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Localization challenges quantum chaos in the finite two-dimensional Anderson model
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It is believed that the two-dimensional (2D) Anderson model exhibits localization for any nonzero disorder
in the thermodynamic limit and it is also well known that the finite-size effects are considerable in the weak
disorder limit. Here we numerically study the quantum chaos to localization transition in the finite 2D Anderson
model using standard indicators used in the modern literature such as the level spacing ratio, spectral form
factor, variances of observable matrix elements, participation entropy, and the eigenstate entanglement entropy.
We show that many features of these indicators may indicate emergence of robust single-particle quantum chaos
at weak disorder. However, we argue that a careful numerical analysis is consistent with the single-parameter
scaling theory and predicts the breakdown of quantum chaos at any nonzero disorder value in the thermodynamic
limit. Among the hallmarks of this breakdown are the universal behavior of the spectral form factor at weak
disorder, and the universal scaling of various indicators as a function of the parameter u = (W ln V )−1 where W
is the disorder strength and V is the number of lattice sites.
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I. INTRODUCTION

Identifying regimes in which quantum dynamics exhibits
chaotic behavior is a nontrivial task and is currently subject of
active research in different fields of condensed matter [1,2],
quantum statistical physics [1], and quantum information [3].
One of the central questions is to understand the general cir-
cumstances under which quantum chaos [4,5] and eigenstate
thermalization [1,6–8] break down. In a given microscopic
theory, one may distinguish between two types of transitions
between quantum chaos and the absence thereof in the ther-
modynamic limit: a case in which one of the regimes is limited
to a singular point in a parameter space, and a more general
case that exhibits a true transition between chaotic and non-
chaotic regime.

A paradigmatic example of the breakdown of single-
particle quantum chaos in lattice systems is the Anderson
model, which at sufficiently large disorder hosts the well-
known Anderson localization [9]. It was realized rather soon
that one-dimensional systems localize for any nonzero disor-
der amplitude W [10,11], and in three (and more) dimensions
the localization transition should emerge at some nonzero W
[9]. Interestingly, in 1980’s the problem of localization in the
Anderson model in D dimensions has been mapped to the
problem of suppression of diffusion by dynamical localization
in the standard model of quantum chaos, the so-called kicked
rotator [12], with D incommensurate frequencies, which has
been specifically studied for D = 2 [13] and D = 3 [14].

The situation, however, turned out to be more challenging
in two dimensions (2D). It is now believed that in 2D, much as
in one dimension, localization emerges in the thermodynamic
limit at any nonzero disorder [15], and hence delocalization
is only limited to a singular point at disorder W = 0. In-
triguingly, however, finite 2D systems appear to exhibit a

relatively broad regime at weak disorder in which fingerprints
of localization appear to be less clear. As a consequence
of this ambiguity, in the period from 1958 (introduction of
the Anderson model [9]) until around 1979 (introduction of
the single-parameter scaling theory [15]), it was commonly
argued that the 2D systems exhibit a localization transition
at some nonzero disorder [16–26]. The origin of the latter
confusion can be attributed to the exponential scaling of
the localization length with the inverse disorder amplitude
[27–32], such that at very weak disorder even macroscopically
large samples may not localize [28,33]. The validity and the
level of applicability of the single-parameter scaling theory
then remained a matter of discussion [34–38].

This paper combines two viewpoints on this long-standing
problem. In the first, rather historical perspective, we inves-
tigate the weak disorder regime of the 2D Anderson model
through the lens of of spectral statistics, matrix elements of
observables, and the structure of wavefunctions. We show that
the results in finite systems appear to be compatible with the
emergence of single-particle quantum chaos [39,40] at weak
disorder. However, we also find simple and powerful scaling
solutions that are consistent with single-parameter scaling
theory [15], and demonstrate the flow towards a localized state
at any nonzero disorder in the thermodynamic limit.

The second perspective is aligned with concurrent studies
of the breakdown of quantum chaos in interacting systems,
which use quantum chaos indicators to pinpoint an ergodic-
ity breaking transition. In most cases of interest for current
studies, the critical parameters of the transition are usually
not known in advance. A typical example is the random-field
spin-1/2 Heisenberg chain, which has recently experienced a
renewed interest to unveil the eventual breakdown of quan-
tum chaos [41–60]. Here we study a single-particle problem,
which is assumed to be more accessible to numerical methods
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and hence a precise determination of the onset of localization
is expected to be feasible. A specific question we address is
the following: Provided that one is not aware of previous work
on Anderson localization in 2D, is it possible to conclude,
based on calculations of quantum chaos indicators in finite
systems, that the 2D Anderson model localizes at any nonzero
disorder in the thermodynamic limit? As we show here, the
answer is indeed affirmative. Our central result are the scaling
solutions of quantum chaos indicators as functions of an ef-
fective parameter u = (W ln V )−1, where V is the number of
lattice sites, which also equals the single-particle Hilbert space
dimension. In particular, upon identifying the parameter u, the
results follow their asymptotic form already at rather small
system sizes. These results, hence, provide a positive example
about the ability of exact numerical approaches to accurately
describe the fate of a quantum chaos to localization transition
in the thermodynamic limit.

A. Anderson model

The focus of this paper is the 2D Anderson model on a
square lattice L × L,

Ĥ = −t
∑
〈i, j〉

(ĉ†
i ĉ j + H.c.) + W

2

V∑
i=1

win̂i , (1)

assuming periodic boundary conditions. Here, ĉ†
i and ĉi are the

spinless fermion creation and annihilation operators, respec-
tively, at site i, and n̂i = ĉ†

i ĉi. The number of lattice sites is
V = L2, which also corresponds to the single-particle Hilbert
space dimension. In the first term in Eq. (1), describing the
nearest-neighbor hopping, we set the corresponding kinetic
energy scale t ≡ 1 throughout our calculations. Representing
disorder in the system, random on-site potentials w j in the
second term in Eq. (1) are independent and identically dis-
tributed random numbers w j ∈ [−1, 1], drawn from a uniform
distribution. The degree of the disorder is hence controlled by
the disorder strength parameter W .

