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Quantum states in disordered media. II. Spatial charge carrier distribution
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The space- and temperature-dependent electron distribution n(r, T ) is essential for the theoretical description
of the optoelectronic properties of disordered semiconductors. We present two powerful techniques to access
n(r, T ) without solving the Schrödinger equation. First, we derive the density for nondegenerate electrons
by applying the Hamiltonian recursively to random wave functions (RWF). Second, we obtain a temperature-
dependent effective potential from the application of a universal low-pass filter (ULF) to the random potential
acting on the charge carriers in disordered media. Thereby, the full quantum-mechanical problem is reduced
to the quasiclassical description of n(r, T ) in an effective potential. We numerically verify both approaches by
comparison with the exact quantum-mechanical solution. Both approaches prove superior to the widely used
localization landscape theory (LLT) when we compare our approximate results for the charge carrier density and
mobility at elevated temperatures obtained by RWF, ULF, and LLT with those from the exact solution of the
Schrödinger equation.
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I. INTRODUCTION

Short-range disorder potentials govern the optoelectronic
properties of a wide variety of disordered materials designed
for applications in modern electronics [1]. In this work we
address the theoretical description of the energetically low-
lying, spatially localized states in several classes of disordered
materials.

One broad class of widely studied disordered materials
are semiconductor alloys with electronic states localized by
a short-range disorder potential. Alloys are crystalline semi-
conductors, such as Ax̄B1−x̄, whose lattice sites are occupied
in a given proportion x̄ by chemically different isoelectronic
atoms, A and B. Research on semiconductor alloys currently
experiences a renaissance because alloying is one of the most
efficient tools to adjust material properties for device appli-
cations. For example, alloying permits one to tune lattice
constants, effective masses of charge carriers, and, most im-
portantly, the band-structure of the underlying semiconductor.
In particular, band gaps in alloy semiconductors are sensitive
to the mole fractions x̄ and 1 − x̄ of the alloy components.
Since the band gap is a key property responsible for light
absorption and emission, band-gap tunability in a wide en-
ergy range opens rich perspectives for applications of alloy
semiconductors in various optoelectronic devices. Over recent
years, this band-gap engineering has been applied to nitride
semiconductors used in modern LEDs [2], to perovskites for
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applications in photovoltaics [3,4], and to two-dimensional
systems, such as transition metal dichalcogenides, desired to
miniaturize the corresponding devices toward nearly atomi-
cally thin dimensions [5,6].

Another class of disordered materials with short-range dis-
order potentials are amorphous oxide semiconductors, such
as InGaZnO, desired for applications in thin-film transistors
for transparent and flexible flat-panel displays [7,8]. Also
traditional amorphous semiconductors, such as hydrogenated
amorphous silicon, hydrogenated amorphous carbon, poly-
crystalline and micro-crystalline silicon, belong to disordered
materials, whose optoelectronic properties are governed by
short-range disorder potentials. Such amorphous semiconduc-
tors are desired for applications in Schottky barrier diodes, pin
diodes, thin-film transistors, and thin-film solar cells [1].

Besides their unique properties favorable for device appli-
cations, materials with short-range disorder are advantageous
systems for developing and testing theoretical descriptions of
disorder effects. The compositional fluctuations in alloys and
structural short-range fluctuations in oxide and amorphous
semiconductors cause spatial fluctuations of the band gap
which creates a random potential acting on electrons and
holes. The isoelectronic substitution of the alloy components
and/or amorphous atomic structure creates a short-range fluc-
tuating crystal potential, and the physics is not complicated by
long-range effects. The random potential leads to the spatial
localization of charge carriers in electron states at low ener-
gies that dominate the optoelectronic properties of disordered
semiconductors. Therefore, the low-energy localized electron
states require an appropriate theoretical description.

Already in the 1960s, a powerful theoretical tool to calcu-
late the density of low-energy localized states (DOS) without
solving the Schrödinger equation was developed by Halperin
and Lax [9]. They recognized that the spatial spread of wave
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functions even in the low-energy localized states is much
broader than the spatial scale of the fluctuations in the ran-
dom potential V (r). Hence, they proposed to apply a filter to
smooth V (r) where the absolute square of the wave function
serves as the filter function [9]. Later, Baranovskii and Efros
[10] addressed the same problem by a slightly different vari-
ational technique and confirmed the result of Halperin and
Lax for the low-energy tail of the DOS. Theoretical studies
have been performed for various kinds of disordered semi-
conductors that focus on the averaged DOS, leaving aside
the temperature-dependent spatial distribution of the elec-
tron density n(r, T ). However, the knowledge of n(r, T ) in
a random potential is required to study theoretically charge
transport and light absorption/emission in disordered semi-
conductors.

The distribution n(r, T ) is obtained from the solution
of the Schrödinger equation in the presence of a disorder
potential. However, solving the Schrödinger equation is ex-
tremely demanding with respect to computational time and
computer memory. It is hardly affordable for applications
to realistically large chemically complex systems. Therefore,
theoretical tools to obtain the essential features of localized
states without solving the Schrödinger equation are highly
desirable.

One of such tools is the recently introduced “localiza-
tion landscape theory” (LLT) [11–14]. The LLT is widely
considered as one of the efficient theoretical approaches to
calculate the local density of states in disordered systems, for
instance, in light-emitting diodes [2,15–21] and in photode-
tectors [22,23]. The LLT has been used to simulate the carrier
effective potential fluctuations induced by alloy disorder in
InGaN/GaN core-shell microrods [24]. Furthermore, the LLT
has been applied to compute the eigenstate localization length
at very low energies in a two-dimensional disorder potential
[25]. The LLT is sometimes considered capable to reveal
errors in the finite element method software in applications to
alloys [26]. The LLT is an important ingredient for calculating
quantum corrections in drift-diffusion models [27–29]. It has
been used for the computation of light absorption in three-
dimensional InGaN alloys of different compositions [30] and
in mixed halide perovskites [31].

The LLT is based on a mathematical theory of quantum
localization that introduces an effective localization poten-
tial. Using the effective potential, the quantum mechanical
problem reduces to a quasiclassical description of charge
carriers localized in the effective potential landscape. This
allows the prediction of localization regions for electrons and
holes, of their corresponding energy levels, and of the (local)
densities of states. The effective potential can be directly
implemented in a drift-diffusion model of carrier transport
and into the calculation of absorption/emission transitions
so that physical features on a mesoscopic scale become
accessible.

In the preceding paper [32], it was shown that the LLT
becomes equivalent to the low-pass filter approach of Halperin
and Lax [9] for the specific case of a Lorentzian filter when
applied to the Schrödinger equation with a constant mass. In
this work, we propose two recipes for calculating n(r, T ) in
disordered systems without solving the Schrödinger equation,
both of them prove to be superior to the LLT.

The first recipe is the random-wave-function (RWF) al-
gorithm described in Sec. II C. In this approach, many sets
of random wave functions are generated for a given real-
ization of the potential V (r) acting on the charge carriers.
Such procedure has been suggested by Lu and Steinerberger
[33] to search for the low-lying eigenfunctions of various
linear operators. After a repeated application of the thermal
operator, the temperature-dependent electron density is found
from averaging the results over different sets. This procedure
provides reliable results for n(r, T ) for fairly large systems.
The RWF approach has the following advantages over the
LLT. While the output of the LLT depends on the choice of
an adjustable parameter that can be found only by comparison
with the exact solution, the RWF scheme does not contain
any adjustable parameters. Furthermore, the accuracy of the
RWF approach for computing n(r, T ) can be improved sys-
tematically, whereas the accuracy of the LLT is limited by
construction. Moreover, all temperatures are accessible for the
RWF algorithm, whereas LLT is valid only at sufficiently high
T , as discussed in Sec. IV.

The second recipe employs an effective temperature-
dependent potential W (r, T ) that permits a quasiclassical
calculation of the particle density. The effective potential is
obtained from the random potential V (r) by applying a uni-
versal low-pass filter (ULF), as described in Sec. III D 3. This
approach resembles the one suggested by Halperin and Lax
[9]. In our work, we use a low-pass filter to compute the
spatial electron distribution n(r, T ) while Halperin and Lax
and their successors focused on the features of the averaged
DOS. The ULF algorithm is equivalent to the LLT inasmuch
it replaces the random potential V by an effective potential
W that is used for a quasiclassical description of the electron
distribution. However, the ULF scheme of converting V into
W principally differs from the LLT scheme. While LLT is
based on solving a system of algebraic equations, the ULF
algorithm employs Fast-Fourier Transformation to calculate
the effective potential W so that very large systems can be
addressed. More importantly, the ULF description leads to
an explicit temperature dependence of the effective potential,
W ≡ W (r, T ). On the contrary, the effective potential in LLT
does not depend on T . This feature is the main disadvantage
of the LLT as compared to the ULF algorithm. Consequently,
the range of applicability for the ULF scheme is much broader
than that for the LLT, as illustrated in Sec. IV. Typically, the
ULF description encompasses the experimentally accessible
temperature regime.

In our theoretical consideration, we consider electrons as
noninteracting particles. Commonly, electron-electron inter-
actions are taken into account in the self-consistent solution
of the Schrödinger equation and Poisson equation. Since we
suggest to replace the solution of the Schrödinger equation in
search for n(r, T ) by RWF or ULF techniques, the latter
methods should be exploited in a self-consistent combination
with the Poisson equation to simulate realistic conditions met
in devices.

Our paper is structured as follows. In Sec. II, we develop
the RWF algorithm to calculate n(r, T ) for dilute charge car-
riers in disordered media.

In Sec. III, we derive the temperature-dependent effective
potential W (r, T ) that permits a semiclassical description of
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the particle density. The algorithm employs a ULF function
and a temperature-dependent shift that we derive and analyze
in detail.

The space- and temperature-dependent electron distribu-
tion n(r, T ) is the key ingredient for the theoretical treatment
of charge transport. In Sec. IV, we analyze the results of
different approaches for the particle density and for the charge
carrier mobility in disordered media at elevated temperatures.

Conclusions in Sec. V close the main part of our presenta-
tion. Minor technical aspects of our work are deferred to two
Appendices.

II. ELECTRON DENSITY IN DISORDERED MEDIA

In this section we develop the random-wave-function al-
gorithm to calculate the electron density in nondegenerate
systems at finite temperatures. We start with definitions in
Sec. II A. Then, in Sec. II B, we express the particle density
as an average over a random combination of eigenstates. In
Sec. II C, we summarize the main steps of the algorithm.
Finally, in Sec. II D, we illustrate the algorithm and demon-
strate its efficacy for disordered systems in one, two, and three
dimensions.

