudes, where αy = 0.9 and αz = 0.8. It is clear
from Fig. 6(d) that a sufficiently strong RSO interaction can
cause the transport from a low concentration to a higher
concentration, and might result in a negative diffusivity (δ 	
−0.50) instead of a hyperdiffusive behavior before dynamical
localization. The negative diffusion is uncommon and has
been reported in a two-dimensional lattice-gas system with
attractive interaction [90].

B. Behavior of the Shannon entropy in the
non-Hermitian spectrally localized regime

To further identify the dynamical delocalization properties
in the localized regime using the properties of eigenstates at
different times, we use the measure of Shannon entropy for

the time-evolved states ψn(t ) defined as [91–94]

S(t ) = −
∑
n,σ

∣∣ψσ
n (t )

∣∣2
ln

∣∣ψσ
n (t )

∣∣2
, (13)

where |ψn(t )| is the amplitude of the eigenstate at the nth
site and at time t . It is well known that the Shannon entropy
for localized states S(t ) → 0, whereas delocalization leads
to maximum entropy (due to the randomness generated in
the itinerant behavior), S(t ) 	 ln L (since |ψn(t )| ∝ 1/

√
L).

A plot of S/ ln L as a function of time [in Fig. (16) of Ap-
pendix F] indicates a change as shown for the Hermitian
case with RSO interaction [corresponding to Fig. 5(a)]. As
expected, S/ ln L ∼ O(1) in the delocalized regime at long
times, whereas, S/ ln L remains a constant (approaching zero)
as soon as V crosses its critical threshold at Vc. The behavior
in the critical regime is intermediate between the delocalized
and localized phases as evident from Fig. 16. It is important
to note that unlike the isolated systems, the entropy of a
non-Hermitian system might decrease with time owing to the
interaction with the environment. However, at equilibrium the
total entropy of the system and its surroundings in such cases
remains unaltered [46].

To obtain an inference of the stability of the dynami-
cally delocalized eigenstates as discussed in Sec. III A, we
have compared the different cases of the non-Hermitian
system with and without RSO interaction in the spectrally
localized regime (V = 3.50). In the absence of RSO inter-
action, Fig. 7(a) clearly portrays the dynamically localized
regime, where the Shannon entropy remains at a minimum
(nearly zero) upto long times. Such a behavior is a clear
manifestation of the dynamical equilibrium. However, in the
presence of the spin-preserving RSO interaction (αy = 0.5
and αz = 0.0), the entropy initially increases, before reach-
ing an intermediate metastable state (characterized by the
maximized entropy) which exists for a short time, and fi-
nally decreases to reach the ultimate equilibrium after the
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FIG. 7. The behavior of Shannon entropy (S/ ln(L)) with time for a 610-site system. The dynamical delocalization in the spectrally
localized regime (V = 3.50) along with the metastable states is demonstrated for a non-Hermitian system (JL/JR = 0.5) for four distinct cases:
(a) absence of RSO interaction (αy = 0.0 and αz = 0.0), (b) in the presence of only the spin-conserving hopping (αy = 0.5 and αz = 0.0), (c) in
the presence of both the spin-conserving and spin-flip hopping (αy = 0.5 and αz = 0.4), and (d) for strong RSO interaction where negative
diffusion occurs (αy = 0.9 and αz = 0.8).

dynamical localization [Fig. 7(b)]. Figure 7(c) illustrates the
behavior of the Shannon entropy in the presence of both the
RSO interaction terms (αy = 0.5 and αz = 0.4). The non-
Hermitian system behaves similar to Fig. 7(b) by attaining
two intermediate metastable states [as is also evident from
Fig. 6(c)], before reaching the dynamical equilibrium. How-
ever, in contrast to an ordinary diffusion where the entropy
increases with time, in the presence of strong RSO interac-
tion, Fig. 7(d) suggests that in the negative diffusion (where
the transport is from a lower to a higher concentration), the
entropy decreases with time and then reaches its final equilib-
rium. In addition, from Fig. 7, it can be noted that the entropy
at the ultimate equilibrium increases with an increase in the
strength of the RSO interaction.