The Anderson model in Eq. (1) is a paradigmatic model to
study Anderson localization and has been a focus of research
over nearly five decades, see, e.g., Refs. [61–66] for reviews.
Below we highlight several properties of the Anderson model
that are relevant for our study.

Perhaps the most widely studied Anderson model is the one
defined on a cubic (3D) lattice, for which the existence of the
transition at nonzero disorder is well established [15,27,61].
However, even in this case, as noted in the Anderson’s Nobel
lecture [67], one needs to resort to numerical calculations to
pinpoint the actual value of the transition point. The latter
has indeed been determined to high accuracy using various
numerical techniques in finite systems [66,68], and nowadays
the established transition point in the thermodynamic limit is
Wc ≈ 16.5.

We note that very useful indicators to accurately pinpoint
the transition point in the 3D Anderson model are based on
quantum chaos indicators, which are discussed in more detail
in Sec. II. A paradigmatic example of the latter are spectral
statistics, for which a connection between the 3D Anderson
model below the transition (i.e., at W < Wc) and the predic-
tions of the random matrix theory (RMT) were made already

in the mid-eighties [69], shortly after the formulation of the
quantum chaos conjecture [70,71]. The transition in finite
systems then corresponds to a crossover between a quantum
chaotic regime at W � Wc, in which spectral statistics follow
predictions from the Gaussian orthogonal ensemble (GOE),
and a localized regime at W � Wc, in which spectral statistics
are Poissonian [66,72–76].

B. Single-parameter scaling (SPS) hypothesis

Resolving the fate of the Anderson transition in 2D turned
out to be a much more difficult task compared to 3D. Be-
fore the introduction of the single-parameter scaling (SPS)
hypothesis [15], many studies were interpreted in terms of a
transition occurring at nonzero disorder, i.e., Wc > 0 [16–26].
According to the SPS hypothesis of localization [15], which
builds on the assumption that the real-space wave functions
in the localized regime decay exponentially with distance,
the 2D system exhibits Anderson localization at any nonzero
W in the thermodynamic limit. Soon after the introduction of
the SPS hypothesis, numerical studies confirmed its relevance
at moderate and large disorder [27,28], and identified expo-
nential divergence of the localization length of the form [27],

ξ = b e
a

W , (2)

where a is a constant and b is a parameter that may eventually
include subleading contributions to W dependence. At weak
disorder, perturbative results established logarithmic finite-
size effects that suggested absence of a true metallic behavior,
and hence this regime is also referred to as the regime of weak
localization [61]. Finite-size effects that scale as logarithms
of system volume V render the numerical analysis of the
problem notoriously difficult and make the true nature of the
transition hard to address. For example, some early numerical
works suggested evidence against the SPS hypothesis and
highlighted a subexponential decay of wave functions at weak
disorder [34–36,38].

In the actual numerical studies of finite 2D systems, the
origin of difficulties to detect localization can be understood
as being a consequence of ξ > L, i.e., the localization length
ξ from Eq. (2) exceeding the linear system size L = √

V ,
see Fig. 1(a). While previous studies of the 2D Anderson
model mostly focused on properties of conductance and the
corresponding distributions [77–81], here we focus on quan-
tum chaos indicators that imprint properties of Hamiltonian
spectrum, eigenfunctions, and matrix elements of observ-
ables. We show that the equality ξ = L, which is fulfilled
at some intermediate disorder W ∗ for system sizes under
consideration, gives rise to a quantum chaos to localization
crossover at roughly the same W ∗. Moreover, W ∗ is a function
of the system size V , which we denote as W ∗ = W ∗(V ).
For the available system sizes V � 106 one typically expects
W ∗(V ) � 5 [16–24,26–28,30,77]. We observe that the regime
W < W ∗(V ) exhibits extremely robust signatures of quantum
chaos. The latter are sometimes so robust that the convergence
to RMT predictions even improves by increasing the system
size V . This may easily be interpreted as evidence of a true
localization transition occurring at Wc > 0 in the thermody-
namic limit.
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FIG. 1. (a) Localization length ξ from Eq. (2) vs disorder W . We set a = 1/(2u∗), see Eq. (6), where u∗ = 0.015, and b = 1. The dashed
and dashed-dotted horizontal lines denote the smallest (L = 48) and largest (L = 1024) linear system size L = √

V used in our calculations,
respectively. The shaded region marks the regime in which ξ = L for the system sizes under investigation. (b) Flow of 1/V vs W . Solid line
denotes the flow of the scale-invariant point set by u = u∗ = 0.015, see Eq. (4). The dashed and dashed-dotted lines denote the flow of the
effective parameter u from Eq. (3) in localized and quantum chaotic regimes at u = 0.005 < u∗ and u = 0.025 > u∗, respectively. Horizontal
dotted line denotes the inverse maximal system size studied here, V −1

max = 2−20 ≈ 10−6.

Nevertheless, as will be demonstrated in Sec. II, our re-
sults based on state-of-the-art numerical approaches are in
accordance with the SPS hypothesis and suggest Wc = 0, i.e.,
the absence of localization transition at nonzero disorder. The
results can be summarized in two steps.

The first step relies on numerical observations. Monitoring
the departure of various quantum chaos indicators (to be in-
troduced in Sec. II) from the RMT predictions, we observe
a systematic drift of the crossover point W ∗(V ) → 0 upon
increasing V . Specifically, we observe a drift of 1/W ∗(V )
that is logarithmic in V . This motivates us to introduce the
effective parameter

u = (W ln V )−1 . (3)

Remarkably, when studying quantum chaos indicators as a
function of u, we observe a scale-invariant crossover point u∗
that emerges for all indicators under investigation at approxi-
mately the same value,

u∗ = [W ∗(V ) ln V ]−1 ≈ 0.015 . (4)

The flow of the disorder at the scale-invariant point W ∗ with
V is demonstrated in Fig. 1(b). We refer to the regime u >

u∗ [i.e., W < W ∗(V )] as prelocalization, thereby highlighting
that while a given system appears to be quantum chaotic, it
localizes in the thermodynamic limit V → ∞.