A. Electron density for potential problems

Let us consider a system of noninteracting electrons gov-
erned by a single-particle Hamiltonian

Ĥ = T̂ + V̂ , (1)

where T̂ describes their kinetic energy and V̂ is some potential
in the specimen volume �. We are interested to calculate the
electron density n(r, T ) in thermal equilibrium at temperature
T . The eigenstates of the Hamiltonian |ϕi〉 with eigenenergies
εi,

Ĥ |ϕi〉 = εi|ϕi〉, (2)

have the position-space representation ϕi(r),

ϕi(r) = 〈r|ϕi〉, (3)

and |ϕi(r)|2 gives the probability to find the electron at r in
the eigenstate |ϕi〉. Correspondingly, the eigenfunctions are
normalized by unity, ∫

�

|ϕi(r)|2 dr = 1, (4)

because the electron can be found somewhere in the specimen.
In the presence of a finite number of electrons N in �, the

electron density n(r, T ) at temperature T is defined by

n(r, T ) = 2
∑

i

|ϕi(r)|2 fFD(εi), (5)

where the factor two accounts for the spin degeneracy and
fFD(ε) is the equilibrium (Fermi-Dirac) distribution function,

fFD(ε) = 1

1 + eβ(ε−μ)
, (6)

where β = 1/(kBT ) with the Boltzmann constant kB and μ ≡
μ(T ) is the chemical potential. It is fixed by the condition

n = N

�
=

∫
�

dr n(r, T ). (7)

In most disordered materials, the average electron density
n(r, T ) is small so that the electrons’ Fermi statistics can be
ignored (nondegenerate case). Then, the Fermi-Dirac distribu-
tion can be replaced by the Maxwell-Boltzmann distribution

fMB(ε) = e−β(ε−μ). (8)

In the Maxwell-Boltzmann approximation we can factor out
the chemical potential,

n(r, T ) = eβμ ñ(r, T ), (9)

where the reduced electron density ñ(r, T ) is determined only
by the eigenstates ϕi(r), their eigenenergies εi, and the tem-
perature,

ñ(r, T ) = 2
∑

i

|ϕi(r)|2 exp(−βεi ). (10)

We note in passing that the approximation of nondegenerate
electrons does not hold for band-structure theory in solid-state
physics. Therefore, our formalism below cannot be applied,
e.g., in density-functional theory calculations.

For numerical calculations, we assume that the Hamilto-
nian Ĥ is defined on a regular grid with L sites. The volume
assigned to a grid node thus is �V = �/L. A wave function
takes complex amplitudes on nodes of the lattice. The value
ψ (r) of some state |ψ〉 at r is obtained from

ψ (r) = 1√
�V

〈rn|ψ〉, (11)

where r is in the grid-node volume �V around the grid
point rn.

As a consequence of the discretization, the set of eigenen-
ergies {εi} is bounded within a finite range,

∀i : εmin � εi � εmax, (12)

with some lower and upper bounds εmin and εmax, respectively.
Generically, εmax is determined by the distance between grid
points, whereas εmin is a defining property of the problem
itself. We make the discretization fine enough, L � 1, so that
we can safely assume that

|εmax| � |εmin|. (13)

For simplicity, we assume that the Hamiltonian Ĥ can be
represented by a real symmetric matrix. To simplify the no-
tations, we also assume that its eigenfunctions ϕi(r) are real.
The generalization to complex-valued Hamiltonian matrices
and eigenfunctions is straightforward.

B. Analysis

Consider a set {c(0)
i } of L independent random variables,

one per eigenstate |εi〉. Each variable c(0)
i is taken from a

normal distribution with expectation value zero and variance

064207-3



A. V. NENASHEV et al. PHYSICAL REVIEW B 107, 064207 (2023)

unity. Thus, when we take a large number NR of realizations
R of the sets we obtain〈

c(0)
i,R

〉
R = 1

NR

NR∑
R=1

c(0)
i,R = 0,

〈
c(0)

i,Rc(0)
j,R

〉
R = 1

NR

NR∑
R=1

c(0)
i,Rc(0)

j,R = δi, j . (14)

For a given realization R, we use the random variables c(0)
i,R as

coefficients to construct a wave function ψ
(0)
R (r),

ψ
(0)
R (r) =

L∑
i=1

c(0)
i,R ϕi(r). (15)

Obviously, the mean value of these wave functions over many
realizations vanishes,

〈
ψ

(0)
R (r)

〉
R =

L∑
i=1

〈
c(0)

i,R

〉
Rϕi(r) = 0. (16)

For the calculation of the two-point correlation, we assume
that rn and rm are grid nodes to write〈

ψ
(0)
R (rn)ψ (0)

R (rm)
〉
R =

∑
i, j

〈
c(0)

i,Rc(0)
j,R

〉
Rϕi(rn)ϕ j (rm)

=
∑

i

ϕi(rn)ϕi(rm)

= 1

�V

∑
i

〈rn|ϕi〉〈ϕi|rm〉

= 1

�V
〈rn|rm〉

=
{

1/�V if n = m,

0 otherwise. (17)

Here we used Eqs. (11), (14), (15), and the fact that the eigen-
functions |ϕi〉 form a complete orthonormal set. Equation (17)
shows that the values of ψ

(0)
R (rn) at different grid nodes are

independent random variables that obey a normal distribution
with expectation value equal to zero and variance equal to
1/�V .

To introduce the temperature into the problem, we consider
the wave function ψR(r) that is related to ψ

(0)
R (r) via

|ψR〉 = e−βĤ/2
∣∣ψ (0)

R

〉
. (18)

We expand it over the eigenfunctions ϕi(r),

ψR(r) =
∑

i

ci,Rϕi(r), (19)

to find the relation between the two sets of coefficients ci and
c(0)

i . To this end we apply the operator e−βĤ/2 to both sides of
Eq. (15) and take into account that |ϕi〉 are eigenstates of the
Hamiltonian. This gives

ci,R = c(0)
i,R exp(−βεi/2). (20)

Using Eqs. (14) and (20), we thus find that

〈ci,Rc j,R〉R = δi, j exp(−βεi ). (21)

With the help of this correlation, we find the mean value of
|ψR(r)|2,

〈|ψR(r)|2〉R =
∑
i, j

〈ci,Rc j,R〉Rϕi(r)ϕ j (r)

=
∑

i

exp(−βεi )|ϕi(r)|2, (22)

or, comparing with Eq. (10),

〈|ψR(r)|2〉R = 1
2 ñ(r, T ). (23)

Hence, the electron density can be calculated by averaging the
functions |ψR(r)|2 over many realizations R. This is the basic
idea of the random-wave-function algorithm that we present
in more detail in the next subsection.

Our algorithm requires the application of the exponential
operator exp(−βĤ ) to a given wave function. In practical
applications, this cannot be done exactly. We use an algebraic
approximation,

e−βĤ/2 ≈ (1 − αĤ )M, (24)

with a natural number M equal to

M ≈ β

2α
. (25)

The parameter α can be chosen to minimize the residual
error. The action of operator exp(−βĤ/2) suppresses the
high-energy components in |ψR〉 relative to its low-energy
ones. The algebraic approximation on the right-hand side
of Eq. (24) must have a similar effect, i.e., the factor (1 −
αεmax)M has to be small with respect to (1 − αεmin)M in abso-
lute values, thence

|1 − αεmax| < |1 − αεmin| (26)

must hold. The term αεmin can be neglected because |εmin| 	
|εmax| due to Eq. (13). Then, the inequality (26) reduces
to −1 < 1 − αεmax < 1. We note that εmax > 0 because this
quantity is determined mainly by the maximal kinetic energy
in a discretized system. Therefore, we obtain the following
constraints on α,

0 < α <
2

εmax
. (27)

However, a good approximation in Eq. (24) requires that the
number M should be large. Using Eq. (25) and recalling that
β = 1/(kBT ), we can rewrite the condition M � 1 in the form

α 	 1

kBT
. (28)

Usually kBT 	 εmax, and, as a consequence, the stronger con-
dition (27) overrides the weaker condition (28).

C. Synthesis: The random-wave-function algorithm

The considerations presented in the previous subsection
suggest the following random-wave-function algorithm for
calculating the electron density n(r, T ) in nondegenerate non-
interacting electron systems.

S1 For each grid node rn, choose a random number
ψ

(0)
R (rn) from a normal distribution with expectation value

zero and variance 1/�V . All these random numbers are
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chosen independently, so that the function ψ
(0)
R (r) itself repre-

sents a sample of Gaussian white noise. The set of all numbers
constitutes the realization R.

S2 Apply the following transformation M times,

ψ (m) = ψ (m−1) − αH ψ (m−1) (29)

with m = 1, 2, . . . , M. Here, ψ (m) is the vector that represents
the wave function on the grid, and H is the matrix representa-
tion of the Hamiltonian on the grid. Recall that M is given by
Eq. (25), and α obeys the inequalities (27). In our calculations
we find that

α = 1.5

εmax
(30)

is a suitable choice.
S3 Calculate an estimate of the reduced electron density

ñR(r, T ) as

ñR(rn, T ) = 2 |ψ (M )(rn)|2 (31)

on each grid point rn.
The steps S1–S3 are carried out for a large number NR of

realizations R of ψ
(0)
R (r). Then, the electron density n(r, T ) is

the arithmetic mean of the functions ñR(r) obtained for differ-
ent realizations R, multiplied by a chemical-potential-related
factor eβμ,

n(r, T ) = eβμ〈ñR(r, T )〉R. (32)

The larger the number of realizations NR, the more accu-
rate is the calculated electron density n(r, T ). A convenient
measure of the accuracy is the relative error �(r, T ),

�(r, T ) = nrwf(r, T ) − nexact(r, T )

nexact(r, T )
, (33)

where nrwf(r, T ) is calculated using the random-wave-
function algorithm, and the exact value nexact(r, T ) is defined
by Eqs. (9) and (10). As we show in Appendix A, the expec-
tation value of �2 is equal to

〈[�(r, T )]2〉 = 2

NR
, (34)

i.e., the typical deviation from the exact result is not larger
than

√
1/NR.

To calculate the mean value in Eq. (32), it is necessary to
store the cumulative function∑

R

ñR(r) (35)

in the memory, and to update it after processing of each
realization R.

It is easy to estimate the resources of memory and com-
putation time (or number of operations) demanded by the
random-wave-function algorithm. It is enough to store in the
memory 4L real numbers, namely, L entries for the potential
energy in the Hamiltonian, 2L numbers for the wave functions
ψ (m) and ψ (m−1) at Step S2, and L values for the sum (35).
Almost all computation time is spent at Step S2. It takes
A 
 LMNR operations. Indeed, applying the Hamiltonian to
a wave function costs O(L) operations due to the fact that
the potential is local and the kinetic energy is a local second

derivative. Applying the Hamiltonian repeats M times for each
of NR realizations. Let us further express the quantities L, M,
and NR via the sample volume �, the distance between grid
points a, and the desired relative error � using Eqs. (25), (30),
and (34),

L 
 �

ad
, M 
 εmax

kBT

 h̄2

ma2kBT
, NR 
 1

�2
, (36)

in a d-dimensional system. Therefore, the estimate for the
number of arithmetical operations becomes

A 
 LMNR 
 h̄2

mkBT

�

ad+2�2
(37)

when expressed in terms of physical quantities. It is impor-
tant to note that our algorithm is easily parallelized because
different realizations R of the wave function ψ

(0)
R (r) can be

processed completely independently.

D. Example: Electrons in a random potential

In this subsection we demonstrate how to use the random-
wave-function algorithm.

1. White-noise potential and dimensionless units

To be definite, we consider a noninteracting electron gas
in a one-dimensional (1D), a two-dimensional (2D), and a
three-dimensional (3D) white-noise random potential. Such a
potential V (r) is characterized by the statistical properties

〈VR(r)〉R = 0, 〈VR(r)VR(r + r′)〉R = S δ(r′), (38)

when the average is taken over many realization R of the
random potential VR(r). The strength of the disorder is char-
acterized by the parameter S. The actual value of S depends on
the origin of the random potential. For instance, compositional
disorder in a semiconductor alloy Ax̄B1−x̄ leads to [34]

S = [α(x̄)]2x̄(1 − x̄)

N
, (39)

where N is the concentration of atoms and αc(x̄) = dEc(x̄)/dx̄
for electrons, αv (x̄) = dEv (x̄)/dx̄ for holes as a function of the
band edge positions Ec,v (x̄).