IV. CONCLUSIONS

In conclusions, this work demonstrates the unique spectral
and dynamical properties in non-Hermitian quasicrystals with
RSO interaction. An analysis of the energy spectrum of the
non-Hermitian quasicrystals in the presence of RSO inter-
action clearly indicates that the states remain in the broken
time-reversal symmetry for all strengths of the quasi-periodic
potential, unlike in the cases without RSO interaction, which
exhibits a complex-real energy transition alongwith the DL
transition. We find that the energy spectrum is dependent upon
the size of the system, and that the skin effect is manifested
even when the spectrum forms complex loops, in contrary to
the previously reported results on the prototypical 1D nonre-
ciprocal systems. Furthermore, it is demonstrated that when
the magnitude of spin-flip term exceeds the magnitude of the
spin-conserving term in the RSO interaction, the directionality
of the skin effect significantly reduces. The spin-dependent
transport of the electrons has been thoroughly investigated
using the diffusion exponent, determined from the variance
of the wave packet initially excited for the up-spin at the
center of the lattice. We have studied the dynamical phase
transitions using the spreading velocity v. We have found
evidences that although the spectral DL transition is concur-
rent to the dynamical phase transition, the interplay of the
non-Hermiticity and the RSO interactions leads to dynamical
delocalization in the spectrally localized regime, in contrast
to the Hermitian system with the RSO interaction and non-
Hermitian system without the interaction. Interestingly, we
have obtained hyperdiffusive behavior beyond the absolute
spectral localization. In addition, we have illustrated that for

strong RSO interaction, a negative diffusion from a lower
to a higher concentration (as opposed to normal diffusive
process) may be manifested in non-Hermitian systems with
asymmetric hopping. In closing, we have shown that such
non-Hermitian systems with RSO interaction goes through
metastable state(s) before achieving dynamical equilibrium at
a long time.
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APPENDIX A: DETERMINATION OF DL
TRANSITION AND THE CRITICAL POINT

1. A hermitian to non-Hermitian approach

To determine the critical point for the DL transition using
the concept of self-duality of the Hamiltonian in real and mo-
mentum space, we begin by considering the Hermitian analog
(JL = JR = J) of the time-independent coupled Schrödinger
equations for the two spin-orientations already discussed in
Sec. II A as

(J + iαy)a↑
n−1 + (J − iαy)a↑

n+1

+αz(a↓
n+1 − a↓

n−1) + V cos(2παn)a↑
n = Ea↑

n (A1)

and

(J − iαy)a↓
n−1 + (J + iαy)a↓

n+1

−αz(a↑
n+1 − a↑

n−1) + V cos(2παn)a↓
n = Ea↓

n . (A2)

The three distinct possibilities for RSO interaction are the
following.

Case i: αy = 0 and αz = 0
In the absence of the spin-flip RSO interaction strength

(αz = 0), Eqs. (A1) and (A2) reduce to

(J + iαy)a↑
n−1 + (J − iαy)a↑

n+1

+V cos(2παn)a↑
n = Ea↑

n (A3)
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and
(J − iαy)a↓

n−1 + (J + iαy)a↓
n+1

+V cos(2παn)a↓
n = Ea↓

n . (A4)

The decoupled Eqs. (A3) and (A4) are solved independently
and written as

J ′(eiθ a↑
n−1 + e−iθ a↑

n+1) + V cos(2παn)a↑
n = Ea↑

n , (A5)

J ′(e−iθ a↓
n−1 + eiθ a↓

n+1

) + V cos(2παn)a↓
n = Ea↓

n , (A6)

where J ′ =
√

J2 + α2
y and θ = tan−1(αy/J ). Using the

Fourier transformation a↑(↓)
n = ∑

k a↑(↓)
k ei(2παn)k , in the k

space, we obtain

2J ′cos(2παk − θ )a↑
k + V

2
(a↑

k−1 + a↑
k+1) = Ea↑

k , (A7)

2J ′cos(2παk + θ )a↓
k + V

2
(a↓

k−1 + a↓
k+1) = Ea↓

k . (A8)

Using an inverse Fourier transformation given by a↑(↓)
k =∑

n a↑(↓)
n e−i(2παk∓θ )n on Eqs. (A7) and (A8) respectively, we

get

J ′(a↑
n−1 + a↑

n+1) + V cos(2παn)a↑
n = Ea↑

n , (A9)

J ′(a↓
n−1 + a↓

n+1) + V cos(2παn)a↓
n = Ea↓

n . (A10)

where the tight-binding hopping amplitude J is replaced by J ′,
that includes the spin-conserving part of the RSO interaction.
It is now clear from Eqs. (A7)–(A10) that the critical point for

DL transition occurs at Vc/J ′ = 2 (or Vc = 2
√

J2 + α2
y ).