In the second step, we test the dependence of various
quantum chaos indicators as a function of ξ/L, assuming the
parameter b in Eq. (2) to be a constant. We find excellent
scaling collapses of the results in a broad interval of system
sizes 103 � V � 106, thereby confirming validity of the SPS
hypothesis in the 2D Anderson model.

The central question is then to establish the connection
between the numerical observations in the first step and the
SPS property in the second step. Using Eq. (2) and setting
L = √

V , one can express

ln(ξ/L) = a

W
− 1

2
ln V + ln b =

(
a u − 1

2

)
ln V + ln b ,

(5)

where in the last step we introduced the parameter u from
Eq. (3). Equation (5) offers two interesting insights. The first
is that the ratio ξ/L, which depends on both W and V , can
be conveniently expressed as a function of two parameters,
the effective parameter u from Eq. (3) and the logarithm of the
system size V . The second insight is that the scale invariance
of ξ/L gives rise to the condition

a u∗ − 1

2
= 0 −→ a = 1

2u∗ . (6)

This allows us to simplify Eq. (5) as

ln(ξ/L) =
(

u − u∗

u∗

)
ln L + const, (7)

where the constant equals ln b.
The remainder of the paper is organized as follows. We

identify the scale-invariant point u∗ and test validity of the
SPS hypothesis for three quantum chaos indicators: the aver-
age gap ratio in Sec. II A, the ratio of variances of observable
matrix elements in Sec. II B, and the entanglement entropy
of many-body eigenstates in Sec. II C. Remarkably, all quan-
tum chaos indicators exhibit even quantitatively very similar
results, and provide strong support in favor of the SPS hypoth-
esis and Wc = 0 in the thermodynamic limit. We complement
these results by two other results. We observe in Sec. II A
that the spectral form factor K (τ ) [to be defined in Eq. (9)]
exhibits a broad plateau in the prelocalized regime u > u∗, and
in Sec. II C we observe that the derivative of the participation
entropy [to be defined in Eq. (15)] with respect to disorder
dSP/dW exhibits a peak in the vicinity of the scale-invariant
point u∗. Both results should be contrasted to the behavior in
the 3D Anderson model, for which it was recently shown that
at the transition K (τ ) exhibits a broad scale-invariant plateau,
and dSP/dW exhibits a peak that eventually corresponds to a
divergence in the thermodynamic limit [66].
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FIG. 2. Study of the average level spacing ratio r. Results are shown for different linear system sizes L = √
V , as indicated in the legend.

(a) Behavior of r as a function of disorder W in the inset, and as a function of the effective parameter u, see Eq. (3). The curves in the
main panel intersect at the scale-invariant point u∗ = (W ∗ ln V )−1 ≈ 0.0153, indicated by the vertical dashed-dotted line, while the horizontal
dashed-dotted line denotes the corresponding value of r at this point, r ≈ 0.44. (b) Behavior of r as a function of inverse disorder W −1 in the
inset, and as a function of ln(ξ/L) in the main panel using ξ = exp(1/(2u∗W )), see Eqs. (2) and (6). Bottom and top horizontal dashed lines
in all panels denote the limiting values in the GOE and Poisson regimes, rGOE ≈ 0.5307 and rP ≈ 0.3863, respectively. The solid line in the
main panel is the function r̄ + �r tanh[k( ln(ξ/L) − c0 )], where r̄ = (rGOE + rP )/2 = 0.46 and �r = (rGOE − rP )/2 = 0.07, and the fitting
parameters are k = 0.79 and c0 = 0.32. The shaded regions in both insets are identical to the one in Fig. 1(a).

II. INDICATORS OF QUANTUM CHAOS

From now on we focus on various quantum chaos
indicators based on spectral properties of single-particle
eigenenergies (Sec. II A), matrix elements of observables in
single-particle Hamiltonian eigenstates (Sec. II B), and the
wavefunction structure of both single-particle and many-body
eigenstates (Sec. II C). We numerically obtain exact single-
particle eigenstates of the 2D Anderson model (1) using either
full diagonalization or shift-invert method [82]. Using the
latter, we obtained 500 single-particle eigenstates from the
middle of the spectrum for Hamiltonian matrices of dimen-
sion V × V , with the largest Vmax = L2

max = 220 = 1 048 576.
When applicable, we compare the results to the corresponding
predictions of the Gaussian orthogonal ensemble (GOE) of
the RMT.

Since the Anderson model in Eq. (1) is quadratic, agree-
ment of quantum chaos indicators with GOE predictions
suggests that the model is quantum-chaotic quadratic [39,40],
and hence one observes single-particle quantum chaos. Note
that the latter does not necessary exhibit identical properties
as interacting systems for which one encounters many-body
quantum chaos [1]. For example, it was recently shown that
the spectral statistics of many-body eigenenergies of quantum-
chaotic quadratic Hamiltonians does not comply with GOE
predictions [39] (see also [83,84]), the entanglement entropy
of the corresponding many-body eigenstates is not necessary
maximal [3,39,85,86], and the matrix elements of observables
in many-body eigenstates do not exhibit eigenstate thermal-
ization [87].

A. Spectral analysis

We first study the average level spacing ratio r [88]. It is
defined through the level spacing ratio

rα = min{δα, δα−1}/ max{δα, δα−1} , (8)

where δα = Eα+1 − Eα is the level spacing between the
energy-ordered single-particle eigenstates |α〉 and |α + 1〉 of
the Hamiltonian (1). We then obtain r = 〈〈rα〉α〉 by the aver-
age 〈...〉α over eigenstates around the center of the spectrum
and the average 〈...〉 over different realizations of the dis-
order distributions. The asymptotic values are r ≈ rGOE ≈
0.5307 in the chaotic regime [89] and r → rP = 2 ln(2) −
1 ≈ 0.3863 in the localized regime [88].

The inset of Fig. 2(a) shows the raw results for r(W ) at
different V . They exhibit a broad crossover regime at 4 �
W � 10 and a seemingly very robust GOE regime at weak
disorder W � 4. From this result only it is not possible to
convincingly argue about the existence of localization at any
nonzero disorder in the thermodynamic limit V → ∞.