We discretize this system using a regular grid of points,
equally spaced along each dimension. This is a quadratic grid
in 2D, and a simple cubic grid in 3D. The distance between
neighboring grid points is a. To discretize the single-particle
Hamiltonian Ĥ , we use the simplest difference scheme for the
Laplacian operator,

ĤRψ (r) = − h̄2

2m

d∑
s=1

ψ (r − aes) + ψ (r + aes) − 2ψ (r)

a2

+VR(r)ψ (r), (40)

where r ≡ rn is a grid point, and e1, . . . , ed are unit vectors
along the coordinate axes. The realization VR(rn) of the ran-
dom potential at the grid points are chosen as independent
random numbers, uniformly distributed within the range

−
√

3S

ad
< VR(rn) <

√
3S

ad
. (41)
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One can easily see that this distribution satisfies the properties
(38). Indeed, the discretization converts the δ function,

δ(r − r′) →
{

1/ad if r ≡ rn = rm ≡ r′,
0 if rn = rm,

(42)

and therefore Eq. (38) takes the form 〈VR(rn)〉R =
0, 〈[VR(rn)]2〉R = S/ad , and 〈VR(rn)VR(rm)〉R = 0 for
rn = rm. The uniform distribution (41) meets these criteria.

It is convenient to work with dimensionless quantities. We
note that it is always possible to fix the values of the Planck
constant h̄, the Boltzmann constant kB, the effective mass m,
and the disorder strength S by a proper choice of physical
units. So we set all these quantities to unity,

h̄ = kB = m = S = 1. (43)

To do this, we choose a physical unit of length

�0 =
(

h̄4

m2S

)1/(4−d )

, (44)

and the corresponding unit of energy

ε0 =
(

md S2

h̄2d

)1/(4−d )

. (45)

Then, the unit of time is t0 = h̄/ε0, and the unit of temperature
is T0 = ε0/kB. As an example, we mention that in a 2D system
with compositional disorder, for α = 0.5 eV, N = 1015 cm−2,
x = 0.5, and m = 0.1 m0, the units of length, energy, and tem-
perature are equal to �0 = 9.6 nm, ε0 = 8.3 meV, and T0 =
96 K, respectively.

In the rest of this section, the physical units are chosen such
that the equalities (43) hold. The dimensionless value of the
discretization step is set to a = 0.1�0, and the dimensionless
value of temperature is set to T = T0 ≡ 1, unless stated other-
wise. Periodical boundary conditions apply.

2. One-dimensional case

An example of the electron density distribution in a
one-dimensional white-noise potential is shown in Fig. 1.
For convenience, we plot the reduced density ñ(x, T ) =
e−βμn(x, T ) that is independent of the chemical poten-
tial μ(T ). Here, x is the coordinate along the sample, and
the electrons are noninteracting. The solid orange line de-
picts the exact function ñ(x, T ), calculated from the exact
eigenvectors ϕi(x) and eigenvalues εi of the single-particle
Hamiltonian via Eq. (10). The dashed green line and the
dotted black line are the reduced electron densities calculated
by our algorithm using NR = 20 and NR = 1000 independent
realizations, respectively. As seen from the figure, even with
few iterations, NR = 20, the algorithm reasonably reproduces
the shape of ñ(x, T ). With NR = 1000, the electron density
almost perfectly reproduces the exact result.

To quantify the accuracy of the random-wave-function al-
gorithm with NR = 1000, we calculate the distribution of the
relative error �, as defined in Eq. (33). The histogram of �

is represented in Fig. 2. The red line in this figure shows
a Gaussian distribution with the mean-square value equal
to

√
2/NR ≈ 0.045, according to Eq. (34). The agreement

between numerical (bars) and theoretical (line) distributions

FIG. 1. Reduced electron density ñ(x, T ) = e−βμn(x, T ) as a
function of coordinate x in a sample with one-dimensional white-
noise potential. Solid orange line: exact density calculated using
Eq. (10). Other lines: density calculated by the random-wave-
function algorithm with NR = 20 (green dashed line) and NR =
1000 (black dotted line) realizations. Dimensionless units defined in
Eqs. (43)–(45) are used. The sample size is equal to 30 dimensionless
units, the discretization parameter is a = 0.1, the temperature is
T = 1.

demonstrates the correctness of the estimate (34) for the accu-
racy of the random-wave-function algorithm.

The only free parameter of the model is the dimensionless
temperature T . So far, we tested our algorithm for T = T0

only. Now, we apply it for a variety of temperatures, 0.1T0 �
T � 10T0. The results for the reduced electron density ñ(x, T )
are shown in Fig. 3. Lines represent the exact density calcu-
lated by a diagonalization of the Hamiltonian and applying

FIG. 2. Distribution of the relative error � of the random-
wave-function algorithm with NR = 1000 in a sample with a
one-dimensional white-noise potential. The quantity � is defined in
Eq. (33). Blue bars: histogram of the numerically obtained distribu-
tion. Red line: Gaussian distribution with expectation value zero and
variance 2/NR. Parameters are the same as in Fig. 1, except for the
sample size that equals 500 dimensionless units.
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FIG. 3. Comparison between exact (solid lines) and approximate
(symbols) reduced electron density ñ(x, T ) = e−βμn(x, T ) in a one-
dimensional white-noise potential at different temperatures T and
NR = 1000 iterations. All other parameters are the same as in Fig. 1,
except for the temperature. For clarity, the lowest three curves are
scaled down by a multiplication by 10−3, 10−2, and 10−1, as indicated
in the legend.

Eq. (10). Dotted lines are obtained by the random-wave-
function algorithm with NR = 1000 independent realizations.
Just as in Fig. 1, we see that the algorithm enables a very
accurate calculation of the electron density. The algorithm is
thus seen to work for a broad range of temperatures.

3. Two- and three-dimensional cases

We perform similar numerical studies for 2D and 3D
samples of a random white-noise potential. For the sake of
comparison with the exact electron density, we consider rather
small samples, with the number of grid nodes L less than
10 000. This permits a complete numerical diagonalization
of the Hamiltonian to obtain the exact value of the electron
density via Eqs. (9) and (10) for reference. The size of the 2D
sample is chosen to be 5 × 5 dimensionless units (L = 2500),
and the size of the 3D sample is chosen to be 2 × 2 × 2
dimensionless units (L = 8000), with grid period a = 0.1.

For the 2D sample, profiles of the reduced electron density
ñ(x, y, T ) along the x axis at several values of y are shown
in Fig. 4. Similarly, the x profiles of the reduced density
ñ(x, y, z, T ) in the 3D sample at fixed values of y and z are
shown in Fig. 5. The color scheme in these figures is the same

FIG. 4. Reduced electron density ñ(x, y, T ) in a two-dimensional
sample with white-noise potential. We compare the exact reduced
density (solid orange line) with the approximate reduced density
obtained from the random-wave-function algorithm (dashed green
line for NR = 20 and dotted black line for NR = 1000). Profiles along
the x axis with different values of coordinate y are shown (see inset).
The sample size is 5 × 5 dimensionless units, the discretization grid
parameter is a = 0.1, the temperature is T = 1. Periodic boundary
conditions apply. For clarity, profiles are multiplied by different
coefficients, as indicated in the plot.

as in Fig. 1. The exact density ñ(r, T ) is plotted as an orange
solid line, and the densities obtained via the random-wave-
function algorithm with NR = 20 and NR = 1000 by a green
dashed line and by a black dotted line, respectively.

The question might arise on why the data in Fig. 4 look
qualitatively different to those in Fig. 5. While the dashed
green line in Fig. 4 (2D case) appears to fluctuate around the
exact results, it appears to be shifted upwards by a close to
constant amount at each point in Fig. 5 (3D case). This qual-
itative difference is due to the different sizes of the samples
simulated in 2D case and in 3D case.

Figures 4 and 5 show that the random-wave-function algo-
rithm provides qualitatively correct results already for a small
number of iterations, NR = 20. With NR = 1000 iterations, we
can reproduce the electron density very accurately. Hence,
our method to determine the density for a nondegenerate,
noninteracting electron gas is seen to work for 1D, 2D, and
3D random potentials. The RWF algorithm permits us to
obtain the electron density in much larger samples where a
straightforward full diagonalization of the Hamiltonian is no
longer feasible.

III. EFFECTIVE POTENTIAL

In this section we relate the electron density n(r, T ) to
a (quasi)classical, temperature-dependent effective potential
W (r, T ) for two reasons. First, the random-wave-function
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FIG. 5. Reduced electron density ñ(x, y, z, T ) in a three-
dimensional sample with white-noise potential. Compared are the
exact density (solid orange line) with that obtained by the random-
wave-function algorithm (dashed green line for NR = 20 and dotted
black line for NR = 1000). Profiles along the x axis with different
values of coordinates y and z are shown (see inset). Sample size
is 2 × 2 × 2 dimensionless units, the discretization grid parameter
is a = 0.1, the temperature is T = 1. Periodic boundary conditions
apply. For clarity, profiles are multiplied by different coefficients, as
indicated in the plot.

algorithm requires matrix multiplications with (sparse) L × L
matrices where L is the number of grid points of the sample,
and we are interested to find a numerical method that scales
more favorably in the system size. Second, W (r, T ) visual-
izes the potential landscape in which classical particles would
move so that concepts like percolation theory can be applied.

A. Quasiclassical effective potential

We start from the well-known expression for the electron
density n(r, T ) of a nondegenerate electron gas, e.g., in the
conduction band of a semiconductor,

n(T ) = Nc exp

(
μ − V

kBT

)
(constant potential), (46)

where V is the energy of the conduction band edge, i.e., the
electrons’ potential energy, and Nc is the effective density of
states,

Nc = 2

(
mkBT

2π h̄2

)d/2

, (47)

in d dimensions. The relation (46) remains applicable also
in the case of a coordinate-dependent potential V (r) if the
potential is smooth on the scale of the de-Broglie wavelength,

n(r, T ) = Nc exp

[
μ − V (r)

kBT

]
(smooth potential). (48)

In other words, electrons near the position r feel only the
local value V (r) of the potential. This approximation corre-
sponds to the quasiclassical description of electron motion in
a smooth potential V (r). However, Eq. (48) cannot be applied
when the potential fluctuates significantly on length scales less
or equal to the de-Broglie wavelength. Since the particles are
strongly scattered by the potential, the quasiclassical picture
of a compact wave packet breaks down.

As a result of the quantum-mechanical treatment, the elec-
tron density at some point r is affected by the potential not
only at r but also in some extended vicinity. Therefore, the
electron density is a much smoother function of coordinates
than the potential. In this sense one might argue that the
electron gas experiences a “smoothed” potential. Therefore,
instead of Eq. (48), one might expect that the electron density
obeys

n(r, T ) = Nc exp

[
μ − W (r, T )

kBT

]
, (49)

where W (r, T ) is the quasiclassical effective potential in the
case of a strongly fluctuating potential. This potential is ob-
tained from the actual potential V (r) by some appropriate
operation of “smoothing.”