Case ii: αz = 0 and αy = 0
In the absence of the spin-conserving term of the RSO

interaction (αy = 0), Eqs. (A1) and (A2) can be written as

J (a↑
n−1 + a↑

n+1) + αz(a↓
n+1 − a↓

n−1)

+V cos(2παn)a↑
n = Ea↑

n (A11)
and

J (a↓
n−1 + a↓

n+1) − αz(a↑
n+1 − a↑

n−1)

+V cos(2παn)a↓
n = Ea↓

n . (A12)

We combine the coupled Eqs. (A11) and (A12) by multiplying
“i” to (A12) and adding it to (A11), which gives

J ′′[eiβ ãn−1 + e−iβ ãn+1] + V cos(2παn)ãn = Eãn, (A13)

where ãn = a↑
n + ia↓

n , J ′′ = √
J2 + α2

z and β = tan−1(αz/J ).
Equation (A13) is identical in form to Eq. (A5), and using

the same approach, one can find the critical value of the
quasiperiodic potential for the DL transition at Vc/J ′′ = 2
(or Vc = 2

√
J2 + α2

z ), where J ′′ depends upon the spin-flip
amplitude of the RSO interaction.

Case iii: αy = 0 and αz = 0
In the presence of both the spin-conserving and spin-flip

amplitudes of the RSO interaction, Eqs. (A1) and (A2) cannot
be analytically combined to obtain the self-duality, and hence
the critical point. Therefore, in order to determine the critical
point for DL transition in this case, we rely solely upon the
numerical results.

In addition, it is important to note that the DL transition
and the critical point Vc in a non-Hermitian system without
the RSO interaction has been investigated by analyzing the
spectral properties in several works [36,95,96]. For the sys-
tems with asymmetric hopping amplitudes (JR = JL), under
the OBC, the Lyapunov exponent analysis demonstrates a
corresponding DL transition at Vc/max[JR, JL] = 2, in con-
trast to Vc/J = 2 (when JR = JL = J). Furthermore, since the
localized states are independent of the boundary conditions,
the boundary of the DL transition remains unaltered under the
PBC. However, the presence of the RSO interaction terms in
the Hamiltonian makes it difficult to analytically determine
such an immediate analog, although the transition is expected

at Vc = 2J ′
R =

√
J2

R + α2
y or Vc = 2J ′′

R = 2
√

J2
R + α2

z , depend-

ing upon whether αz or αy is zero, as considered in cases
i and ii, respectively, since JR > JL in all our discussions.
To conclude this result, further, it is important therefore to
verify the above mentioned critical point using the numerical
estimates, which is discussed in the next section.

2. MIPR of the non-Hermitian quasiperiodic hamiltonian
with and without RSO interaction

The authors of Ref. [65] have indicated that the non-
Hermitian (JL = JR and JR > JL) phase transition occurs at the
critical value Vc given by

Vc = 2JR,

which is also identical to the Hermitian case, when JL = JR.
In the presence of RSO interaction, we expect a similar DL
transition at a scaled value of JR. The most familiar approach
used in extracting the critical point in DL transition is by
determining the Inverse Participation Ratio (IPR) defined for
a given state with energy Ej for different sites n as [97,98]

IPR j =
∑

n,σ

∣∣ψσ
j,n

∣∣4

(∑
n,σ

∣∣ψσ
j,n

∣∣2
)2 . (A14)

The mean-IPR (MIPR) is then defined as [83]

MIPR = 1

L

∑
j

∑
n,σ

∣∣ψσ
j,n

∣∣4

(∑
n,σ

∣∣ψσ
j,n

∣∣2
)2 . (A15)

In the extended/delocalized regime, the MIPR varies in-
versely with the system size as 1/L, and approaches
zero in the thermodynamic limit. However, for the
insulating/localized states, the IPR is independent of L and
approaches 1 with increasing strength of the disorder.