Robustness of localization becomes more apparent when
r is plotted as a function of 1/W , as shown in the inset of
Fig. 2(b). These results exhibit a linear drift of the crossover
region with the logarithm of the lattice volume V . This moti-
vates us to introduce a scaled parameter u = 1/(W ln V ) from
Eq. (3). Results for r versus u are shown in the main panel of
Fig. 2(a). They exhibit a scale-invariant point at u∗ = 0.0153.
Emergence of a scale invariant point in r(u) suggests that the
localized regime described by the Poisson statistics extends
over all positive values of W in the limit V → ∞.

In Fig. 2(b) we then test the SPS hypothesis by plot-
ting r as a function of ln(ξ/L), where ξ = be1/(2u∗W ) is
given by Eqs. (2) and (6). Since the parameter b only de-
termines a global horizontal shift of the scaled results, we
set b = 1 further on. We observe a remarkably good scaling
collapse of the data for essentially all system sizes under
consideration.

In passing, we note that the definition of the localization
length ξ = e1/(2u∗W ) has a very simple interpretation: it corre-
sponds to the linear systems size L at the scale-invariant point,
i.e., ξ = L at the point when W equals W ∗(V ) = 1/(u∗ ln V ),
see also Eq. (4). The dependence of ξ on W is shown in
Fig. 1(a).
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FIG. 3. (a) The spectral form factor K (τ ) in the 2D Anderson model for different linear system sizes L = √
V , as indicated in the legend.

Dashed-dotted lines denote the GOE result KGOE(τ ) = 2τ − τ ln(1 + 2τ ), open circles denote the extracted values of the scaled Thouless time
τTh and the vertical dashed line is the scaled Heisenberg time τH = 1. Results are shown at W = 2 in the main panel and W = 6 in the inset.
The horizontal dotted line in the main panel corresponds to K ≈ 0.03. (b) Behavior of the quantum chaos indicator g from Eq. (10), which
quantifies the ratio of the Heisenberg and Thouless times. Results are shown as a function of inverse disorder W −1 in the inset and as a function
of the effective parameter u in the main panel. The vertical dashed-dotted line in the main panel corresponds to u∗ = 0.0153 extracted from
Fig. 2, and the shaded area in the inset corresponds to the same interval of disorders W ∗ as in the insets of Fig. 2.

Next, we study the spectral form factor (SFF) K (τ ), which
is the Fourier transform of the two-point spectral correlation
function. It is defined as

K (τ ) = 1

Z

〈∣∣∣∣∣
V∑

n=1

f (εn)e−i2πεnτ

∣∣∣∣∣
2〉

. (9)

Here, {ε1 � ε2 � . . . , εV } is the complete set of Hamiltonian
single-particle eigenvalues after spectral unfolding, which sets
the mean level spacing to unity. We thus refer to τ as the scaled
time and the averaging 〈. . . 〉 is performed over different disor-
der realizations of Ĥ in Eq. (1). Details of the filtering function
f (ε) [used to minimize the finite-size effects], normalization
Z and the unfolding procedure are described in Ref. [42] and
Appendix A.

We explore the scaling of two relevant time scales, the
Heisenberg and the Thouless time. The first is proportional to
the inverse single-particle mean level spacing and corresponds
to the longest time scale under investigation. In scaled units,
the Heisenberg time is set to unity, τH = 1. The Thouless time
is defined as the onset time of quantum chaos, i.e., in scaled
units τTh is the time after which K (τ ) in chaotic systems
becomes universal and well described by the GOE predic-
tion [90]. In contrast, K (τ � 1) ≈ 1 in strongly nonchaotic
regime characterized by Poissonian level statistics. In this
case, therefore, the SFF K (τ ) does not represent a tool that
accurately determines τTh, but it merely yields τTh ≈ τH.

Recently, further universal features of the K (τ ) at τ � τTh

have been observed at the transition point of the 3D Ander-
son model [66]. There, a scale-invariant K (τ ) ≈ const < 1
emerges for a broad interval of τ . Since the outlined behav-
ior is only limited to the transition point, one can consider
independence of τTh on L as a criterion for the transition
[50,66]. Intriguingly, very similar behavior of K (τ ) was re-
cently observed at the ergodicity breaking phase transition in
the interacting avalanche model [91]. These observations set a
question whether similar universal features can be observed in
the 2D Anderson model, and, more generally, to which extent

one can use the SFF K (τ ) to infer the fate of the quantum
chaos to localization transition in the thermodynamic limit.

Results shown in Fig. 3(a) show quite unexpected phe-
nomenology. While the K (τ ) at W = 6, see the inset of
Fig. 3(a), exhibits a flow of the Thouless time τTh → 1 and
is hence consistent with restoration of localization, the result
at W = 2, see the main panel of Fig. 3(a), is not. It exhibits
two intriguing features: a seemingly scale-invariant value of
τTh = const < 1, and a broad, scale-invariant plateau of K (τ )
that extends over at least two orders of magnitude. In Fig. 7
in Appendix A, we show that a very similar structure of K (τ )
is observed in the broad prelocalized regime at W � W ∗(V ),
where W ∗(V ) ≈ 5 for the largest accessible system sizes.

We note that in physical units, the Thouless time tTh is
calculated as tTh = τThtH [41,66], where the Heisenberg time
tH is proportional to L2, i.e., the inverse mean level spacing in
a 2D system. Hence, the observation of τTh = const at W �
W ∗(V ) implies a diffusive scaling tTh ∝ L2. Such a scaling is
understood as a finite-size effect since it occurs in systems for
which L < ξ , see Fig. 1(a).

Results for K (τ ) at weak disorder W < W ∗(V ), and their
comparison to the results at the transition point in the 3D
Anderson model, may suggest robustness of quantum chaos
associated with a universal structure of K (τ ) at all times.
However, as discussed below, this quantum-chaotic regime is
likely a finite-size feature that evolves towards localization in
the thermodynamic limit.

To elucidate the scaling properties of the Thouless time, we
analyze the logarithmic ratio of the Heisenberg and Thouless
time [42],

g = log10(τH/τTh) = − log10 τTh , (10)

and study its behavior at different W and V . Recently, g has
been used as a reliable indicator to pinpoint the transition in
the 3D Anderson model [50,66] and the interacting avalanche
model [91]. As argued in Ref. [42], the indicator g interpo-
lates between the quantum chaotic regime, g → ∞, and the
nonchaotic regime, g → 0, in the thermodynamic limit. In the
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3D Anderson model, the scale-invariant point at which g∗ is
independent of L reliably pinpoints the transition [50,66].