We will consider Eq. (49) as the very definition of the
quasiclassical effective potential W (r, T ). Hence,

W (r, T )
def= μ(T ) − kBT ln

n(r, T )

Nc
. (50)

It is important to note that the effective potential W (r, T )
depends on temperature. This temperature dependence is
demonstrated numerically in Sec. III C for the example
of a white-noise potential. For this reason, the effective
potential introduced here differs from that of the Localization-
Landscape Theory where the effective potential WLLT(r) is
independent of T .

B. Linear low-pass filter

To simplify the notation, in this subsection we drop the
temperature-dependence of all quantities. Let us consider the
response δn(r) of the electron gas density to a variation δV (r′)
of the potential. To first order in δV ,

δn(r) =
∫

dr′ n(r, r′) δV (r′) + O(δV 2), (51)

where the linear-response function n(r, r′) can be defined as
a functional derivative,

n(r, r′) = δn(r)

δV (r′)
. (52)

Likewise, one can define a linear-response function W for the
effective potential W ,

δW (r) =
∫

dr′ W (r, r′) δV (r′) + O(δV 2), (53)

or, equivalently, as a functional derivative,

W (r, r′) = δW (r)

δV (r′)
. (54)
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The relation between the response functions n and W can
be readily found using the chain rule and Eq. (50),

W (r, r′) = dW (r)

dn(r)

δn(r)

δV (r′)
= − kBT

n(r)
n(r, r′). (55)

In Sec. III D we show how to evaluate these response functions
with the help of perturbation theory.

The function W has a remarkable property: it is normal-
ized to unity, ∫

dr′ W (r, r′) = 1. (56)

To see this, we insert a coordinate-independent variation
δV (r) = const = δV into Eq. (53) and obtain

δW (r) = δV
∫

dr′ W (r, r′) + O(δV 2). (57)

However, adding a constant δV to the potential gives rise to
the same shift of all electron energy levels εi. The electron
density therefore is changed by a factor of exp[−δV/(kBT )].
According to definition (50), the effective potential W (r) ac-
quires the constant shift

δW (r) = δV. (58)

The normalization condition (56) then follows from the com-
parison of Eqs. (57) and (58).

Since the function W is properly normalized, it may play
the role of a filter function that produces the effective po-
tential W (r) from the actual potential V (r) by the operation
of convolution. However, a filter function must depend on
the difference r − r′ only, not on r and r′ separately. For
a random potential V (r) this is not the case because the
right-hand side of Eq. (54) depends on this potential which
breaks translational invariance. Nevertheless, in a statistical
sense we may argue that the response function W (r, r′) that
applies for a typical realization of the disorder potential can
be approximated by some translationally invariant function,

W (r, r′) = (r − r′), (59)

or, implying that the system also is isotropic in a statistical
sense,

W (r, r′) = (|r − r′|). (60)

Due to translational invariance, the function  does not de-
pend on the choice of the realization of the random potential.
One can therefore integrate the differential relation (53) be-
tween two random realizations V1(r) and V2(r) which yields
U1(r) = U2(r) where

Ui(r) = Wi(r) −
∫

dr′ (|r − r′|)Vi(r′), (61)

that relates the effective potentials W1 and W2 to the actual
potentials V1 and V2, respectively. Consequently, Ui(r) ≡ C,
whereby the constant C does not depend on the choice of
the realization. In sum, the hypothesis (60) gives rise to the
following relation between the actual potential V (r) and the
effective potential W (r),

W (r) =
∫

dr′ (|r − r′|)V (r′) + C. (62)

In words, the effective potential W is a convolution of the real
potential V with the filter function , plus some constant C.
Note that the convolution with  is nothing else but passing
the original potential through the linear low-pass filter defined
by . For this reason, the effective potential W (r) becomes
much smoother than the original potential V (r). Since the
effective potential depends also on the temperature, the filter
function  and C are temperature-dependent as well,  ≡
(|r − r′|, T ) and C ≡ C(T ).

In Sec. III C, we test Eq. (62) numerically for the case of a
white-noise random potential, and ensure that it works surpris-
ingly well, except for very low temperatures. In Sec. III D, we
show that the filter function  can approximately be reduced
to some universal function uni by the simple scaling relation

(r) ≈ λ̄−d uni(r/λ̄), (63)

where d is the spatial dimension, and λ̄ is the reduced de-
Broglie wavelength of a charge carrier of mass m and kinetic
energy kBT ,

λ̄ = h̄√
2mkBT

, (64)

which is the thermal wave length up to a numerical factor.

C. Numerical study of a white-noise potential

In our numerical study of a white-noise potential, we em-
ploy the model of white noise and the dimensionless system
of units described in Sec. II D, h̄ = kB = m = S = 1. The
discretization parameter a, the distance between grid nodes,
is chosen to be a = 0.1. Periodic boundary conditions apply.
We consider a collection of 100 random samples of length
500 in 1D, a collection of 20 samples of size 10 × 10 in
2D, and a collection of 10 samples of size 10 × 10 × 10
in 3D. For each of these samples, we calculate the reduced
electron density ñ(r, T ). In 1D and 2D, we use the definition
of ñ(r, T ), Eq. (10), in which we employ the eigenfunctions
ϕi(r) and eigenvalues εi from the numerical diagonalization
of the Hamiltonian matrix. In 3D, the Hamiltonian matrix is
too large (106 × 106) for an exact numerical diagonalization
so that we derive ñ(r, T ) from the random-wave-function
algorithm described in Sec. II C where we choose NR ≈
1000

√
T realizations so that the accuracy for ñ(r, T ) is about

5% relative to the amplitude of spatial fluctuations. The
temperature-dependent effective potential W (r, T ) is then cal-
culated from the reduced electron density as

W (r, T ) = −kBT ln
ñ(r, T )

Nc
, (65)

according to the definition (50). Since we have a collection of
random potentials VR(r) and effective potentials WR(r, T ), we
can test the validity of the filter function approach, which is
expressed mathematically by Eq. (62).

Before we apply the filter function approach, some prelim-
inary steps must be carried out. First, we need to determine the
value of the parameter C in Eq. (62). Second, it is necessary
to estimate the characteristic range of the filter function (r).
Third, we have to determine the optimal shape of this filter
function.
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FIG. 6. Left panel: parameter C(T ) as function of the temper-
ature T for systems with white-noise disorder in one, two, and
three dimensions. The effective potential is defined by Eq. (50). The
parameter C is the average of the effective potential, C = 〈WR〉R

and used in Eq. (62). Dimensionless units (h̄ = kB = m = S = 1)
introduced in Sec. II D are used. Grid spacing a = 0.1. Right panel:
parameter function c̃d (a, T ) defined in Eq. (68) as a function of a/λ̄.
The limit a/λ̄ → 0 defines the constants cd .

1. Constant parameter

To evaluate the parameter C, we note that the mean value
of the integral in Eq. (62) is equal to the mean value of V
because of the normalization property (56) of the filter func-
tion. Therefore, when we take the mean values of both sides
of Eq. (62), we obtain

C = 〈WR〉R − 〈VR〉R, (66)

where the brackets denote the average value over the collec-
tion of samples. In the model used, the mean value of the
potential VR is equal to zero. Hence, C = 〈WR〉R. The resulting
values of C in the temperature range 0.1 � T � 10 are plotted
in Fig. 6, left part. It is worth noting that the constant C
depends on the grid spacing a. The data in Fig. 6 are calculated
for a = 0.1.

To extend the result to arbitrary values for a, we em-
ploy the following scaling argument that is corroborated in
Appendix B. The effective potential W (r, T ) results from
the random potential V (r) according to the linear mapping
given in Eq. (62). The contribution proportional to V (r) is
obtained from first-order perturbation theory, as explained
in Sec. III D. Second-order perturbation contributes to C,
after averaging over various realizations of potential VR(r).
Consequently, C is proportional to the potential squared and
hence to the parameter S determined in Eq. (38). The propor-
tionality coefficient between C and S then follows from the
physical dimensions of these quantities. While C is energy,
S is energy squared times volume, as evident from Eq. (39).
Therefore, Cd (a, T )/S = Fd (a/λ̄)/(kBT λ̄d ). where the ther-
mal de-Broglie wavelength λ̄ is determined from Eq. (64),

FIG. 7. Variance of the effective potential WR(T ), var WR =
〈W 2

R 〉R − 〈WR〉2
R, as function of the temperature T for systems with

white-noise disorder in one, two, and three dimensions. Dimension-
less units (h̄ = kB = m = S = 1) introduced in Sec. II D are used.
Grid spacing a = 0.1.

and the function Fd (x) carries no units. It depends on the
dimension d and on the ratio a/λ̄.

As shown in Appendix B, in the limit x → 0, i.e.,
a 	 λ̄, we have Fd (x) = cd fd (x) with f1(x) = −1, f2(x) =
ln(0.30x), and f3(x) = −1/x. Therefore,

Cd (a, T ) = S
cd fd (a/λ̄)

kBT λ̄d
, (67)

where cd are numerical factors. To determine their values, we
plot

c̃d (a, T ) = Cd (a, T )kBT λ̄d

S fd (a/λ̄)
(68)

in Fig. 6, right panel. The figure proves the scaling behavior
expressed in Eq. (67) and permits us to read off c1 = 0.183,
c2 = 1/(2π ) ≈ 0.159, and c3 = 0.255 for the constants in
d = 1, 2, 3 dimensions.

2. Characteristic scale

To determine the characteristic scale � of the filter func-
tion , we repeat the considerations from Sec. II D and get the
following estimate similar to Eq. (41),

varWR 
 S

�d


, (69)

where the symbol “var” denotes the variance, the square of the
standard deviation. We show the variance of W for different
temperatures and spatial dimensions in Fig. 7. Our numerical
data clearly demonstrate that varW ∼ T d/2. Inserting this de-
pendence into Eq. (69), we see that � scales with temperature
T as � 
 1/

√
T . This temperature dependence is the same

as that of the thermal wavelength λ̄, see Eq. (64). Specifically,
λ̄ = 1/

√
2T in dimensionless units. Therefore,

� 
 λ̄ ∝ T −1/2 (70)
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FIG. 8. Filter functions (r) at different temperatures T in 1D
systems with white-noise potential as obtained from the optimization
procedure. The dots indicate values of (r) that serve as fitting
parameters. Dimensionless units (h̄ = kB = m = S = 1) introduced
in Sec. II D are used.

holds. The characteristic scale is simply the de-Broglie wave
length.

3. Shape of the low-pass filter

To obtain the optimal shape of the low-pass filter (r), we
use the following variational scheme. As a set of fitting pa-
rameters, we choose  at N 
 10 points r0 = 0, r1, . . . , rN =
2/

√
T . The whole function (r) is restored from the values

(r0), . . . , (rN ) using a cubic spline interpolation. Two re-
strictions are imposed to the fitting parameters: (i) (rN ) is
fixed to zero and, (ii) the normalization integral

∫
(|r|) dr is

fixed to unity. The values (r0), . . . , (rN−1) are varied until
the minimum of the relative error of the effective potential

E[] =
√

〈(W (r) − W )2〉√
varW

(71)

is reached. Here, W is the effective potential calculated from
the electron density using Eq. (65), and W is calculated from
the potential V and the filter function  using Eq. (62). Here,
the angular brackets imply spatial integration.