Figures 8(a) and 8(b) illustrate the phase diagram of the
estimated critical points when either αy is 0 (by varying the
strenghts of αz), or when αz is 0 (by tuning αy), respectively.
The numerical estimates using the MIPR is in accordance
with the values of Vc as predicted from cases i and ii of
Appendix A 1 in the previous section. It is evident from
Figs. 8(c) and 8(d) that the value of Vc when both αy and
αz terms in the RSO interaction are nonvanishing follows the

behavior of the expression given by Vc = 2
√

J2
R + α2

y + α2
z

(shown by the blue dashed lines), which fits excellently with
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FIG. 8. The analytically predicted (black lines) and numerically
estimated (brown markers) critical points Vc for different strenghts of
RSO interaction. (a) αy = 0.0 and nonzero values of αz, (b) αz = 0.0
and nonzero values of αy, (c) αy = 0.5 and nonzero values of αz,
and (d) αz = 0.5 and nonzero values of αy. In (c) and (d), Vc follows

the expression Vc = 2
√

J2
R + α2

y + α2
z (in blue dashed lines), although

the expression in this limit could not be achieved analytically. The
calculations are done on a 610-site lattice with periodic boundary,
and by considering JL/JR = 0.5.

the obtained numerical values of Vc, although the exact ex-
pression for Vc in this case remains analytically undetermined.

Figures 9(a)–9(d) demonstrates the behavior of MIPR as a
function of the strength of the disorder in a double-logarithmic
scale. The sharp jump in MIPR towards 1 clearly hints at
the DL transition at that critical value of disorder, indicated
by Vc. It is evident that Vc increases with the strength of the
RSO interaction. Hereafter, the dynamical study (in Sec. III
of the main text) has been accomplished using the numerically
determined values of Vc from these numerical estimates.

FIG. 9. The MIPR as a function of the quasiperiodic potential
(V ) for different values of αy and αz in the Hamiltonian with RSO
interaction given by Eq. (1). (a) αy = 0.0 and αz = 0.0, (b) αy =
0.5 and αz = 0.0, (c) αy = 0.5 and αz = 0.4, and (d) αy = 0.9 and
αz = 0.8. The critical point for the DL transition has been indicated
by Vc and represented by vertical black-dashed lines. The red, blue
and green markers indicate the system sizes L = 2584, 610, and 144,
respectively. We have used the condition of non-Hermiticity, i.e.,
JL/JR = 0.5 and the periodic boundary condition in a lattice with
610 sites in all the above cases.

APPENDIX B: TOPOLOGICAL TRANSITION
IN NON-HERMITIAN SYSTEMS WITH RSO

INTERACTION

Since the last few years, the topological classification in a
wide range of non-Hermitian systems have received a substan-
tial interest [99–101]. Moreover, in systems with asymmetric
hopping, the classification is of paramount importance owing
to the violation of the usual bulk-boundary correspondence.

1. Revisiting the topology of a non-Hermitian model

We begin by considering a spinless one-dimensional ring
with asymmetric hopping amplitudes (the Hatano-Nelson
Hamiltonian) and an on-site quasiperiodic potential Vn dis-
cussed in Sec. II A, given as

HHN = JR

∑
n

c†
n+1cn + JL

∑
n

c†
ncn+1 +

∑
n

Vnc†
ncn. (B1)

The topology in such systems is usually defined in terms of a
winding number (w) that is related to the number of complex
loops enclosing a reference energy ER ∈ C, which does not
belong to the energy spectrum. In addition, ER is chosen
depending upon the symmetry of the system [57]. For a time-
reversal symmetric system, since the eigenenergies appear in
(E , E∗) pairs, it immediately follows that Im(ER) = 0. In the
presence of the particle-hole symmetry, the energies (E ,−E )
imply that Re(ER) = 0. Using the constraints defined by the
symmetry, therefore, in our case, it is convenient to take ER =
(0, 0) for determining the topological phases of the system.
Following Ref. [53], we apply a magnetic flux φ through a
finite ring defined in Eq. (B1), that tacitly implies that the
disordered Hamiltonian is invertible. Under this choice of the
gauge, the Hamiltonian reads as,

HHN(φ) = JRe−iφ/L
∑

n

c†
n+1cn + JLeiφ/L

∑
n

c†
ncn+1

+
∑

n

Vnc†
ncn. (B2)