As shown in the inset of Fig. 3(b), g versus W −1 in the 2D
Anderson model does actually not exhibit any scale-invariant
point. Instead, it exhibits seemingly two broad scale-invariant
regimes that emerge at large and small W . This property
may already be interpreted as a signature of the absence of
localization transition at nonzero W .

Even more importantly, we observe a drift of the rising
point of g(W −1) towards smaller W , which is indicated by the
shaded region in the inset of Fig. 3(b) and it roughly occurs
at W ≈ W ∗(V ). In the scenario of absence of localization
transition at nonzero W , this drift is expected to persist in
the thermodynamic limit. This expectation is confirmed in the
main panel of Fig. 3(b), in which we plot g versus the effective
parameter u. We observe a scale-invariant regime with g � 1
at u < u∗, which indicates localization, and a nonuniversal
regime with diverging g at u > u∗. Since the fixed point u∗
implies the flow of the disorder W ∗(V ) → 0 in the thermo-
dynamic limit V → ∞, this implies that the quantum-chaotic
regime vanishes with increasing V . This interpretation is con-
sistent with the results for the average level spacing ratio r in
Fig. 2.

B. Matrix elements of observables

To complement the studies of the spectral statistics, we
next investigate the properties of matrix elements of local
observables in single-particle energy eigenstates. The relevant
point of comparison is the single-particle eigenstate thermal-
ization [39], which is expected to describe properties of these
matrix elements in quantum-chaotic quadratic Hamiltonians.

We note that the single-particle eigenstate thermalization
carries many similarities, but also important differences, with
respect to the eigenstate thermalization hypothesis (ETH)
that is applied to matrix elements in many-body eigenstates
of quantum-chaotic interacting systems [1,6–8,92–94]. While
the ETH is relatively well established and has been a sub-
ject of extensive numerical studies [8,95,96], the concept of
single-particle eigenstate thermalization has not been studied
until recently [39,86]. In particular, we are not aware of any
previous studies that use the comparison to single-particle
eigenstate thermalization as an indicator of quantum chaos to
localization transition.

A specific quantity that we study is the ratio 	2 of vari-
ances of the diagonal and off-diagonal matrix elements, to be
defined in Eq. (13). In quadratic systems that obey single-
particle eigenstate thermalization, as well as in interacting
systems that obey the ETH, one expects 	2 → 	2

GOE = 2,
if the system belongs to the GOE universality [1]. Indeed,
this has been observed both in quantum-chaotic interact-
ing [97–100] and quantum-chaotic quadratic Hamiltonians
[40,86].

For a given observable Ô, we first calculate the variance
of its diagonal matrix elements Oαα ≡ 〈α|Ô|α〉 in the single-
particle energy eigenstates |α〉 as

σ 2
diag = |μ|−1

∑
|α〉∈μ

O2
αα −

(
|μ|−1

∑
|α〉∈μ

Oαα

)2

. (11)

Here, μ is a set of 500 eigenstates (|μ| = 500) centered
around the mean energy of the single-particle spectrum. As
highlighted in [97,98], the number of eigenstates included in
the average relative to the total number of states should be
a small number that quickly vanishes when increasing the
system size. Similarly, we calculate the off-diagonal matrix
elements Oαβ ≡ 〈α|Ô|β〉 and obtain their variance as

σ 2
off = |μ′|−1

∑
|α〉,|β〉∈μ
|α〉�=|β〉

O2
αβ −

(
|μ′|−1

∑
|α〉,|β〉∈μ
|α〉�=|β〉

Oαβ

)2

, (12)

where |μ′| is the number of the off-diagonal matrix elements,
|μ′| = |μ|2 − |μ|. For each disorder realization, we calculate
the ratio of variances of diagonal and off-diagonal matrix
elements and then average the results over different disorder
realizations, i.e., we define the ratio of variances as

	2 =
〈
σ 2

diag

σ 2
off

〉
, (13)

where 〈...〉 denotes the averaging over different Hamiltonian
realizations. For convenience, we typically study the differ-
ence between 	2 and the GOE value 	2

GOE = 2,

�	2 = ∣∣	2 − 	2
GOE

∣∣ . (14)

As an observable we consider the site occupation operator
n̂i = ĉ†

i ĉi at the center of the lattice, i.e., at the site i =
(L/2, L/2). We note that we have also tested the implemen-
tation of 	2 where in Eq. (13) the ratio of mean variances is
taken rather than the mean of the ratios. While this choice does
not seem to particularly affect the scaling in the GOE regime,
it appears less stable at larger disorders and the results exhibit
larger fluctuations.

Results for �	2 as a function of disorder W are shown for
different system sizes in Fig. 4. We first note a remarkably
good agreement of the numerical results with the GOE pre-
diction �	2 = 0 in the regime W � 1. In particular, we find
�	2 � 10−2 for the largest system with L = 1024, which is
comparable with the most accurate studies carried out so far in
interacting systems [100]. Increasing the disorder, we observe
a gradual increase of �	2 in accordance with the onset of
localized behavior. Interestingly, while spectral statistics for
the largest available system can still show r = rGOE in the
crossover regime, see the vertical dashed line in the inset of
Fig. 4(a), 	2 is already far from the GOE prediction.

