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Conductivity of an electron coupled to anharmonic phonons:
Quantum-classical simulations and comparison of approximations
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We study the impact of phonon anharmonicity on the electronic dynamics of soft materials using a non-
perturbative quantum-classical approach. The method is applied to a one-dimensional model of doped organic
semiconductors with low-frequency intermolecular lattice phonons. We find that anharmonicity that leads to
phonon hardening increases the mobility and anharmonicity that leads to phonon softening decreases the mobil-
ity. With ab initio simulations in mind, we also test various approximations, including the use of adiabatic phonon
disorder, an effective harmonic model with temperature-dependent frequencies, and the Boltzmann transport
equation with second-order perturbation theory scattering rates. Overall, we find surprisingly good agreement
between all methods but that accounting for phonon anharmonicity is important for accurate prediction of
electronic transport including both quantitative mobility values and their qualitative temperature dependence.
For the model studied, phonon lifetime effects have relatively little impact on carrier transport, but the effective
frequency shift due to anharmonicity is essential. In cases with highly asymmetric, non-Gaussian disorder, an
effective harmonic model cannot quantitatively reproduce mobilities or finite-frequency conductivity, and this is
especially true for acoustic phonons.
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I. INTRODUCTION

Designing efficient functional materials requires a detailed
microscopic understanding of the charge transport mecha-
nism. In recent years, low-frequency dynamic disorder has
been shown to have a dominant role in the carrier dynamics
of soft semiconductors such as organic molecular crystals
and lead halide perovskites [1–4]. Like most theories of
electron-phonon interactions, the microscopic theory of dy-
namic disorder commonly assumes linear coupling of carriers
to harmonic phonons; however, recent experimental and the-
oretical work suggests that the low-frequency phonon modes
in many materials—especially organic molecular crystals—
exhibit significant anharmonicity [5–11].

In solids, anharmonic effects are responsible for thermal
expansion, thermal transport, and structural phase transitions,
among other important nuclear effects [12,13]. With regard
to spectral quantities, such as vibrational spectroscopies, an-
harmonicity most commonly manifests as two well-known
temperature-dependent effects: a frequency shift away from
the harmonic value (softening or hardening) and a finite vi-
brational lifetime that introduces a spectral linewidth. Unlike
that of harmonic phonons, the temperature dependence of
anharmonic phonons may influence the temperature depen-
dence of coupled degrees of freedom, such as electrons or
excitons. For example, a structural phase transition associated

*Present address: Department of Chemistry, Yale University,
New Haven, Connecticut 06520, USA.

†tim.berkelbach@gmail.com

with anharmonic mode coupling has been shown to induce
an insulator-metal transition in cuprates [14,15]. Anharmonic
modes are implicated in the band gap renormalization of sev-
eral materials such as organic molecular crystals [11], halide
perovskites [3,16], and strontium titanate [17]. Soft modes in
strontium titanate were also shown to be responsible for the
specific temperature dependence of the carrier mobility [18] in
a study that made use of the perturbative Boltzmann transport
equation with temperature-dependent effective phonons.

From a theoretical and computational point of view, the
treatment of coupling between electrons and anharmonic
phonons is difficult. The most affordable route, taken, for
example, in Ref. [18], is to combine a mean-field treatment
of phonon anharmonicity with a perturbative treatment of
electron-phonon coupling. However, many soft materials have
strong electron-phonon coupling and/or phonon anharmonic-
ity, which may preclude the use of such methods. Specifically,
the effect of phonon anharmonicity on electronic transport in
this regime of strong electron-phonon coupling is not system-
atically understood.

In this paper, we use a quantum-classical approach to
study the dynamics of a model system of charge carriers cou-
pled to phonons with anharmonicity. Our employed method
is approximate but nonperturbative with respect to both the
electron-phonon coupling and the phonon anharmonicity, and
it is expected to be very accurate in the parameter regime ap-
propriate for many soft materials. Similar quantum-classical
approaches, historically applied with only harmonic phonons,
are responsible for the dynamic disorder and transient local-
ization pictures [1,2] and predict a power-law temperature
dependence of the mobility μ(T ) ∼ T −2 that is in good
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agreement with experiment [2–4,19] and is not captured by
perturbative approaches [2,20]. The failure of perturbative
approaches and the accuracy of nonperturbative, quantum-
classical approaches are also well documented in the study
of excitation energy transfer of molecular aggregates [21–23].