The winding number (w) is then defined for the periodic ring
as

w = 1

2π i

∫ 2π

0
∂φ ln det[H(φ) − ER] dφ, (B3)

where ER is the zero energy as already discussed. w gives
the number of times the spectral loop encircles ER when φ is
increased from 0 to 2π . Furthermore, since the wave function
and the energy spectrum of the localized states should not
depend upon the flux φ, it can be inferred that w becomes
0 beyond the DL transition, indicating a topologically trivial
phase. From Eq. (B2), we can write

HHN(φ)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

V1 JLeiφ/L 0 0 . . . 0 JRe−iφ/L

JRe−iφ/L V2 JLeiφ/L 0 . . . 0 0

0 JRe−iφ/L V3 0 . . . 0 0

. . . . . . . . . . . . . . . . . . . . .

0 0 0 0 . . . VL−1 JLeiφ/L

JLeiφ/L 0 0 . . . 0 JRe−iφ/L VL

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

(B4)

064305-11



ADITI CHAKRABARTY AND SANJOY DATTA PHYSICAL REVIEW B 107, 064305 (2023)

FIG. 10. The energy spectrum and the corresponding winding
number, considering the reference energy ER = 0 for delocalized
(V = 1.50) and localized (V = 3.50) states in a non-Hermitian sys-
tem (JL/JR = 0.5) for different cases of RSO interaction: (a) αy =
0.0 and αz = 0.0 (L = 610), (b) αy = 0.5 and αz = 0.0, (c) αy = 0.0
and αz = 0.5, and (d) αy = 0.5 and αz = 0.4. In the last three figures,
we have considered L = 34 for determining the winding number.

From the Hamiltonian given in Eq. (B4), we arrive at the
general result

detHHN(φ) = (−1)L−1
(
JL

R e−iφ + JL
L eiφ

) + P (Vn, JR, JL ),

(B5)

where P (Vn, JR, JL ) is independent of φ and is dropped out
in calculating w from Eq. (B3). Using the absolute value of
the determinant from Eq. (B5), we obtain for the delocalized
states

w =
{−1 if |JR| > |JL|

+1 if |JL| > |JR| . (B6)

This indicates that the delocalized states are topologically
nontrivial, and there is an associated topological transition
along with the DL transition. To verify this result, we have
plotted the energy spectrum of the Hatano-Nelson model
(without RSO interaction) in Fig. 10(a), which clearly man-
ifests a topological transition from w = −1 (since JR > JL)
at V = 1.50 to w = 0 at V = 3.50, where the topology of
the system changes exactly at the topological transition point
Vt = 2.

2. Topology of the non-Hermitian model with RSO interaction

The presence of RSO interaction modifies the Hatano-
Nelson model with quasiperiodic on-site potential as already
discussed in Sec. II A. In the presence of the magnetic flux
(φ), the Hamiltonian is given by

H = JRe−iφ/L
∑
n,σ

c†
n+1,σ cn,σ + JLeiφ/L

∑
n,σ

c†
n,σ cn+1,σ

+
∑
n,σ

Vnc†
n,σ cn,σ

−αz

∑
n,σ,σ ′

(
e−iφ/Lc†

n+1,σ (iσy)σ,σ ′cn,σ ′ + H.c.
)

+αy

∑
n,σ,σ ′

(
e−iφ/Lc†

n+1,σ (iσz )σ,σ ′cn,σ ′ + H.c.
)
. (B7)

We first consider the Hamiltonian in the absence of the spin-
flip term of the RSO interaction (i.e., αz = 0). Similar to
Sec. B 1, we can write in the σ, σ ′ basis, for L = 3,

H(φ)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

V1 J ′
Leiφ/L J ′

Re−iφ/L 0 0 0

J ′
Re−iφ/L V2 J ′

Leiφ/L 0 0 0

J ′
Leiφ/L J ′

Re−iφ/L V3 0 0 0

0 0 0 V1 J ′′
L eiφ/L J ′′

R e−iφ/L

0 0 0 J ′′
R e−iφ/L V2 J ′′

L eiφ/L

0 0 0 J ′′
L eiφ/L J ′′

R e−iφ/L V3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

(B8)

where J ′
R =

√
J2

R + α2
y eiθ1 , J ′

L =
√

J2
L + α2

y e−iθ2 , J ′′
R =√

J2
R + α2

y e−iθ1 , and J ′′
L =

√
J2

L + α2
y eiθ2 . The complex phases

are given as θ1 = tan−1(αy/JR) and θ2 = tan−1(αy/JL ).
Since, all these elements are independent of the flux φ, and
the blocks along the diagonal are equivalent with J ′