We test the predicting power of �	2 to pinpoint the lo-
calization transition by plotting �	2 as a function of the
effective parameter u in the inset of Fig. 4(b). Quite sur-
prisingly, we observe a scale-invariant crossover point that is
quantitatively very close to the value u∗ = 0.0153 obtained in
the study of the average level spacing ratio in Sec. II A. Note,
however, that the value of �	2 at the scale-invariant point is
rather large, �	2 ≈ 102. Moreover, we again cast the results
as a function of ln(ξ/L), see the main panel of Fig. 4(b), and
obtain an excellent data collapse for different system sizes.
These results suggest, quite nontrivially, that a proper indi-
cator of the statistical properties of matrix elements, such as
�	2 studied here, can detect both the absence of localization
transition at nonzero W as well as exhibit a scaling that is
consistent with the SPS hypothesis.
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FIG. 4. Ratio of variances of matrix elements of the site occupa-
tion operator n̂i at the center of the lattice, i = (L/2, L/2). Results
are shown for different linear system sizes L = √

V , as indicated
in the legend. (a) �	2, see Eq. (14), as a function of disorder W
in the main panel, and 	2, see Eq. (13), as a function of inverse
disorder W −1 in the inset. The horizontal line in the inset denotes
	2

GOE = 2, while the vertical dashed line denotes the disorder value
at which r in Fig. 2(a) still displays the GOE behavior for the largest
studied system. (b) �	2 as a function of the effective parameter u
in the inset, and �	2 as a function of ln(ξ/L) in the main panel.
We extract the scale-invariant point u∗ = 0.0147 in the inset, see
the vertical dashed-dotted line, and use it in the definition of ξ =
exp (1/(2u∗W )) in the main panel.

C. Structure of Hamiltonian eigenstates

We finally investigate the transition through the structure
of the Hamiltonian eigenfunctions. This direction of research
was pioneered by Dean and Bell [101] and has later become
one of the central tools to characterize localization transitions
in both noninteracting as well as interacting systems.

For a single-particle eigenstate |α〉, we calculate its partic-
ipation entropy and the corresponding average as

S(α)
P = ln

V∑
i=1

|ψi,α|4, SP = 〈〈
S(α)

P

〉
α

〉
, (15)

where ψi,α = 〈i|α〉 is the wavefunction coefficient in
the site-occupational basis, 〈...〉α denotes averaging over
single-particle eigenstates, and 〈...〉 is the averaging over
Hamiltonian realizations. The protocol of averaging is
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W
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384
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1024
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d
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d
W

FIG. 5. Main panel: Average participation entropy SP, see
Eq. (15), versus the disorder W . The average is performed over 500
single-particle eigenstates centered at the mean energy of the spec-
trum, and at least 1500 Hamiltonian realizations (or 350 realizations
for the largest two system sizes). Results are shown at different linear
system sizes L = √

V as indicated in the legend. Horizontal dashed
lines show the corresponding GOE result ln(3/V ) valid in the low-W
limit. Inset: Scaling of the derivative dSP

dW as a function of the effective
parameter u. Vertical dashed line is located at u∗ = 0.0153.

analogous to the one applied in calculations of the average
level spacing ratio r in Sec. II A.

In an ideally localized case with the wavefunction equaling
unity on a single site while vanishing elsewhere, we have
SP = 0. In the main panel of Fig. 5, we plot SP versus W
and we indeed observe an approach towards this limit at large
W . In the opposite regime, the wave functions are uniformly
spread over the lattice volume and hence the wave function
coefficients are of the order L−D/2, where D is the lattice
dimension. In particular, if the wavefunction is chaotic and be-
longs to the GOE universality, one expects S(GOE)

P = ln(3/V )
[16]. These values are indicated as horizontal lines in the main
panel of Fig. 5, and we see that the actual numerical results
approach these predictions in the limit W → 0.

While our numerical results are in good agreement with
both limiting cases discussed above, extracting a quanti-
tative criterion for the localization transition appears less
straightforward. As shown in Ref. [66] for the 3D Anderson
model, a very accurate estimate for the critical point Wc can
be obtained when studying the behavior of the derivative
dSP/dW as a function of W. In the vicinity of the tran-
sition, the derivative displays a characteristic peak which
becomes both sharper and closer to Wc upon increasing the
system size.

In the inset of Fig. 5 we study the derivative dSP/dW in
the 2D Anderson model. We find that a qualitatively similar
behavior as in the 3D Anderson model can be obtained once
we cast the data as a function of the effective parameter u from
Eq. (3). In this case, a sharp peak in dSP/dW emerges in the
vicinity of the scale-invariant point u∗. A vertical line in the
inset of Fig. 5 denotes the value u∗ = 0.0153 obtained from
the analysis of the average level spacing ratio r in Fig. 2, and
it provides a rather accurate prediction for the location of the
peak in dSP/dW .
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FIG. 6. Volume-law coefficient SvN/(VA ln 2) of the average bipartite entanglement entropy of many-body eigenstates, see Eq. (16) and the
text below. We partition the 2D lattice in two equal parts, i.e., VA = V/2. Results are shown for different system sizes L = √

V , as indicated
in the legend. For L � 128, we performed averaging over Nm = 1000 many-body eigenstates while for the largest two systems we took
Nm = 512 and Nm = 64 many-body eigenstates, respectively. Additionally, we averaged over approximately 100 Hamiltonian realizations. The
horizontal dashed lines (in all panels) indicate the maximal value SvN/(VA ln 2) for quantum-chaotic quadratic Hamiltonians, see Eq. (17).
(a) SvN/(VA ln 2) as a function of W in the inset, and as a function of the effective parameter u in the main panel. The scale-invariant point at
u∗ = 0.016 is denoted by the vertical dashed line. (b) Casting SvN/(VA ln 2) as a function of ln(ξ/L) yields a remarkable scaling collapse of
the data, in analogy with other studied indicators of localization. The inset shows the size dependence of SvN/(VA ln 2) at disorder strengths
between W = 0.5 (topmost curve) and W = 2.5 (lowermost curve) with a stepsize of δW = 0.5.

We complement the above results by studying properties
of many-body eigenstates |m〉. We focus on the entanglement
entropies of highly excited eigenstates, which have been re-
cently proposed as a useful measure to distinguish between
many-body and single-particle quantum chaos, and the ab-
sence thereof [3,85,102].

We consider the von Neumann entanglement entropy of
the many-body eigenstates |m〉 of the 2D Anderson model,
where |m〉 are constructed as products of randomly selected
single-particle eigenstates. For a bipartition of a lattice into
two connected subsystems A (our system of interest) and B,

the von Neumann entanglement entropy of |m〉 is defined as

S(m)
vN = −Tr{ρ̂A ln ρ̂A} , (16)

where the reduced density matrix of subsystem A is ρ̂A =
TrB{ρ̂m}, and ρ̂m = |m〉 〈m| . For a subsystem A with volume
(the number of lattice sites) VA, we define the subsystem
fraction f = VA/V , with V = VA + VB. We then average S(m)

vN
over different many-body eigenstates |m〉, as well as over
different Hamiltonian realizations, to obtain the average von
Neumann eigenstate entanglement entropy SvN. Details about
the implementation of SvN are given in Appendix B.