With this quantum-classical approach in hand, our work
has two purposes. First, we aim to identify the qualitative
effects that phonon anharmonicity has on electronic dynamics
when the electron-phonon coupling and/or degree of anhar-
monicity is large. Such a limit is hard to study using other
techniques. However, our quantum-classical technique is too
expensive for routine application to materials with ab initio
Hamiltonians, i.e., with many electronic bands and phonon
branches. Therefore, our second purpose is to benchmark the
accuracy of more affordable techniques that can be used with
ab initio Hamiltonians.

II. THEORY

A. Model Hamiltonian

We study a single electron interacting with anharmonic
phonons on a one-dimensional lattice with fixed lattice con-
stant a, N sites, and periodic boundary conditions. Each lattice
site n has a single electronic orbital with creation operator c†

n
and a single nuclear degree of freedom with momentum pn

and displacement un. For the model considered here, the elec-
tronic bands and phonons are trivially defined by symmetry.
The Hamiltonian is H = Hel + Hph + Hel−ph, with

Hel = −τ
∑

n

c†
ncn+1 + H.c. =

∑
k

εkc†
kck, (1a)

Hph =
∑

n

p2
n

2m
+V(u1, . . . , uN )

=
∑

q

[
p2

q

2
+ 1

2
ω2

qu2
q

]
+Van(uq1 , . . . , uqN ), (1b)

Hel−ph = G
∑

n

(c†
ncn+1 + H.c.)(un+1 − un)

=
∑

kq

Gkqc†
kck−quq, (1c)

where εk are electronic band energies, ωq are phonon fre-
quencies, Van is the anharmonic part of the potential energy
surface, and we have assumed a linear Peierls form of the
electron-phonon coupling

Gkq = 2iG

N1/2
{sin(ka) − sin[(k − q)a]}. (2)

We will study one model of optical phonons and one model
of acoustic phonons according to the potentials

Vop(u1, . . . , uN ) =
∑

n

V (un), (3a)

Vac(u1, . . . , uN ) =
∑

n

V (un+1 − un), (3b)

V (u) = 1

2
Ku2 + c3u3 + c4u4. (3c)

Note that for simplicity we use the same function V (u) in
both cases. In the strictly harmonic limit, the above potentials
yield optical phonons that are dispersionless with ωq = ω0

and acoustic phonons with dispersion ωq = 2ω0| sin(qa/2)|,
where ω0 = √

K/m. Numerical values of the parameters used
in our simulations are given in Sec. III.

Although real molecular crystals also have local Holstein-
type electron-phonon coupling (mostly to high-frequency
intramolecular vibrations), it is excluded from the current
study for several reasons. First, in our previous work [4]
we showed that even when the Holstein coupling is large,
Peierls coupling to low-frequency vibrations dominates the
carrier mobility. Second, these high-frequency intramolecu-
lar vibrations are significantly more harmonic and can thus
be treated by standard techniques, such as the Lang-Firsov
transformation leading to a static, temperature-dependent
renormalization of hopping parameters [4].

B. Nonperturbative and anharmonic simulation

To accurately simulate the coupled electron-nuclear dy-
namics without assuming weak electron-phonon coupling
or weak anharmonicity, we appeal to the quantum-classical
Ehrenfest approach [1,24]. Specifically, we let the nuclear
degrees of freedom evolve according to Newtonian dy-
namics on the anharmonic potential energy surface, mün =
−∂V/∂un. From the nuclear trajectories un(t ), we define a
time-dependent electronic Hamiltonian

hel(t ) = −
∑

n

τn(t )(c†
ncn+1 + H.c.)

=
∑

kq

[εkδk,k−q + Gkquq(t )]c†
kck−q, (4)

where τn(t ) = τ − G[un+1(t ) − un(t )]. Note that we ne-
glect the feedback of the electronic degrees of freedom
on the nuclei, which ignores the contribution of electron-
phonon scattering to the phonon lifetime. Although this
can be straightforwardly included at the mean-field level,
this approximation has been shown to be accurate for the
low-frequency nuclear dynamics and relatively high-mobility
parameter regime we study here [24].