R(J ′
L )

replaced by J ′′
R (J ′′

L ), we can treat these blocks for the two
spin-orientations individually given as

H1(φ) =

⎡
⎢⎢⎣

V1 J ′
Leiφ/L J ′

Re−iφ/L

J ′
Re−iφ/L V2 J ′

Leiφ/L

J ′
Leiφ/L J ′

Re−iφ/L V3

⎤
⎥⎥⎦ (B9)

and

H2(φ) =

⎡
⎢⎢⎣

V1 J ′′
L eiφ/L J ′′

Re−iφ/L

J ′′
Re−iφ/L V2 J ′′

L eiφ/L

J ′′
L eiφ/L J ′′

Re−iφ/L V3

⎤
⎥⎥⎦. (B10)

From the results of Sec. B 1, it is already clear that for any
general finite-sized lattice,

detH1(φ) = (−1)L−1((J ′
R)Le−iφ+(J ′

L )Leiφ )+P (Vn, J ′
R, J ′

L )

(B11)

and

detH2(φ) = (−1)L−1((J ′′
R )Le−iφ+(J ′′

L )Leiφ )+P (Vn, J ′′
R , J ′′

L ).

(B12)

Since αy is constant, by absorbing the phases θ1 and θ2 of the
modified hopping amplitudes (J ′

R, J ′
L, J ′′

R , J ′′
L ) by considering

its amplitude, we can write

w1 =
{−1 if |JR| > |JL|

+1 if |JL| > |JR| (B13)

and

w2 =
{−1 if |JR| > |JL|

+1 if |JL| > |JR| . (B14)

From Eq. (B8), it can be seen that H = H1 ⊕ H2, implying
that detH = detH1 × detH2, and therefore we can write w =
w1 + w2. Thus, for the whole Hamiltonian, in the presence of
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FIG. 11. The topological phase diagram of the non-Hermitian
(JL/JR = 0.5) system for different cases of the RSO interaction:
(a) αy = 0.0 and varying αz, (b) αz = 0.0 and varying αy, (c) αy =
0.5 and varying αz, and (d) αz = 0.5 and varying αy. For all these
cases, we numerically determine the winding number for a lattice
with 34 sites. The topological phase boundary is shown as a transition
from the dark-gray to a light-gray shade.

the spin-conserving part of the RSO interaction, we get

w =
{−2 if |JR| > |JL|

+2 if |JL| > |JR| . (B15)

The winding number for the localized phase remains identical
to the scenario without RSO interaction, i.e., w = 0, meaning
that such states are trivial in terms of its topology.

However, the presence of the spin-flip RSO interaction
strengths (αz) in the off-diagonal blocks of the Hamilto-
nian H poses difficulty in the analytical estimation of the
winding number. To have a numerical understanding of such
non-Hermitian systems, therefore, the results for the wind-
ing number in an asymmetric model with RSO interaction

FIG. 12. The energy spectrum for the non-Hermitian Hamilto-
nian (JL/JR = 0.5) defined in Eq. (1) for different cases: (a) PBC
(blue) and OBC (black) in the absence of disorder (V = 0.0) and
without RSO interaction (αy = 0.0 and αz = 0.0). Here, N = 55.
(b) In the presence of only the spin-flip RSO interaction (αy = 0.5
and αz = 0.0). (c) In the presence of strong RSO interaction (αy =
0.9 and αz = 0.8). In the last two figures, we have set V = 1.50 for
a 610-site system. The density profile |ψn|2 in all the three cases for
OBC are shown in the insets.