For the many-body eigenstates of quantum-chaotic
quadratic Hamiltonians, a closed-form analytic expression for
the average von Neumann bipartite eigenstate entanglement
entropy has recently been introduced [85] (see also [3,103]).
The value for bipartitions in two equal parts, i.e., at f = 1/2,
equals

SvN = (2 − 1/ ln 2)VA ln 2 ≈ 0.5573VA ln 2 . (17)

Most importantly, the volume-law coefficient SvN/(VA ln 2) in
quantum-chaotic quadratic systems at f = 1/2 is much lower
than the maximal value 1 encountered in quantum-chaotic
interacting systems [3,104]. In this context, the eigenstate en-
tanglement entropy is a powerful probe to distinguish between
single-particle quantum chaos, which emerges in quantum-
chaotic quadratic systems, and many-body quantum chaos,

which emerges in most interacting systems. The validity of
Eq. (17) has been tested numerically in several quantum-
chaotic quadratic models, ranging from the quadratic SYK
models [39,85,105] and the 3D Anderson model at weak
disorder [39] to chaotic tight-binding billiards [86], finding
excellent agreement. Here we use the result in Eq. (17) as a
reference point for the maximal entanglement entropy in the
quantum-chaos to localization transition in the 2D Anderson
model.

The inset of Fig. 6(a) shows the dependence of the volume-
law coefficient SvN/(VA ln 2) on the disorder W for different
system sizes V . In the limit W → 0 we observe agreement
with single-particle quantum chaos, as given by Eq. (17),
while in the regime of large W the onset of localization
is manifested as the absence of volume-law scaling, i.e.,
SvN/(VA ln 2) → 0.

The results for SvN/(VA ln 2) versus W in the inset of
Fig. 6(a) resemble the results for r versus W in the inset
of Fig. 2(a). They both suggest a tendency of localization
transition to occur at decreasing values of W upon increasing
the system size V , however, they do not allow for an unam-
biguous determination of the fate of the transition point in
the thermodynamic limit. Nevertheless, it is again much more
insightful to plot SvN/(VA ln 2) as a function of the effective
parameter u, as shown in the main panel of Fig. 6(a). The
latter results exhibit clear evidence of a scale-invariant point
u∗, which shares analogies with the results for r(u) in the main
panel of Fig. 2(a), and the results for �	2(u) in the inset of
Fig. 4(b). In Fig. 6(a), see the vertical line, we obtain the value
u∗ = 0.016, which is very close to the value u∗ = 0.0153
obtained from r(u) in Fig. 2(a), and the value u∗ = 0.0147
obtained from �	2(u) in Fig. 4(b).

We also test validity of the SPS hypothesis by plotting
SvN/(VA ln 2) versus ln(ξ/L) in the main panel of Fig. 6(b),
and get an excellent scaling collapse. These results suggest
that both the absence of localization transition at nonzero
W , as well as validity of the SPS hypothesis, can readily be
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identified from the scaling properties of the bipartite entan-
glement entropies.

Finally, we note a remarkable detail about the scaling
properties of the considered quantum chaos indicators. Even
though this paper established clear evidence in favor of ab-
sence of quantum chaos at any nonzero disorder W , this does
not imply that, by increasing the system size, the results
always exhibit a flow towards localization. An instructive
counterexample is shown in the inset of Fig. 6(b), where the
scaling of the volume-law coefficient SvN/(VA ln 2) is shown
as a function of the linear system size L. At sufficiently weak
disorder, i.e., at W � 1, we observe a flow towards quantum
chaos prediction SvN/(VA ln 2) from Eq. (17), see the horizon-
tal dashed line. If there is no localization transition at nonzero
disorder in the 2D Anderson model, this flow is an artefact of
finite systems and hence it is expected to exhibit a downturn
at much larger system sizes.

III. CONCLUSIONS

In this paper we reconsidered the widely studied 2D Ander-
son model from the perspective of quantum chaos indicators
that are commonly studied in the contemporary literature,
such as the level spacing ratio, spectral form factor, vari-
ances of observables’ matrix elements, participation entropy
and eigenstate entanglement entropy. Many features of those
indicators may at a first glance hint at the existence of a stable
quantum-chaotic regime at weak disorder. However, a closer
inspection reveals two important observations.

The first observation are remarkable scaling collapses of
quantum chaos indicators. In particular, they exhibit two
properties: emergence of a scale invariant point at a fixed
value of an effective parameter u = 1/(W ln V ), and scaling
collapses consistent with the single-parameter scaling hypoth-
esis. This confirms validity of the latter at essentially all
disorder strengths.

The second observation is that the finite-size analysis of
quantum chaos indicators at weak disorder may yield mis-
leading conclusions about the fate of localization transition
in the thermodynamic limit. This was illustrated by a flow
of the eigenstate entanglement entropy towards predictions of
chaotic systems at weak disorder. Despite this flow persisted
for lattice sizes as large as 106 sites, we interpreted it as a
ghost flow that does not survive in the thermodynamic limit.
We referred to the weak disorder regime as prelocalization,
which exhibits chaotic properties in finite systems but local-
ization in sufficiently large systems.

We hence conclude that all quantum chaos indicators un-
der investigation are consistent with absence of localization
transition at nonzero disorder in the thermodynamic limit, as
conjectured in [15]. However, at the same time, the results
also establish the 2D Anderson model as a toy model to
study nontrivial finite-size effects. In fact, as realized already
many years ago [28,33], the latter are so severe that samples
typically studied in experiments would exhibit a localiza-
tion transition at nonzero disorder, and hence they cannot be
considered to correspond to the thermodynamic limit. Even
more, if one covers the entire surface of planet Earth with a
material that is described by the 2D Anderson model [106],
the localization transition is predicted to occur at W ∗ ≈ 0.8.