Using this optimization procedure, we obtain the filter
function (r, T ) in the temperature range 0.1 � T � 10 for
1D, 2D, and 3D white-noise potentials. Examples of 1D filter
functions for three different temperatures are shown in Fig. 8.
It is seen that the width of the filter function narrows with
temperature, in agreement with Eq. (70). However, the shape
of the filter function remains fairly unchanged with varying
the temperature. These properties of the filter function suggest
a universal filter function Ansatz, see Eq. (63).

In Fig. 9, we show an example of an effective potential
WR(x, T ) in 1D at different temperatures (solid orange lines),
along with the estimates obtained by the filter-function ap-
proach, Eq. (62) (dashed blue lines). The agreement is quite
good in the whole temperature range T � 0.2. At high enough

FIG. 9. Comparison between the exact effective potential WR(x)
(solid orange lines) and the filtered potential, see Eq. (62) (dashed
blue lines) for a one-dimensional sample with while-noise potential.
Filter functions at different temperatures T are obtained by the opti-
mization procedure. Dimensionless units (h̄ = kB = m = S = 1) are
used. The sample size is equal to 30 dimensionless units, the dis-
cretization parameter is a = 0.1. For clarity, curves for T = 0.5, T =
1, and T = 2 are shifted upwards by 3, 6, and 9 units, respectively.

temperatures, T � 1, the filter-function approach reproduces
the effective potential almost perfectly.

To quantify the accuracy of our approach, we calculate
the relative error E of the effective potential obtained from
by Eq. (71) for different temperatures and spatial dimen-
sions. The results are shown in Fig. 10 by circles. It is
seen that the relative error decreases with temperature. In
the low-temperature limit, the electron density is dominated
by contributions of rare low-energy eigenstates. Therefore,
the shape of the electron density distribution n(r, T ) re-
produces the probability distributions |ϕi(r)|2 of individual
eigenstates ϕi(r). For this reason, the electron density dis-
tribution at very low temperatures requires the solution of
the Schrödinger equation, and the filter-function approach be-
comes less reliable. However, for high temperatures the role of
the fluctuating potential becomes negligible, the system under
study acquires translational and rotational symmetry. For high
temperatures, the validity of Eq. (62) for the filter-function
approach is guaranteed because it follows from the universal
relation (53), as explained in Sec. III B.

D. Universal filter function

As seen in Sec. III C, the low-pass filter representation of
the effective potential W (r, T ) becomes more accurate for
higher temperatures. Therefore, it is reasonable to search for
a universal filter function in the limit of infinitely high tem-
perature. This limit is characterized by neglecting the random
potential altogether. Indeed, the high-temperature limit with a
constant strength of the random potential is equivalent to the
limit of infinitely small strength of the potential at constant
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FIG. 10. Relative error E of the effective potential W obtained
from convolution of the potential with the filter function, Eq. (62),
at different temperatures T . Circles are related to the filter func-
tion obtained from the optimization procedure, lines correspond to
the universal filter function considered in Sec. III D. The values of
relative error E are obtained from Eq. (71). Dimensionless units
(h̄ = kB = m = S = 1) are used. Discretization parameter a = 0.1.

temperature. For this reason, we develop the ULF function in
the case of zero potential where the single-electron Hamilto-
nian Ĥ reduces to the kinetic energy operator T̂ .

In this subsection, we first obtain an expression for the
response function n(r, r′) in terms of the matrix elements
of exponents of the Hamiltonian. This will be done in first-
order perturbation theory. Then, we consider the case of zero
potential, Ĥ = T̂ , and find analytical expressions for the re-
sponse functions n and W . The latter plays the role of the
filter function. Finally, we determine an expression for the
universal dimensionless filter function uni. We numerically
test its accuracy at finite temperatures and disorder strengths.

1. Linear response

We start from expressions (9) and (10) that define the
electron density n(r, T ) in a noninteracting, nondegenerate
electron gas. They can be rewritten in operator notation as

n(r, T ) = 2eβμ〈r|e−βĤ |r〉, (72)

where Ĥ is the single-electron Hamiltonian, and the position-
space states |r〉 are normalized such that

〈r|r′〉 = δ(r − r′). (73)

We are interested in the variation δn(r) of the electron density
in linear response to a small variation δV (r) of the potential.
The potential variation can be represented as a small addition
δ̂V to the Hamiltonian,

δ̂V =
∫

dr′δV (r′) |r′〉〈r′|. (74)

Therefore,

δn(r, T ) = 2eβμ〈r|[e−β(Ĥ+δ̂V ) − e−βĤ ]|r〉. (75)

The difference in square brackets can be evaluated via
first-order perturbation theory. Neglecting higher-order in-
finitesimals we find

e−β(Ĥ+δ̂V ) − e−βĤ = −
∫ β

0
dξ e−ξ Ĥ δ̂V e−(β−ξ )Ĥ . (76)

Inserting Eqs. (74) and (76) into Eq. (75), we obtain

δn(r, T ) = − 2eβμ

∫ β

0
dξ

∫
dr′〈r|e−ξ Ĥ |r′〉

× δV (r′)〈r′|e−(β−ξ )Ĥ |r〉. (77)

A comparison between Eq. (77) and Eq. (51) provides
the following expression for the linear response function
n(r, r′, T ):

n(r, r′, T ) = −2eβμ

∫ β

0
dξ 〈r|e−ξ Ĥ |r′〉〈r′|e−(β−ξ )Ĥ |r〉,

(78)
within first-order perturbation theory.

2. Linear response for free electrons

Now we turn to the particular case of free electrons, where
the Hamiltonian reduces to the kinetic energy operator T̂ ,

Ĥ = T̂ =
∑

k

h̄2|k|2
2m

|k〉〈k|, (79)

where the wave-number states |k〉 are related to the position-
space states |r〉 as

〈r|k〉 = eik·r
√

�
. (80)

We insert Eqs. (79) and (80) into Eq. (78) to find

n(r, r′, T ) = −2eβμ

�2

∑
k,k′

∫ β

0
dξF (ξ, k, k′),

F (ξ, k, k′) = exp

[
h̄2(ξ − β )|k′|2 − ξ |k|2

2m

]
ei(k−k′ )·(r−r′ ).

(81)

We perform the integral over ξ , replace the sums over k by
integrations over dk × �/(2π )d , and discard the imaginary
part to arrive at an analytical expression for the response
function,

n(r, r′, T ) = 4meβμ

h̄2(2π )2d

∫∫
dk dk′G(k, k′), (82)

G(k, k′) =
[

exp

(
−β h̄2|k|2

2m

)
− exp

(
−β h̄2|k′|2

2m

)]

×cos [(k − k′) · (r − r′)]
|k|2 − |k′|2 , (83)

where the integrand at |k| = |k′| is to be resolved by
L’Hôspital’s rule.

The response function W (r, r′, T ) for the effective poten-
tial can be calculated from Eq. (55). In the absence of an
external potential, we use Eq. (46) for the electron density
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n(T ) in a constant potential V = 0. As a result, we obtain the
function

W (r, r′) = λ̄d

2dπ3d/2

∫∫
dk dk′ e

−|λ̄k|2 − e−|λ̄k′ |2

|λ̄k′|2 − |λ̄k|2
× cos[(k − k′) · (r − r′)], (84)

where we employ de-Broglie wavelength λ̄ from Eq. (64).
Equation (84) provides the filter function (|r − r′|) ≡

W (r, r′), introduced in Eq. (60). After substitutions λ̄k = q,
λ̄k′ = q′, we arrive at Eq. (63) that expresses the temperature-
dependent filter function  via a universal, dimensionless
function uni. This universal function, obtained with the help
of Eq. (84), is equal to

uni(|r̃|) = 1

2dπ3d/2

∫∫
dq dq′(e−|q|2 − e−|q′|2 )

×cos [(q − q′) · r̃]

|q′|2 − |q|2 , (85)

where r̃ = r/λ̄ is a dimensionless radius vector.
This expression can be simplified by means of Fourier

transform. The Fourier image ̂uni(k) of the universal filter
function is defined as

̂uni(|k|) =
∫

dr uni(|r|) eik·r. (86)

The substitution of Eq. (85) into Eq. (86) gives rise to the
simple result

̂uni(k) =
√

π

k
e−k2/4 erfi(k/2), (87)

where erfi is the imaginary error function,

erfi(ξ ) = −i erf(iξ ) = 2√
π

∫ ξ

0
et2

dt . (88)

Expression (87) resembles the filter function, which has been
used by Steinerberger [35] to construct the effective potential
from the initial random one. Note that the function ̂uni(k)
does not depend on the spatial dimension. The Fourier image
̂(k) of the temperature-dependent filter function (r) is ob-
tained from Eq. (63),

̂(k) ≈ ̂uni(λ̄k). (89)

In Fig. 11, we compare the filter functions (r) obtained
by the optimization procedure in Sec. III C with the uni-
versal function uni(r). For this purpose, we multiply the
temperature-dependent filter functions by λ̄d , and plot them
versus r/λ̄. The universal functions, obtained by inverse
Fourier transformation of Eq. (87), are shown by thick vio-
let lines. A dimensionless system of units is used, in which
h̄ = kB = m = S = 1 and hence λ̄ = 1/

√
2T . It is seen that in

all dimension the scaled filter functions approximately follow
the universal function uni. Therefore, the scaling property
(63) of the filter functions is numerically confirmed, and the
expression (87) for the universal filter function is validated.

3. Effective potentials using a universal low-pass filter

Using a ULF provides a practical numerical method for
the calculation of the electron density distribution n(r, T ) for

FIG. 11. Radial filter functions 
(d )
W (r/λ̄) (d = 1, 2, 3 from top

to bottom), obtained from the optimization procedure in Sec. III C,
plotted versus r/λ̄, in comparison with the universal filter function
uni (thick violet line). Dimensionless units (h̄ = kB = m = S = 1)
are used. λ̄ = 1/

√
2T is the reduced de-Broglie wavelength at kinetic

energy equal to T . The discretization parameter is a = 0.1.

a given realization of the white-noise potential VR(r). The
method consists of the following simple steps.

(1) Calculate the Fourier image V̂R(k) of the random po-
tential by means of a fast-Fourier-transform (FFT) algorithm.

(2) Multiply the function V̂R(k) by ̂(|k|), where ̂(|k|) is
given by Eqs. (64), (87), and (89).

(3) Perform the inverse Fourier transform of the product
V̂ (k)̂(|k|) by FFT, and add the constant C(T ) to the result;
see Eq. (67). The output of the third step is the effective
potential WR(r, T ) which follows from Eq. (62) and from the
fact that inverse Fourier transform converts a product into a
convolution.

(4) Calculate the electron density n(r, T ) from the effec-
tive potential WR(r, T ) using Eq. (49).

Since the numerical effort in FFT scales proportional
to L ln(L), the effective potential W (r, T ) and the particle
density n(r, T ) can be calculated for mesoscopically large
systems from a microscopic random potential V (r).

4. Numerical tests

Last, we present numerical tests of our method. Figure 10
shows the relative error of the calculated effective potential
W (r, T ) with the global filter (lines) in comparison with the
same calculation using filter functions obtained numerically
by an optimization procedure (circles). It is seen that for
a broad range of temperatures, the universal filter function
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FIG. 12. Electron density n(x, T ) in a one-dimensional white-
noise potential at different temperatures T : exact (solid orange lines)
and ULF (dashed blue lines). The parameters are the same as in
Fig. 1, except for the temperature T . For clarity, the curves related
to T = 0.2, T = 1 and T = 2 are multiplied by 10−4, 102, and 103,
respectively, as indicated in the plot; particle concentration n = 0.01.

provides as accurate results as using the numerically opti-
mized one. An exception is the case of very high temperatures,
presumably due to discretization errors.