Following our previous work [4], the time-dependent
Hamiltonian (4) is used in a mixed quantum-classical eval-
uation of the electronic current autocorrelation function,

Cj j (t ) =
∫

d p
∫

du P(p, u)〈Uel(0, t ) j(t )Uel(t, 0) j〉el. (5)

Here, P(p, u) ∼ e−Hph (p,u)/kBT is the phase-space distribution
of the classical nuclear degrees of freedom,

Uel(t, 0) = T exp

[
− i

h̄

∫ t

0
dt ′hel(t

′)
]

(6)

is the time-ordered evolution operator,

j(t ) = ia
∑

n

τn(t )(c†
ncn+1 − H.c.) (7)

is the current operator for the Hamiltonian (1), 〈O〉el =
Trel{Oe−hel (t=0)/kBT }/Zel is a thermal average over electronic
degrees of freedom, and Zel = Trel{e−hel (t=0)/kBT } is the
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electronic partition function. From this, the AC conductivity
is readily obtained via the Kubo formula

Reσ (ω) = 1 − e−h̄ω/kBT

2Nω

∫ +∞

−∞
dt eiωtCj j (t ), (8)

with the DC component obtained by taking the zero-frequency
limit, σDC ≡ σ (ω → 0). The mobility is μ = (Na/e)σDC,
where e is the electron charge. The nonperturbative and an-
harmonic approach described here will be referred to as the
“dynamical Kubo” approach in later sections.

Previous studies of conductivity performed via the Kubo
formula have generally been done in the adiabatic limit
[20,25–27] such that Eq. (8) reduces to

Reσ (ω) = 1 − e−h̄ω/kBT

2Nω

∫
du P(u)

× Z−1
el

∑
αβ

|〈α| j|β〉|2δ[ω − (εβ − εα )/h̄], (9)

where α and β are u-dependent eigenstates of the disordered
electronic Hamiltonian and P(u) ∼ e−V(u)/kBT . We will refer
to this as the “static Kubo” approach. One drawback is that
the δ function must be given an artificial linewidth η, which
is analogous to imposing an artificial decay to the current
autocorrelation function (also called the “relaxation time ap-
proximation” in the transient localization literature [2,28]).
The choice of η has been shown to substantially affect the
temperature dependence of the mobility [25]; this ambiguity
is avoided in the dynamical Kubo approach, where the cur-
rent autocorrelation function decays naturally due to dynamic
disorder (for both harmonic and anharmonic phonons).

The quantum-classical Ehrenfest approach has been one
of the preferred methods for calculating carrier dynamics
in models of soft materials [1,2,4,24]. Because of its non-
perturbative nature, this method can be applied to materials
that simultaneously have a large electronic transfer integral τ

and large electron-phonon coupling G, a combination which
precludes treatment with a perturbative small polaron or
Boltzmann transport theory [29,30]. The classical treatment
of the phonon degrees of freedom is approximate but highly
accurate when h̄ω0/kBT is small, as is the case for many
soft semiconductors, including those we study here; the af-
fordable extension to high-frequency, anharmonic phonons is
a greater methodological challenge. For the parameter range
we are interested in here, the accuracy of quantum-classical
methods was previously verified via comparison with accu-
rate quantum Monte Carlo with analytic continuation [2,31]
and multilayer multiconfigurational time-dependent Hartree
calculations [32]. An advantage of using the Kubo formula
to evaluate the conductivity, compared to the more common
slope of the mean square displacement, is that the current
autocorrelation function decays to zero at long times and is
therefore less impacted by the well-documented equilibration
failures of quantum-classical methods [33], especially those
that neglect the feedback.

In an ab initio context, calculations of electronic mobil-
ity require all electronic band energies, phonon frequencies,
and electron-phonon coupling constants. The dynamical Kubo
approach further requires an atomistic molecular dynamics
simulation to generate the nuclear trajectories and associated

time-dependent electronic Hamiltonian; such a simulation
could be performed using a classical force-field or ab initio
electronic structure theory, such as density functional theory,
leading to a relatively high computational cost. The static
Kubo approach requires sampling of atomic configurations
from the same potential energy surface. If the time-dependent
one-electron Hamiltonian matrix elements are approximated
to be spatially uncorrelated, then the distribution of the indi-
vidual matrix elements over nuclear samples is sufficient for
a static Kubo calculation. Although computationally tractable,
the relatively high cost of these methods and their dependence
on explicit molecular dynamics or sampling motivates the
testing of more approximate methods based on perturbation
theory, as described in the next section.