FIG. 13. The MSD for a non-Hermitian system (JL/JR = 0.5)
demonstrated for three different system sizes (L = 144, 610, and
2584) as illustrated by the light blue, medium-blue, and dark-
blue lines, respectively. Here, we have set αy = 0.5, αz = 0.0, and
V =3.50 (spectrally localized regime) in all the three cases.

for a finite system size (L = 34) has been presented in
Figs. 10(b)–10(d). Figure 10(b) demonstrates the change in
the winding number from w = −2 (V = 1.50) to w = 0 (V =
3.50), that matches with the results of Eq. (B15) when the
spin-conserving strength of the RSO interaction is nonvanish-
ing (αy = 0 and αz = 0). In the presence of the spin-flip RSO
interaction (αz = 0), from Figs. 10(c) and 10(d) it is evident
that the system shows identical topological behavior in the
delocalized and localized regimes. Moreover, the spectrum
for the 34-site system has similar traits as the 610-site system
[shown in Figs. 1(b)–1(d)], which also shows the winding of
the complex spectrum around the reference energy (ER) in two
loops, and is thus expected to possess the same topological
attributes on either realm of the DL transition. In addition, for
completeness, we have plotted the topological phase diagram
for various combinations of αy and αz in Figs. 11(a)–11(d) by
using the numerical determination of the winding number.

APPENDIX C: BOUNDARY CONDITION
DEPENDENCE AND SKIN EFFECT

The systems possessing nonreciprocity in the hopping am-
plitudes are dramatically sensitive to the choice of boundary
conditions. Figure 12(a) shows the complex-real transition

FIG. 14. The MSD for a non-Hermitian system (JL/JR = 0.5,
αy = 0.5, and αz = 0.0) under the periodic boundary (in blue) and
open boundary (in red) conditions respectively for a lattice with
610 sites. The quasiperiodic potential is set at V = 3.50 (spectrally
localized regime).
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FIG. 15. The behavior of MSD as a function of time for dif-
ferent strengths of the non-Hermiticity in the spectrally localized
(V = 3.50) regime. Here, JR = 1, αy = 0.5, αz = 0.0, and N = 610
in all the three cases.

in the energy spectrum for a nonreciprocal system with 55
sites. However, the energy spectrum no longer remains real on
increasing the number of unit cells in the system, as demon-
strated in Sec. II C of the main text. Figures 12(b)–12(c)
portrays the complex spectrum with loops bearing the skin
effect in the presence of RSO interaction. It is evident from
Figs. 12(b) and 2(c) that the interchange of αy and αz have
no intuitive change in the skin effect. In Fig. 12(c), we have
demonstrated the existence of the skin effect when both the
RSO interaction strengths are nonzero.

APPENDIX D: ABSENCE OF FINITE SIZE
AND BOUNDARY EFFECTS IN THE MSD RESULTS

Figures 13 demonstrates the behavior of the MSD over
asymptotically long times. We have verified that the numerical
results are independent of the system size by using three
different system sizes, i.e., N = 144, 610, and 2584. How-
ever, all calculations in the main text have been estimated by
considering a lattice of 610 sites.

In addition, as demonstrated in Appendix C, the non-
Hermitian system described by Eq. (1) in the main text
depends upon the choice of the boundaries. However, it is
observed from Fig. 14 that the MSD estimates are independent
of the boundary conditions.

FIG. 16. The behavior of Shannon entropy for a Hermitian sys-
tem (JL = JR = 1.0) as a function of time. The dark-blue, dark-red,
and dark-green lines, represents S(t ) in the delocalized, critical, and
localized regimes, respectively. Here, αy = 0.5 and αz = 0.0 in all
the cases. We have used periodic boundary condition on a lattice with
610 sites.

APPENDIX E: COMPARISON OF MSD
FOR DIFFERENT RATIOS OF JL/JR

Figure 15 illustrates the behavior of the MSD defined in
Eq. (10) for different ratios of the nonreciprocal hopping
amplitudes (JL/JR = 0.3, 0.5, and 0.7). It is a clear indicative
that in the presence of RSO interaction, all the non-Hermitian
systems exhibit dynamical delocalization (with a hyperdiffu-
sive behavior). However, the time for ultimate localization
may vary depending upon the strength of the nonreciprocity.

APPENDIX F: SHANNON ENTROPY IN THE
HERMITIAN SYSTEM WITH RSO

Figure 16 illustrates the behavior of Shannon entropy with
time. As described in Sec. III B of the main text, at long
times, the entropy increases due to the itinerant behavior of the
electrons and S/ ln L approaches 1 in the extended regime as
shown by the dark-blue line in Fig. 16. In the localized regime,
the entropy is diminished and remains constant over time
(shown by the dark-green line). The behavior in the critical
regime lies intermediate between the extended and localized
states (dark-red line).
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