We compare the electron density distributions n(r, T ) ob-
tained by different numerical techniques. Expressions (9),
(32), and (49) determine n(r, T ) up to the factor eβμ, where
μ(T ) is the chemical potential. To remedy this ambiguity, we
fix the average electron concentration n = N/� at n = 0.01.
Here, N is the number of electrons, and � is the sample vol-
ume. This concentration is much less than Nc which permits
us to treat the electron gas as nondegenerate.

Figure 12 clearly demonstrates in 1D that the method is
fairly accurate at temperatures T � 0.5. Here, the temperature
is expressed in dimensionless units introduced in Sec. II D.
Even for much smaller temperatures, where the electron den-
sity n(x, T ) fluctuates by several orders of magnitude, the
universal-filter approach correctly predicts the positions of
maxima and minima of n(x, T ).

Figure 13 shows an application for a 2D system with a
white-noise potential at T = 1. Since we fix the concentration
n = 0.01 and work with a single particle species, the effect of
the constant C(T ) can be absorbed in the chemical potential,
μ̃(T ) ≡ μ(T ) − C(T ). As can be seen from Fig. 13, the exact
result (upper plot) is accurately reproduced by the calculation
based on the universal filter function (lower plot).

Figure 14 shows an application for a 3D system with
a white-noise potential at T = 2. The cross section of
n(x, y, z, T ) at z = 0 is plotted. The upper plot depicts the
electron density distribution n(x, y, z, T ) obtained by the
random-wave-function algorithm with relative accuracy 5%.

FIG. 13. Comparison between the exact electron density
n(x, y, T ) (upper part) and that obtained by using the universal filter
function (lower part) in a two-dimensional white-noise potential. The
sample size is 5 × 5 dimensionless units, the discretization parameter
is a = 0.1, the temperature is T = 1, the particle concentration is
n = 0.01. Periodic boundary conditions apply.

The lower plot depicts the result obtained by the universal
filter function. The agreement between the two plots is good.

At first glance, these results are quite surprising because
the ULF method is based on perturbation theory. In particular,
the expression (85) for the universal filter function uni(r)
is obtained for high temperatures or small potential fluctu-
ations. One can expect that the perturbative approach must
be restricted to parameter sets that correspond to small den-
sity fluctuations. However, it is seen that the approach works
well even when the density varies by more than an order of
magnitude.

We surmise that the surprising success of the effective
potential in describing the local particle density at fairly low
temperatures, T � 0.2T0, is related to the fact that n(r, T )
depends on W (r, T ) exponentially. As in statistical physics,
the error appears to be proportional to higher-order cumulants
in the expansion in V (r)/T . Cumulants often decay faster
with temperature than the corresponding coefficients of the
bare series expansion because nth-order cumulants describe
true n-point correlations that cannot be factorized into smaller
subclusters.
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FIG. 14. Comparison between the exact electron density
n(x, y, z = 0, T ) (upper part) and that obtained by using the uni-
versal filter function (lower part) in a three-dimensional white-noise
potential. The sample size is 10 × 10 × 10 dimensionless units, the
discretization parameter is a = 0.1, the temperature is T = 2, the
particle concentration is n = 0.01. Periodic boundary conditions
apply.

IV. COMPARISON WITH LOCALIZATION-LANDSCAPE
THEORY (LLT)

In this section, we compare our results to those obtained
from the LLT for the charge carrier concentration n(r, T ). In
addition, we discuss the consequences of the different approx-
imate techniques of calculating n(r, T ) for charge transport in
disordered media at elevated temperatures.

The aim of the potential filtering with the ULF developed
in Sec. III and that of the RWF approach developed in Sec. II is
to speed up calculations compared to solving the Schrödinger
equation. The same aim has been targeted in the recently
developed LLT [2,11–14].

A. Localization-landscape theory

In the LLT, the right-hand side of the Schrödinger equation
is replaced with a constant to arrive at the landscape equation

Ĥu(r) =
(

− h̄2

2m
∇2 + V (r)

)
u(r) = 1, (90)

where V (r) is the disorder potential and u(r) is localization
landscape for appropriate boundary conditions. The inverse
of the landscape, W (r) ≡ 1/u(r), can be interpreted as a
semi-classical effective confining potential that determines the
strength of the confinement as well as the long-range decay of
the quantum states.

1. Positivity condition

An important condition for the applicability of the LLT
is that the Hamiltonian Ĥ is a positive operator [12]. When
solving the Schrödinger equation (2), the potential V (r) ex-
perienced by the quantum particle can be defined up to a
constant K . If one shifts the potential by K , then the resulting
eigenenergies εi are shifted by the same constant K . However,
this invariance does not hold for the landscape u(r). If u(r) is
the solution to Eq. (90), then the solution uK (r) corresponding
to the same potential shifted by the constant K satisfies [12]

− h̄2

2m
�uK (r) + [V (r) + K]uK (r) = 1, (91)

and u(r) = uK (r) for general K = 0. In the LLT, the constant
K is chosen as small as possible in such a way that the
Hamiltonian remains a positive operator [12], and the electron
density n(r, T ) should be obtained from the effective potential
WK (r) ≡ 1/uK (r) via Eq. (49).

Below we discuss that the choice of K drastically affects
the predictions of the LLT approach. In the calculations be-
low, we choose K = −1.05Vmin, where Vmin is the absolute
minimum of V (r).

2. Computational effort

The exact, complete solution of the Schrödinger equation is
computationally demanding for large systems, and approxi-
mate techniques are mandatory for random media in two and
three dimensions. The RWF requires the repeated application
of the Hamiltonian onto a random wave function. The time
consumption of the latter approach depends on the system size
and on the number of realization used for the averaging pro-
cedure. Therefore, the accuracy of the RWF approach can be
systematically improved by increasing the number of stored
wave functions and realizations of the impurity potentials for
the price of increasing computational resources. Thus, meso-
scopically large systems cannot be treated using the RWF.

The LLT is based on a solution of a system of linear
equations. Compared to solving the Schrödinger equation
self-consistently, the LLT speeds up the calculations by two to
three orders of magnitude [31]. However, the ULF approach
requires only Fast Fourier Transformation, which does not
consume noticeable computational time. Below we compare
the accuracy of all three approximate approaches in d = 1 and
d = 2 and show that the ULF is superior to the LLT not only
in speed but also in precision.

B. Temperature-dependent particle density

In this subsection, we first focus on the electron density in
a one-dimensional setting. The LLT is seen to work very well
for temperatures T � T0 but the results deteriorate quickly
for T � 0.5T0. Second, we investigate two dimensions where
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the bare LLT predicts too sharp and pronounced maxima and
minima even at T = T0.

The LLT problem can be cured by a Gaussian broadening
of the random potential V (r) before the LLT is applied. Such
a broadening has been used by Piccardo et al. [13] and by Li
et al. [14] to smoothen the rapidly changing distribution of
atoms and to obtain a continuous fluctuating potential. Unfor-
tunately, the optimal broadening parameter σ (T ) depends on
temperature and is not known a priori.

1. Carriers on a chain

In Sec. III D 4, we compared exact and approximate results
using the universal filtering in d = 1 dimension. Let us now
compare these data with the LLT predictions for n(x, T ) at
temperatures T = 0.2, 0.5, 1, 2 at n = 0.01.

In Fig. 15 we plot the results of the LLT along with the
exact solution and with the ULF results copied from Fig. 12.
Remarkably, the higher the temperature T , the better the
agreement between the three approaches. Above T = 1, the
agreement can be considered as perfect with respect to both,
the number of extrema and the values n(x, T ). At T = 0.5, the
LLT predicts much more extrema and a broader distribution
for n(x, T ) in comparison with the exact solution and the ULF
approach. At T = 0.2 and below, the disagreement between
the LLT and the exact solution increases drastically.

We conclude that the LLT is a reliable approach in d = 1 at
temperatures T � T0, though not at T < T0. Recall that T0 ≡
ε0/kB, where ε0 is the energy scale of the disorder potential.
To give an example, let us consider an InGaN multi-quantum-
well solar-cell structures designed for photo-carrier collection
[2]. Using the estimate ε0 ≈ 20 meV from the energy slope
of the Urbach tail [2], we arrive at the estimate T0 ≈ 230 K
for the temperature below which the LLT approach fails to
describe the spatial distribution of the electron concentration.

2. Carriers on a square lattice

In Fig. 16(a), we show the electron density n(x, y, T ) in
d = 2 at T = T0, obtained from the LLT with K = 18.2 in
units of ε0 applied to the random potential V (x, y) used for
calculations of n(x, y, T ) in Fig 13. Apparently, the electron
density provided by the LLT in Fig. 16(a) substantially devi-
ates from n(x, y, T ) in Fig 13. The LLT predicts a series of
narrow peaks in the electron density distribution with ampli-
tudes that are one order of magnitude larger than the values of
n(x, y, T ) given by the exact solution.

In Fig. 16(b), we show the electron density n(x, y, T ) in
d = 2 at T = T0, obtained by the application of the LLT to the
random potential V (x, y) smoothed by a Gaussian averaging.
The averaging is a convolution between V (x, y) and a Gaus-
sian function exp[−(x2 + y2)/(2σ 2)]. Such a procedure has
been previously used by Piccardo et al. [13] and by Li et al.
[14] to smoothen the rapidly changing distribution of atoms
and to obtain a continuous fluctuating potential. The smoothed
potential allows a choice of the constant K in Eq. (91) that is
much smaller than that for the bare random potential V (x, y)
because the distribution of the potential values narrows af-
ter the Gaussian smoothing. For the case of V (x, y) used to
generate Fig. 16(a), the choice K = 5.1 warrants a positive

FIG. 15. Comparison between the exact electron density n(x, T )
(solid orange lines) and that obtained using the ULF function (solid
blue lines) and the LLT (dashed black line) in a one-dimensional
white-noise potential at different temperatures T . The parameters
are the same as in Fig. 1, except for the temperature T . For clarity,
the curves related to T = 0.2, T = 0.5, and T = 1 are multiplied
by 10−5, 10−3, and 10−1, respectively, as indicated in the plot. The
particle concentration is n = 0.01.

Hamiltonian for the smoothed potential for which we choose
σ = 1.5a.

To preserve the disorder effects on the electronic prop-
erties, the length scale of the averaging must be smaller
or comparable to the typical scale of the effective potential
fluctuations seen by the carriers [13,14]. Piccardo et al. [13]
and Li et al. [14] fixed the Gaussian broadening parameter
to a value of σ = 2acat ≈ 0.6 nm, where acat is the average
distance between cations in GaN studied by Piccardo et al.
[13]. We varied the broadening parameter to achieve the best
agreement between the LLT result and the exact solution for
n(x, y, T ) in d = 2 at T = T0. In Fig. 16(b), the electron den-
sity n(x, y, T ) is shown for the optimal value of the broadening
parameter σ = 1.5a, where a is the distance between the grid
points.
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FIG. 16. Electron density n(x, y, T ) obtained using the LLT ap-
proach with different parameters σ in units a and K in units ε0, as
described in the text. (a) σ = 0, K = 18.2; (b) σ = 1.5, K = 5.1;
(c) σ = 1.5, K = 18.2. Other parameters are the same as in Fig. 13.