C. Perturbation theory with harmonic phonons

In fully ab initio studies, it is most common to calculate
electronic dynamics by neglecting anharmonicity and treat-
ing the electron-phonon interaction by perturbation theory
[34–38]; see Ref. [39] for application to naphthalene, an or-
ganic molecular crystal similar to the model that we study in
this work. This approach yields the intraband scattering rates

�k,k+q(T ) = π

h̄ωq
|Gkq|2{[nq + 1]δ(εk − εk+q − ωq)

+ nqδ(εk − εk+q + ωq)} (10)

and inverse lifetimes �k (T ) = ∑
q �k,k+q(T ); here, nq is the

Bose-Einstein distribution function at temperature T . In the
limit of low ωq, which holds for the materials of interest here,
the quasielastic approximation can be made [27,30], giving

�k,k+q(T ) = πω0kBT

h̄ωq
|Gkq|2δ(εk − εk+q ){1 − cos(θk,k+q )},

(11)

where ω0 was defined below Eq. (3), θk,k+q is the angle be-
tween the initial and scattered states, and 1 − cos(θk,k+q ) =
1 − (k + q)/k in one dimension. These lifetimes can be
used within a linearized Boltzmann transport equation (BTE)
framework [35,40] to calculate the conductivity,

σDC = e2

NakBT
Z−1

el

∑
k

v2
k �

−1
k e−εk/kBT , (12)

where vk = h̄−1∂εk/∂k is the band velocity. The quasielastic
BTE provides a useful comparison for the limit of electronic
band transport with weak scattering due to phonons. Because
it is based on lowest-order perturbation theory, the BTE ig-
nores multiphonon processes that mediate relaxation when the
electronic energy difference and the phonon energies are mis-
matched. Thus, we expect the BTE to overestimate electronic
lifetimes and therefore overestimate the conductivity. These
multiphonon processes are captured in the nonperturbative
quantum-classical theory.

D. Effective harmonic theory

The phonon anharmonicity may be treated approximately
by using an effective, temperature-dependent harmonic
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model,

V(uq1 , . . . , uqn ) ≈ 1

2

∑
q

ω̃2
q(T ) u2

q, (13)

where the effective phonon frequencies ω̃q(T ) can be de-
termined by a number of mean-field type methods [41–45].
Specifically, we highlight Ref. [18], which treats the dynamics
of electrons coupled to soft modes in SrTiO3 in this manner.
Here, we propose an alternative, but closely related, approach
motivated by the application to electronic dynamics.

For the anharmonic potentials considered here, we will
consider effective harmonic potentials of the same form as in
Eqs. (3) but with

Ṽ (u) = 1
2 K̃u2 = 1

2 mω̃2
0u2, (14)

and we will employ the same form of electron-phonon cou-
pling as in Eq. (1c). The temperature-dependent effective
frequency ω̃0 is chosen to reproduce the statistics of the
dynamically disordered transfer integrals τn(t ). Our later sim-
ulations will be performed at fixed volume (i.e., in the absence
of thermal expansion), which guarantees that the average
transfer integral is always given by the bare transfer in-
tegral, 〈τn〉 = τ , even with anharmonicity. We thus choose
the effective harmonic frequency to reproduce the variance
of the transfer integral calculated with the anharmonic po-
tential, 〈(τn − τ )2〉ha = 〈(τn − τ )2〉an, which is equivalent to
matching the variance in the nearest-neighbor separations,
〈(un+1 − un)2〉ha = 〈(un+1 − un)2〉an. This requirement leads
to

ω̃2
0 = C

2G2kBT

〈(τn − τ )2〉an
= C

2kBT

〈(un+1 − un)2〉an
, (15)

where C = 2 for optical phonons and C = 1 for acoustic
phonons. We emphasize that the anharmonic variance is a
statistical quantity that can be calculated with Monte Carlo
sampling and does not require any information about the
dynamics of the phonons. This formalism is closely related
to other mean-field theories of phonon anharmonicity.

This approach approximately captures the instantaneous
electronic disorder in the Hamiltonian, which is the primary
ingredient of the transient localization/dynamic disorder pic-
ture [2,46]. In the next section, simulations using this effective
harmonic model of phonons (with the dynamical Kubo, static
Kubo, and Boltzmann transport theories described above)
will be compared to fully anharmonic simulations. In this
way, we can isolate the effects of anharmonicity (treated ap-
proximately or exactly) and nonperturbative electron-phonon
coupling.

III. RESULTS AND DISCUSSION

A. Simulation details and phonon anharmonicity

As a harmonic limit for our transport model, we use the
parameters from Ref. [47] for the b axis of single-crystal
rubrene, which have been used in numerous studies [2,4,25].
The parameters are τ = 143 meV, G = 493.5 meV/Å, m =
532 amu, a = 7.2 Å, and K = mω2

0 = 4.89 eV/Å2 (cor-
responding to h̄ω0 = 6.2 meV = 50 cm−1). As already
mentioned, we do not allow thermal expansion, which guar-
antees 〈τn〉 = τ . We used periodic lattices with 100–200 sites

FIG. 1. Potential V (u) (left) and spectral function Cuu(ω) (right)
for optical phonons. The phonon potential is of the form in Eq. (3a)
with hardening (top left, red) corresponding to c3 = 0 and c4 =
19.56 eV/Å4. The phonon softening potentials (bottom left) both
use c4 = 2.45 eV/Å4 with c3 = −4.40 and −4.65 eV/Å3 for the
single and double wells, respectively. The dashed black curve is the
harmonic potential with c3 = c4 = 0 (top left). The spectral function
Cuu(ω) is shown at different temperatures using the hardening param-
eters (top right) and the double-well softening parameters (bottom
right). The dashed lines correspond to the effective harmonic fre-
quencies ω̃0(T ) obtained using Eq. (15).

and sampled up to 50 000 trajectories for each calculation to
converge all results.

For simplicity, we consider the same set of potential param-
eters K, c3, and c4 for the optical and acoustic phonons. For
each phonon model, we consider two types of anharmonicity.
For the first type, which we call “phonon hardening,” we use
c3 = 0 and c4 = 19.56 eV/Å4; this type of purely quartic
anharmonicity will result in an increase in the phonon fre-
quency with temperature. For the second type, which we call
“phonon softening,” we use c4 = 2.45 eV/Å4 and two possi-
ble values for c3. The first value, c3 = −4.40 eV/Å3, yields
an asymmetric single-well potential; the second value, c3 =
−4.65 eV/Å3, yields an asymmetric double-well potential.

In Fig. 1, we plot these three potentials (left column)
and the temperature-dependent spectral function Cuu(ω) ∼
Re

∫
dteiωt 〈u(t )u(0)〉an (right column) for a single anhar-

monic oscillator calculated with classical dynamics. Unlike
for a harmonic potential, the anharmonic potentials lead to
spectral functions whose peaks shift to higher frequencies
(phonon hardening) or lower frequencies (phonon softening)
with increasing temperature, along with a decrease in the
phonon lifetimes. We also plot the temperature-dependent
effective frequencies (vertical dashed lines) determined by
matching the variance 〈u2〉 between the anharmonic and
effective harmonic potentials. The variance is related to
the spectral function by 〈u2〉 = ∫

dωCuu(ω), and therefore,
the effective harmonic frequency is determined by ω̃2

0 =
kBT/

∫
dωCuu(ω). We note that while the effective frequency
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FIG. 2. Momentum-resolved phonon spectral function Cuu(q, ω)
for acoustic phonons. The color map data show the spectra for
the hard mode potential (top) and double-well soft mode potential
(bottom) at two different temperatures. The solid black line shows
the harmonic dispersion 2ω0| sin(qa/2)|, while the dashed black line
shows the effective harmonic dispersion 2ω̃0(T )| sin(qa/2)|.

roughly matches the maximum of the spectral function in the
model with phonon hardening, it deviates more strongly from
the maximum in the model with phonon softening. This is
due to the more asymmetric distribution of the latter, whose
maximum does not shift significantly with temperature despite
the development of a large tail extending to lower frequencies.

When these potentials are used as the pair poten-
tial for our model of acoustic phonons, they yield the
momentum-resolved phonon spectral function Cuu(q, ω) ∼
Re

∫
dteiωt 〈uq(t )u−q(0)〉 shown in Fig. 2; results are shown

at two temperatures. With quartic anharmonicity, we see clear
phonon hardening of the entire phonon branch, with a peak
position that is well matched by the effective harmonic disper-
sion ω̃q = 2ω̃0| sin(qa/2)|, and a decreased phonon lifetime.
For the phonon softening case, there is a clear decrease in the
phonon lifetime. The effective phonon frequency shows the
expected signature of phonon softening, although the spec-
tral structure of the anharmonic result is hard to see with
the employed color scale due to the large linewidth. Like in
Fig. 1, the maximum of the spectral function does not shift
significantly, but a large tail develops that extends to low fre-
quency, which is captured in an average sense by the effective
harmonic model.