Apparently, it is possible to achieve the correct electron
density n(x, y) in the framework of the LLT, provided the
optimal broadening parameter for the Gaussian averaging of
the bare random potential V (x, y) is known. However, in lack
of an exact solution, there is no recipe in the framework of the
LLT for how to get access to this optimal averaging parameter.
Further below, we shall give an heuristic estimate for σ (T ).

The question arises whether the difference in the spatial
distributions of the electron density in Figs. 16(a) and 16(b)
is caused by the potential averaging itself, or by the different
choices of the constant K . To resolve this question, we per-
form the calculations of n(x, y, T ) with the same smoothing
of V (x, y) as used for the data in Fig. 16(b) and the value
K = 18.2 as used for the data in Fig. 16(a). The results are
plotted in Fig. 16(c). The distribution n(x, y, T ) in Fig. 16(c)
drastically deviates from the correct result in Fig. 13. This
underlines the importance of the constant K in Eq. (91) for
the predictions of the LLT approach. While smoothing V (x, y)
with σ = 1.5a and using K = 5.1 yields the correct distribu-
tion n(x, y) for the given realization V (x, y), other choices for
σ and K fail to reproduce the correct n(x, y).

C. Semiclassical transport

As a second application, we compare the predictions of
RWF, ULF, and LLT for semi-classical transport.

1. Transport in one dimension

First, we address the consequences of the various ap-
proaches to the electron density n(x, T ) for the charge carrier
mobility in one-dimensional disordered systems. For simplic-
ity, we assume a constant, spatially independent value μ0 for
the local mobility [8].

Since we have a series of local resistors, we address the
local resistivity that is given by

ρ(x, T ) = 1

eμ0n(x, T )
. (92)

The sample average gives

ρ̄(T ) ≡ 〈ρ(x, T )〉 = 1

eμ0
〈n−1(x, T )〉. (93)

By definition of the macroscopic mobility we have

ρ̄(T ) = 1

eμeff (T )〈n(x, T )〉 . (94)

A comparison of Eqs. (93) and (94) provides the following
compact result for the macroscopic mobility μeff (T )

μeff (T ) = μ0

〈n(x, T )〉〈n−1(x, T )〉 . (95)

In one dimension, the macroscopic mobility follows from the
average of the local particle density and of its inverse.

In Fig. 17 we show the exact result for the temperature-
dependent carrier mobility μeff (T ) in comparison with those
from the various approximate approaches. At T � T0 all re-
sults practically coincide. The RWF is the only approximate
approach that reliably reproduces μeff (T ) down to tempera-
tures, T ≈ 0.1T0. The results of the ULF approach start to
deviate from the exact solution around T = 0.25T0 but those
of the LLT method begin to fail already at T = 0.8T0, showing
that the ULF is superior to the LLT in accuracy, at smaller
computational cost. Note, however, that for very small temper-
atures, T � 0.2T0, the ULF is also inadequate for the mobility
in one-dimensional systems.
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FIG. 17. Temperature-dependent charge carrier mobility in one
dimension. We compare exact results with those from the RWF, ULF,
and LLT approximations to calculate the average of the local density
n(x, T ) and of its inverse. NR denotes the number of realizations used
for averaging in the RWF algorithm.

2. Transport on a square lattice from percolation theory

In dimensions d � 2, the calculation of μeff (T ) poses a
percolation problem [1]. In essence, the percolation approach
requires to find the smallest value ςc(T ) that provides a con-
nected path via areas with local conductivity ς (x, y, T ) �
ςc(T ). The value ςc(T ) is to be considered as the macroscopic
conductivity of the system [1] that characterizes the long-
range charge transport.

Percolation theory predicts that in d = 2 the area corre-
sponding to the inequality ς (x, y, T ) � ςc(T ) is exactly one
half of a total system area [36]. Herewith, ςc(T ) is the me-
dian of the distribution ς (x, y, T ). The local conductivity is
determined by the local electron concentration n(x, y, T ),

ς (x, y, T ) = eμ0n(x, y, T ), (96)

while the macroscopic conductivity ςc(T ) is determined by
the average concentration 〈n(x, y, T )〉,

ςc(T ) = eμeff (T )〈n(x, y, T )〉. (97)

The latter equation yields the relation

μeff (T ) = μ0
n(x, y, T )

〈n(x, y, T )〉 , (98)

where n(x, y, T ) denotes the median of the distribution
n(x, y, T ).

In Fig. 18 we show the results for the temperature-
dependent carrier mobility μeff (T ) in two dimensions given
by Eq. (98) as obtained from the different schemes for cal-
culating the average and the median of n(x, T ). The RWF
and the ULF provide reliable results down to T = 0.1T0,
the results of the LLT deviate from the exact data already
at T = 5T0. The agreement becomes slightly better when a
Gaussian averaging is applied to the disorder potential V (x, y)
before the LLT is applied, see Sec. IV B 2. When the Gaussian
broadening σ = 1.5a and the constant K = 5.1ε0 are used in

FIG. 18. Temperature-dependent charge carrier mobility in two
dimensions. We compare exact results from percolation theory with
those from the RWF, ULF, and LLT approximations to calculate the
average of the local density n(x, T ) and of its median. NR denotes
the number of realizations used for averaging in the RWF algorithm.
LLT results with and without Gaussian smoothing.

Eq. (91) so that the distribution n(x, y) is reproduced from
LLT at T = T0 as seen in Sec. IV B 2, also the value of
μeff (T )/μ0 calculated via Eq. (98) is reproduced at T = T0

but not at any other temperature. This strengthens the conclu-
sion that the choice of the Gaussian broadening parameter σ

and the choice of the constant K in the LLT equation (91) must
depend on temperature to bring the result in agreement with
the exact solution.

Heuristically, we find that the choice σ (T ) ∼ T −0.75 pro-
vides acceptable results in two dimensions for the mobility
μeff (T ). After smoothing, we set K = −1.05Ṽmin, where
Ṽ (x, y) is the random potential after Gaussian smoothing with
its absolute minimum Ṽmin.

V. DISCUSSION AND CONCLUSIONS

The theoretical description of the optoelectronic properties
of disordered media requires an accurate knowledge of the
space-dependent and temperature-dependent charge carrier
distribution n(r, T ) in the presence of a random potential.
Two methods are currently available to determine n(r, T ):
(i) solving the Schrödinger equation and (ii) utilizing the
LLT [11–14]. While exact, the complete solution of the
Schrödinger equation is extremely demanding with respect
to computational time and computer memory. It is hardly
affordable for applications to realistically large, chemically
complex systems. As exemplified in Sec. IV, the LLT is valid
only in certain cases with unspecific limits. These limits can
be revealed only by comparison with the exact solution of the
Schrödinger equation for particles in a random potential V (r).

In this work, we propose two novel theoretical tools, the
RWF algorithm and the ULF approach, that permit an approx-
imate calculation of n(r, T ) without solving the Schrödinger
equation. In comparison, both methods require less computa-
tional resources than the complete solution of the Schrödinger
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equation, and both have a better accuracy and a broader range
of applicability than the LLT.

As shown in this work, the RWF approach is as accurate
and generally applicable to nondegenerate electron systems
as solving the Schrödinger equation. However, for practical
applications at temperatures T � 0.1T0, the RWF is much
less demanding with respect to computational resources than
solving the Schrödinger problem. Nevertheless, even the RWF
becomes computationally too costly for mesoscopically large
three-dimensional systems at low temperatures. For example,
the calculations of n(r, T ) depicted in Fig. 14 consumed 1.5 h
on a PC in the case of the RWF approach but only 0.15 s in
the case of the ULF scheme.

The ULF approach employs the temperature-dependent
effective potential W (r, T ). In this respect it is similar
to the LLT, which also relies on a quasiclassical poten-
tial that replaces the random potential V (r). However, the
effective potential W (r, T ) in the ULF approach depends
on temperature, while the effective potential in LLT is
temperature-independent. In Figs. 7 and 9, it is clearly seen
that the effective potential responsible for the distribution
n(r, T ) strongly depends on temperature to reproduce the
exact solution. Sec. IV provides evidence that ignoring the
T -dependence of the effective potential W (r, T ) prevents an
accurate calculation of the electron distribution n(r, T ). In the
ULF, a universal low-pass filter is applied to the potential
V (r) via Eq. (62). We derive this linear filter analytically
using high-temperature perturbation theory. The filter is T -
dependent, while T does not enter Eq. (90) of the LLT.

The numerical tests performed in Sec. IV show that the
range of applicability for the ULF approach is much broader
than that for the LLT. Furthermore, the ULF scheme requires
only Fast Fourier Transformation which is computationally
much less demanding than solving the LLT Eq. (90) so that
mesoscopically large three-dimensional disordered systems
appear within reach for temperatures T � 0.5T0.

The space- and temperature-dependent electron distribu-
tion n(r, T ) is the key ingredient for the theoretical treatment
of charge transport. In our work it is shown that RWF and ULF
provide a solid basis for the theoretical treatment of charge
transport in disordered media.

In this paper, the calculation of the equilibrium carrier
density in the Boltzmann approximation is considered for a
disordered potential as a function of temperature. However, in
practice, there are many problems where the carrier distribu-
tion at low temperature is not in equilibrium. Although neither
RWF nor ULF can be applied to nonequilibrium problems
straightforwardly, there is a perspective to possible modifica-
tion of RWF to make it applicable to nonequilibrium cases. If
the number of realizations NR decreases, then the calculated
occupation of energy levels by electrons gradually deviates
from their equilibrium values. In principle, these deviations
may mimic the nonequilibrium distributions, and one could
interpret the green dashed lines in Figs. 1 and 4 as corre-
sponding to the nonequilibrium electron densities. However,
two problems arise in such interpretation of the calculated
results. First, the deviations from the equilibrium occupation
should be more pronounced for the low-energy states than for
the high-energy levels. Some modifications of RWF should
be performed to fulfill this condition. Second, the occupations

of energy levels in RWF are described by χ2 distribution,
while in reality another statistics holds. For instance, the oc-
cupations should obey Poisson statistics in the approximation
of noninteracting electrons. More research is necessary to
overcome these obstacles.
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APPENDIX A: ACCURACY OF THE
RANDOM-WAVE-FUNCTION ALGORITHM

The aim of this section is to derive expression (34) for the
expected value of [�(r)]2. Dividing the numerator and the
denominator by eβμ in Eq. (33), and taking Eqs. (9) and (32)
into account, we obtain

�(r) = N−1
R

∑
R[ñR(r) − ñ(r)]

ñ(r)
. (A1)

As shown in Sec. II B,

〈ñR(r)〉 = ñ(r), (A2)

where angle brackets stand for the expected value. Substitut-
ing this result into Eq. (A1), one can ensure that

〈�(r)〉 = 0. (A3)

Hence, 〈
[�(r)]2〉 = var �(r)

= var
{∑

R[ñR(r) − ñ(r)]
}

N2
R [ñ(r)]2

=
∑

R var {[ñR(r) − ñ(r)]}
N2

R [ñ(r)]2

= var {[ñR(r) − ñ(r)]}
NR [ñ(r)]2

= 〈[ñR(r)]2〉 − [ñ(r)]2

NR [ñ(r)]2
, (A4)

where symbol “var” denotes variance, and we use the fact
that variance of the sum is equal to the sum of variances of
independent variables.