The phonon model parameters were chosen to represent
physically realistic amounts of anharmonicity. In particular,
the frequency shifts and broadenings observed in Figs. 1
and 2 are comparable to those observed in low-frequency

FIG. 3. Log-log plot of temperature-dependent mobility μ(T )
for a carrier coupled to optical phonons (left) or acoustic phonons
(right). Mobility is calculated with the dynamical Kubo formula
(top), the static Kubo formula with η = ω0/2 (middle), and the
Boltzmann transport equation (bottom). In addition to the mobility
with harmonic phonons (black dotted lines), we show mobility with
anharmonic phonons that lead to hardening (solid red lines) and
softening (blue and green lines). Results are shown with full an-
harmonicity (solid lines) and with temperature-dependent harmonic
phonons (dashed lines) according to Eq. (15).

Raman measurements and ab initio simulations of organic
crystals [5,6].

B. Optical phonons

Having constructed a model for phonon anharmonicity in
solids, we now shift our attention to the impact on electronic
transport. On the left-hand side of Fig. 3 we present the
mobility of a carrier coupled to optical phonons, using the
three levels of theory described in Sec. II: the dynamical Kubo
approach, the static Kubo approach, and the BTE. We first
consider the harmonic limit with c3 = c4 = 0 (black circles).
The dynamical Kubo approach yields a power law of roughly
μ ∝ T −1.8, consistent with other Kubo formula calculations
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[2,25–27] and Ehrenfest-style mixed quantum-classical diffu-
sion models [1,47–49]. We see that the “bandlike” power-law
behavior extends to low temperatures, but the mobility be-
gins to saturate above 500 K. This high-temperature mobility
saturation is a well-known result of the nonperturbative
quantum-classical models, equivalent to resistivity satura-
tion in metals [20,50]. The static Kubo approach with η =
ω0/2 produces similar features but exhibits different low-
temperature behavior and a different power-law exponent.
Both of these differences between static and dynamical Kubo
formula are due to the artificial lifetime η−1 in the static Kubo
formula. The dynamical Kubo formula results in a natural
lifetime that changes with temperature, most notably at low
temperature. Finally, the quasielastic BTE predicts a power
law of T −1.5 at low temperature and T −2 at high temperature
[20,26,27]; only the former is visually apparent for the current
model parameters within the temperature range shown. De-
spite the differences in their detailed behaviors, all methods
yield absolute mobilities that are within a factor of 2 of the
“exact” dynamical Kubo approach at all temperatures.

We now consider the impact of phonon anharmonicity.
Qualitatively, we expect phonon hardening to increase the mo-
bility and phonon softening to decrease the mobility because
electrons near the bottom of the band are more effectively
scattered by low-frequency phonons. Indeed, in our simu-
lations, we see that purely quartic anharmonicity leading
to phonon hardening (red lines) increases the overall mo-
bility (by no more than 50%) and slightly decreases the
power-law coefficient. Both types of anharmonicity leading
to phonon softening, an asymmetric single well (blue lines)
and a double well (green lines), reduce the mobility—by up
to a factor of 3 in the high-temperature limit of the dynamical
Kubo results. Moreover, phonon softening lowers the onset of
“high-temperature” behavior; all methods show a crossover
to μ∼ T −2 power-law behavior, but only the nonperturbative
Kubo results (dynamical or static) show the later onset of
mobility saturation [20]. For the double-well potential, the
anharmonic frequency shift is larger, and thus, the reduction in
the mobility is larger. Compared to the exact dynamical Kubo
method, the static Kubo method overestimates the reduction
in the mobility.

Replacing the anharmonic phonons by effective harmonic
phonons (dashed lines) is seen to be an excellent approx-
imation. For the dynamical Kubo approach, the agreement
is almost perfect, suggesting that the phonon lifetime has
no appreciable effect on the mobility. This is not surprising
given the separation of timescales for the parameters used
here: the electronic lifetimes are hundreds of femtoseconds,
and the phonon lifetimes are thousands of femtoseconds, even
at high temperature. Within the static Kubo framework, dis-
crepancies between mobilities with the effective harmonic
and with fully anharmonic potential are due to the shape of
the disorder distribution. While both cases have the same
electronic disorder variance 〈(τn − τ )2〉, the fully anharmonic
potential produces a highly non-Gaussian distribution, which
modifies the electronic dynamics. The agreement is best for
purely quartic (hardening) anharmonicity because the distri-
bution is symmetric and thus can be accurately modeled by
an appropriate Gaussian distribution; the asymmetric distri-
butions associated with phonon softening present a greater

FIG. 4. AC conductivity per carrier (Na/e)σ (ω) with coupling to
optical (left) and acoustic phonons (right). Conductivities are calcu-
lated using the dynamical Kubo formula (solid lines) and are shown
at different temperatures for harmonic phonons (top), anharmonic
phonons that harden with temperature (middle), and double-well
anharmonic phonons that soften with temperature (bottom). Dashed
lines use an effective harmonic potential with ω̃0 from Eq. (15).

challenge. Another contributor to the static Kubo mobility
is the electronic lifetime η−1. We used a constant η = ω0/2
regardless of the effective frequency ω̃0(T ) for the static Kubo
results; using η = ω̃0(T )/2 was found to produce an even
larger discrepancy with the dynamical Kubo results and a
large overestimate of the effect of phonon softening on carrier
mobility.

The BTE framework qualitatively captures the effect of
phonon hardening; in fact, the mobility is just scaled by a
factor of ω̃0(T )/ω0. Phonon softening accentuates the dis-
agreement between BTE and the nonperturbative Kubo results
since it reduces the onset temperature of mobility satura-
tion, which cannot be captured by the BTE. In summary,
the DC mobility of an electron coupled to anharmonic opti-
cal phonons is accurately reproduced by effective harmonic
phonons within the full dynamical Kubo formula; this approx-
imation becomes less accurate for the static Kubo approach.
This effective harmonic approximation is the only way to
apply BTE, which becomes increasingly inaccurate at high
temperature, especially in the presence of phonon softening.

In Fig. 4, we show the frequency-resolved AC conductivity
of the same systems calculated with the dynamical Kubo
formula at three temperatures: 100, 300, and 500 K. In the
harmonic limit, we see the characteristic features of asymmet-
ric electron-phonon coupling to optical phonons [25,26,51].
Peaks appear at low frequency (below 50 meV) and at
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multiples of the half bandwidth 2τ (around 300 and 600 meV).
With increasing temperature, the spectral weight shifts to
higher energies, and the DC mobility is reduced. In the pres-
ence of pure quartic anharmonicity (phonon hardening), we
see very similar results, although the anharmonicity induces
a slight shift of spectral weight to lower energies, consistent
with the increased mobility. The effective harmonic model
produces nearly exact results at all frequencies, extending the
agreement seen in the mobility. When the anharmonicity is
of the double-well form (phonon softening), we find a low-
temperature conductivity similar to the harmonic or quartic
anharmonic cases but quite different high-temperature con-
ductivities with significantly less structure. While the effective
harmonic model can reproduce the DC conductivity of the
anharmonic model reasonably well, it is less successful for
the full AC conductivity, especially at higher temperatures.
Results obtained with the static Kubo formula (not shown)
confirm that this discrepancy is not a phonon lifetime effect,
but rather is due to the harmonic approximation’s inability to
capture the non-Gaussian distribution of electronic disorder.

C. Acoustic phonons

We now study an electron coupled to anharmonic acoustic
phonons, recalling that it has been previously demonstrated
that, within the harmonic approximation, acoustic phonons
and optical phonons lead to qualitatively different trans-
port behavior [27,52]. The right-hand side of Fig. 3 shows
the temperature-dependent mobility. For harmonic acoustic
phonons, the dynamical Kubo formula predicts a power law
of roughly μ ∝ T −1/2 below 500 K. In the regime where
saturation occurs for optical phonons, the mobility has the
opposite behavior for acoustic phonons, showing an increased
power-law coefficient; mobility saturation will occur at very
high temperature but is not evident for harmonic acoustic
phonons at the temperatures shown [27]. Static Kubo and BTE
calculations show similar behavior, although the power-law
exponent of the static Kubo mobility is overestimated. Sur-
prisingly, the BTE mobility is more accurate than the static
Kubo mobility, presumably due to the latter’s use of a constant
η. In agreement with the dynamical Kubo results, the BTE
predicts μ ∝ T −1/2 at low temperature and μ ∝ T −2 at high
temperature.