Then we recall that ñR(r) is a square of random quantity
γR(r) ≡ √

2ψR(r) according to Eq. (23). The latter quantity
is, by construction, a linear combination of Gaussian random
variables c(0)

i,R, and therefore has a Gaussian distribution with
expected value zero. The expected value of ñR(r) is the second
moment of γR(r), and the expected value of [ñR(r)]2 is the
fourth moment of γR(r). Due to Wick’s probability theorem,
the fourth moment of a normally distributed random variable
is three times larger than the square of its second moment.
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Hence,

〈[ñR(r)]2〉 = 3[ñ(r)]2. (A5)

Finally, substitution of Eq. (A5) into Eq. (A4) gives

〈[�(r)]2〉 = 2

NR
. (A6)

APPENDIX B: CONSTANT PARAMETER AT SMALL
DISCRETIZATION

In this Appendix we show how to derive the scaling form
(67) for the constant parameter C(T ).

We start from Eq. (49) that expresses the electron density
n(r, T ) through the effective potential W (r, T ),

n(r, T ) = Nc eβ[μ−W (r,T )]

= Nceβμ

[
1 − βW (r, T ) + β2

2
W 2(r, T ) − . . .

]
.

(B1)

Since we consider the potential V (r) as a small perturbation,
we expand n(r, T ) and W (r, T ) in a power series,

n(r, T ) = n0(T ) + n1(r, T ) + n2(r, T ) + O(V 3), (B2)

W (r, T ) = W1(r, T ) + W2(r, T ) + O(V 3), (B3)

where n0(T ) = Nc exp(βμ). Here, n1(r, T ) and W1(r, T ) are
linear in V , and n2(r, T ) and W2(r, T ) are quadratic in V .
Substituting Eq. (B2) into Eq. (B1), and collecting the terms
up to quadratic order in V , we obtain

n2(r, T ) = Nc eβμ

[
β2

2
W 2

1 (r, T ) − βW2(r, T )

]
, (B4)

where the filter function defines the linear relation between
the random potential and the effective potential,

W1(r, T ) =
∫

dr′(r′, T )V (r + r′), (B5)

see Eqs. (62) and (81).
Equation (66) shows that C(T ) = 〈W (r)〉 − 〈V (r)〉. The

odd powers of the white-noise potential V vanish after aver-
aging, hence

C(T ) = 〈W2(r, T )〉 + O(V 4). (B6)

We substitute W2(r, T ) using Eq. (B4) into Eq. (B6) and
neglect the residual term O(V 4) to obtain

C(T ) = C(1)(T ) + C(2)(T ), (B7)

with the two contributions

C(1)(T ) = β

2

〈
W 2

1 (r, T )
〉
,

C(2)(T ) = − 〈n2(r, T )〉
βNc eβμ

. (B8)

1. First contribution

The mean value of W 2
1 (r, T ) in Eq. (B8) depends on the

statistics of the random potential V (r). For a white-noise

potential, Eq. (38) leads to〈
W 2

1 (r, T )
〉 = S

∫
dr′ [(r′, T )]2, (B9)

which is indeed independent of r. Here, the parameter S char-
acterizes the strength of the potential fluctuations. The Fourier
image of the filter function,

̂(k) =
∫

dr (r) eik·r, (B10)

permits us to rewrite Eq. (B9) using the Plancherel identity
with the result

C(1)(T ) = βS

2(2π )d

∫
dk [̂(k)]2. (B11)

Here, d = 1, 2, 3 is the spacial dimension. Using Eq. (89),
we express ̂(k) via the universal function ̂uni(k), which is
defined by Eq. (87). The resulting coefficients C(1)(T ) are

C(1)
1d (T ) = βS

4πλ̄

∫ ∞

−∞

[√
π

k
e−k2/4 erfi(k/2)

]2

dk

≈ 0.260
βS

λ̄
(B12)

in d = 1 dimension,

C(1)
2d (T ) = βS

2(2πλ̄)2

∫ ∞

0
2πk

[√
π

k
e−k2/4erfi(k/2)

]2

dk

≈ 0.146
βS

λ̄2
(B13)

in d = 2 dimensions, and

C(1)
3d (T ) = βS

2(2πλ̄)3

∫ ∞

0
4πk2

[√
π

k
e−k2/4erfi(k/2)

]2

dk

≈ 0.0971
βS

λ̄3
(B14)

in d = 3 dimensions.

2. Second contribution

To calculate C(2)(T ), we need an expression for the second-
order correction n2(r, T ) to the electron density n(r, T ). We
start from Eq. (72) that expresses the electron density through
the one-particle Hamiltonian Ĥ ,

n(r, T ) = 2eβμ〈r| exp(−βĤ )|r〉. (B15)

Let us consider the kinetic-energy operator T̂ as the nonper-
turbed Hamiltonian, and the potential-energy operator

V̂ =
∫

dr V (r) |r〉〈r| (B16)

as a small perturbation. Then, the perturbation expansion up
to the second order yields

n(r, T ) = n0(T ) + n1(r, T ) + n2(r, T ),

n0(T ) = 2eβμ〈r|e−βT̂ |r〉,

n1(r, T ) = −2eβμ

∫ β

0
dξ 〈r|e−ξ T̂ V̂ e(ξ−β )T̂ |r〉,
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n2(r, T ) = 2eβμ

∫ β

0
dξ1

∫ β

ξ1

dξ2

×〈r|e−ξ1T̂ V̂ e(ξ1−ξ2 )T̂ V̂ e(ξ2−β )T̂ |r〉. (B17)

As our next step, we insert the expression for V̂ from
Eq. (B16) into Eq. (B17) to see that

n2(r, T ) =
∫∫

dr1 dr2 (2)
n (r1, r2, T )V (r + r1)V (r + r2),

(B18)
where the kernel (2)

n (r1, r2, T ) is defined by

(2)
n (r1, r2, T ) = 2eβμ

∫ β

0
dξ1

∫ β

ξ1

dξ2 〈0|e−ξ1T̂ |r1〉

×〈r1|e(ξ1−ξ2 )T̂ |r2〉〈r2|e(ξ2−β )T̂ |0〉.
(B19)

The expression (B8) for C(2)(T ) contains the mean value of
n2(r, T ). Using Eq. (B18) and the statistics of the white-noise
potential V (r) from Eq. (38) we obtain the average value in
the form

〈n2(r, T )〉 = S
∫

dr′(2)
n (r′, r′, T ), (B20)

which is independent of r. To calculate the integral on the
right-hand side, we represent the kinetic-energy operator T̂ in
Fourier space as

T̂ = �

(2π )d

∫
dk

h̄2k2

2m
|k〉〈k|, (B21)

and we use Eq. (80) for the plane-wave matrix elements 〈r|k〉.
Then Eq. (B19) leads to∫

dr (2)
n (r, r, T ) = 2eβμ

(2π )3d

∫ β

0
dξ1

∫ β

ξ1

dξ2

×
∫∫∫

dk1 dk2 dk3

∫
dr

×e−h̄2ξ1k2
1/(2m)eh̄2(ξ1−ξ2 )k2

2/(2m)

×eh̄2(ξ2−β )k2
3/(2m)ei(k3−k1 )·r. (B22)

Here, the integration over r is straightforward,∫
dr ei(k3−k1 )·r = (2π )d δ(k3 − k1), (B23)

which allows us to perform the integral over k3. Thence,∫
dr (2)

n (r, r, T )

= 2eβμ

(2π )2d

∫ β

0
dξ1

∫ β

ξ1

dξ2

(∫
dk1 e−(β−ξ2+ξ1 )h̄2k2

1/2m

)
×

(∫
dk2 e−(ξ2−ξ1 )h̄2k2

2/2m

)
= 2eβμ

(2π )2d

∫ β

0
dξ1

∫ β

ξ1

dξ2

(
2πm

(β − ξ2 + ξ1)h̄2

)d/2

×
(

2πm

(ξ2 − ξ1)h̄2

)d/2

. (B24)

In the latter expression, the parameters ξ1 and ξ2 appear only
in the combination ξ = ξ2 − ξ1. To further simplify the inte-
grals, we note that, for any function φ(ξ ),∫ β

0
dξ1

∫ β

ξ1

dξ2 φ(ξ2 − ξ1) =
∫ β

0
dξ (β − ξ ) φ(ξ ) (B25)

holds. Hence,∫
dr (2)

n (r, r, T ) = 2eβμ

(
m

2π h̄2

)d

×
∫ β

0
dξ ξ−d/2(β − ξ )1−d/2. (B26)

We combine Eqs. (B8), (B20), and (B26), and express Nc from
Eq. (47) and λ̄ from Eq. (64) to arrive at a simple formula for
the constant C(2)(T ),

C(2)(T ) = − Sβd−1

(2
√

πλ̄)d

∫ β

0
dξ ξ−d/2(β − ξ )1−d/2. (B27)

In d = 1 dimension, this formula is readily evaluated,

C(2)
1d (T ) = −

√
π

4

Sβ

λ̄
, (B28)

because the integral converges.
However, the integral in Eq. (B27) diverges in two and

three dimensions. In particular,

C(2)
2d (T ) = − Sβ

4πλ̄2

∫ β

0

dξ

ξ
. (B29)

This divergence stems from the divergent integral

I (ξ ) =
∫

dk exp

(
−ξ

h̄2|k|2
2m

)
, (B30)

that appears in Eq. (B24). This integral becomes infinitely
large in the limit ξ → 0 when the integration is performed
over the whole k-space. However, in a discretized model, the
value of |k| cannot be larger than 
a−1, where a is the grid
lattice constant. This shows that the lower limit of the integral
in Eq. (B29) should be set to

ξmin 
 1

εmax

 ma2

h̄2 
 a2β

λ̄2
. (B31)

Therefore, in two dimensions we find

C(2)
2d (T ) = Sβ

2πλ̄2
ln

μ̃2a

λ̄
, (B32)

where μ̃2 arises from the unknown proportionality factor be-
tween the left-hand side and the right-hand side of Eq. (B31).
The factor μ2 may depend also on the type of the discretiza-
tion grid (square, hexagonal, etc.).

Similarly, we replace the lower limit in Eq. (B27) by ξmin

also in three dimensions,

C(2)
3d (T ) = − Sβ

(4π )3/2λ̄3

⎡⎣2

√
β

ξmin
+ O

(
ξmin

β

)⎤⎦. (B33)

Neglecting the last term in the square brackets and substituting
ξmin from Eq. (B31), we find

C(2)
3d (T ) = −μ3

Sβ

λ̄2a
, (B34)
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where the parameter μ3 again depends on the undetermined
factor in Eq. (B31).

3. Summary

Summing up the expressions for C(1)(T ), Eqs. (B12)–
(B14), and for C(2)(T ), Eqs. (B28), (B32), and (B34), we
arrive at the following results for the coefficient C(T ) in
d = 1, 2, 3 dimensions,

C1d (T ) = −0.183
S

kBT λ̄
, (B35)

C2d (T ) = S

kBT λ̄2

1

2π
ln

μ2a

λ̄
, (B36)

C3d (T ) = S

kBT λ̄3

(
−μ3

λ̄

a
+ 0.0971

)
. (B37)

The parameters μ2 and μ3 in these formulas are lattice specific
and can be found by fitting of the numerical data. As shown
in the main text, μ2 ≈ 0.30 for the square lattice, and μ3 ≈
0.255 for the three-dimensional cubic lattice. Thus, Eq. (67)
is shown to hold within second-order perturbation theory for
a white-noise random potential.
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