Turning to the impact of anharmonicity, we see that acous-
tic phonon hardening produces the expected behavior based
on our previous analysis: it increases the mobility and re-
duces the power-law coefficient, effects that are qualitatively
captured by all three methods. Acoustic phonon softening
decreases the mobility and introduces mobility saturation at
lower temperatures. Unlike for optical phonon anharmonicity,
phonon hardening generally modifies the mobility more than
phonon softening.

Again, we find that phonon hardening effects are well
reproduced by an effective harmonic model. However, phonon
softening is even harder to capture with a harmonic model
than it was for optical phonons; the mobility is overestimated
at all temperatures, and disagreement is most severe for the
static Kubo approach. The BTE mobility is remarkably sim-
ilar to the dynamical Kubo mobility and semiquantitatively
captures the effects of all types of anharmonicity.

FIG. 5. Static Kubo formula mobility with η = ω0/2 (top) and
example distributions of transfer integral τn at 500 K (bottom) for
an electron coupled to a soft acoustic mode. All distributions in
the bottom panel share the same average transfer integral 〈τn〉 = τ

and variance 〈(τn − τ )2〉 = 0.123τ 2, with the red and blue curves
differing only in the sign of the cubic coefficient c3 = ±4.65 eV/Å3.
Both potentials lead to the same effective harmonic distribution of τn

and mobility (green dashed lines).

The frequency-resolved AC conductivity calculated by the
dynamical Kubo approach with harmonic and anharmonic
acoustic phonons is shown on the right-hand side of Fig. 4.
With coupling to acoustic phonons, the AC conductivity is sig-
nificantly different from that with coupling to optical phonons.
Specifically, there is absolutely no structure at high frequen-
cies, only a DC conductivity and a simple maximum at low
frequency. For this reason, the effective harmonic approxi-
mation is more successful than it was for optical phonons.
The agreement is worst with phonon softening, where the
effective harmonic approximation slightly underestimates the
linewidth.

Before concluding, we give an example of the chal-
lenge associated with effective harmonic approximations. We
consider two versions of the asymmetric double-well pair
potential, leading to acoustic phonon softening: one with c3 =
−4.65 eV/Å3 (the same one considered so far) and one with
c3 = +4.65 eV/Å3. In the bottom panel of Fig. 5, we show
the distribution of nearest-neighbor transfer integrals P(τn).
Both anharmonic potentials have the same mean 〈τn〉 and
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variance 〈(τn − τ )2〉; therefore, the effective harmonic poten-
tial constructed according to our prescription (15) is identical.
The top panel of Fig. 5 shows the static Kubo mobility for
each of these three potentials. We see that the magnitude and
temperature dependence of the mobility differs depending on
the sign of c3, an effect that cannot be captured by an effective
harmonic model. While asymmetric potentials are difficult to
capture using a harmonic model for optical modes, the issue
of asymmetric distributions of τn is not present in (strictly
dispersionless) optical phonons. This is because un+1 and un

are uncorrelated, which yields a symmetric distribution for τn

even for asymmetric potentials. Correlated nearest-neighbor
displacements, like those in acoustic phonons, produce an
asymmetric distribution of τn and thus create the ambiguity
demonstrated here.

IV. CONCLUSIONS

We have demonstrated the impact of low-frequency
phonon anharmonicity on the equilibrium electronic dynam-
ics of soft materials and assessed the accuracy of various
approximations. For all methods, we see a change in the
magnitude and temperature dependence of the mobility based
on the strength and form of the anharmonicity. Within the
dynamical Kubo formula, changes to the mobility are well
characterized by an effective harmonic model of phonons,
especially for optical phonons. The effective harmonic model
is less accurate when the static Kubo formula is employed.
This discrepancy is especially apparent for acoustic phonons,
where the correlated phonon motion can lead to asymmetric
disorder profiles that cannot be unambiguously modeled by a
harmonic potential.

Future work could include lattice expansion or lattice
strain, studies of which have been mostly limited to har-
monic models [53,54]. The approaches described are quite
general and could be applied to other soft materials such as
metal-oxide perovskites [17], lead-halide perovskites [3,16],
and thermoelectric materials [55,56], perhaps in an ab initio
framework. Although we do not expect the quantum-classical
approaches employed here to work well for high-frequency
anharmonicities, their effects are not expected to be signifi-
cant except at very high temperatures. We are also interested
in applying these methods to study nonequilibrium elec-
tronic dynamics [57,58], for which we expect the impact
of nonperturbative electron-phonon interactions and phonon
anharmonicity to be larger.
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