This calls for considering the statement about the absence of
localization transition at nonzero disorder with a grain of salt.
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APPENDIX A: CALCULATION OF THE SPECTRAL
FORM FACTOR

In calculation of the spectral form factor (SFF) K (τ ) from
Eq. (9), and the consequent extraction of the Thouless time,
we follow the procedure outlined in Refs. [42,66], which we
briefly outline here for convenience.

We study systems with up to 384 × 384 lattice sites, thus
requiring full exact diagonalization of matrices up to V0 ×
V0, where V0 = 3842 = 147 456. At a given system size and
Hamiltonian realization, we calculate K (τ ) for 5000 times
τi in the window τi ∈ [1/(2πV ), 5], with τi equidistant in
the logarithmic scale. For system sizes up to L = 128, we
then average the results over Nsamples ≈ 1000 Hamiltonian
realizations, while we use Nsamples ≈ 800, 200, 100 at L =
196, 256, 384, respectively. Finally, we smoothen out random
fluctuations in K (τ ) by calculating a running mean such that
each new K (τi ) is the average over 50 nearest values of K (τi ),
and hence the final number of data points is reduced to 4951.

To eliminate the influence of the local density of states, we
use the scaled (unfolded) single-particle energy eigenvalues
{εα} in Eq. (9), which are obtained by the spectral unfolding.
The main goal of the latter is to transform an ordered set of
Hamiltonian single-particle eigenvalues {Eα} to an ordered set
of unfolded eigenvalues {εα} with the local mean level spacing
equal to unity at all energy densities. The applied protocol of
unfolding is identical to the one we used in the 3D Anderson
model, see Sec. 3.3. in Ref. [66].

To minimize the effects of spectral edges, we use a fil-
tering function f (εα ) in Eq. (9). As in Refs. [42,66], we
filter each unfolded spectrum using a Gaussian filter, f (εα ) =
exp{ (εα−ε̄)2

2(η�)2 }. Here, ε̄ and �2 are the average energy and
variance, respectively, at a given disorder realization, and η

a dimensionless parameter controlling the effective fraction
of eigenstates included in K (τ ). We used η = 0.5 in our
calculations presented in the main text. To ensure proper nor-
malization, yielding K (τ � 1) � 1 in general and K (τ ) ≡ 1
for Poissonian random spectra, we set the normalization Z in
Eq. (9) to Z = 〈∑α | f (εα )|2〉.

Following Refs. [42,66], we then determine the scaled
Thouless time τTh by analyzing the deviation of the numerical
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FIG. 7. The SFF K (τ ) at six different disorder values W = 1, 2, 3, 4, 5, 10 in panels (a)–(f), respectively. Results are shown for different
linear system sizes L = √

V , as indicated in the legend. Dashed-dotted lines denote the GOE result KGOE(τ ) = 2τ − τ ln(1 + 2τ ) and open
circles denote the extracted values of the scaled Thouless time τTh. The vertical dashed line is the scaled Heisenberg time τH = 1 and the
horizontal dashed line denotes the limiting value K (τ ) ≈ 1 at large τ � τH. The horizontal dotted lines in panels (b) and (c) correspond to
K (τ ) ≈ 0.03 and K (τ ) ≈ 0.07, respectively.

results from the GOE prediction KGOE(τ ) = 2τ − τ ln(1 +
2τ ). To that end, we use the deviation measure

�K (τ ) =
∣∣∣∣ log10

K (τ )

KGOE(τ )

∣∣∣∣; �K (τTh) = ε. (A1)

In our calculations, we set ε = 0.08. Specifically, since
�K (τ ) � ε at short times, the Thouless time τTh is obtained
when �K (τ ) becomes smaller than ε, see Fig. 6 of Ref. [42].

In Sec. II A, we discussed the emergence of a broad plateau
in K (τ ) prior to the onset of τTh, see Fig. 3(a). The plateau
can be observed at disorder W = 2 at which finite systems
under consideration exhibit seemingly robust signatures of
quantum chaos, and the value of the SFF K (τ ) at the plateau
is a constant smaller than 1 that appeared to be independent

of the system size. The analysis in Fig. 3(b) then interpreted
these features as finite-size effects. In Fig. 7 we show K (τ )
at different disorder values W = 1, 2, 3, 4, 5, 10 and differ-
ent system sizes. It exhibits several interesting features. The
first is that one can observe signatures of the plateau, or at
least a tendency for forming it, at almost all disorders below
the crossover regime, W � W ∗(V ) ≈ 4, see Figs. 7(a)–7(d).
At week disorder W = 1, see Fig. 7(a), one can also ob-
serve a peculiar structure similar to beats, which however
completely vanish in sufficiently large systems. When the
disorder increases in the regime W � W ∗(V ), the plateau
gets replaced by a weak algebraic increase of K (τ ) that
is slower that linear, see Figs. 7(d) and 7(e). Ultimately,
at large disorder the transient regime becomes insignificant,
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see Fig. 7(f), and the SFF K (τ ) complies with the predic-
tion K (τ ) ≈ 1 expected for systems deep in the localized
regime.

APPENDIX B: CALCULATION OF THE VON NEUMANN
ENTANGLEMENT ENTROPY

Here, we briefly outline the main steps performed in our
calculations of the bipartite von Neumann entanglement en-
tropy S(m)

vN from Eq. (16) in Sec. II C. We follow the procedure
explained in Ref. [39]. We denote the single-particle en-
ergy eigenkets as {|α〉 ; α = 1, . . . ,V }, and then construct the
many-body eigenkets as {|m〉 = ∏

{αl }m
|αl〉 ; m = 1, . . . , 2V },

where {αl}m represent the mth set of occupied single-particle
energy eigenkets. In practice, we construct a many-body
eigenket by randomly selecting each single-particle eigenket
with probability 1/2, which means we iterate over all |α〉 and
select or reject them with equal probability. Hence, while a
given many-body eigenket does not necessary belong to the
particle-number sector at half filling, the average over many
such eigenkets assures that the average particle-number occu-
pation is at, or very close to, half filling.

For particle-number conserving models, such as the
Anderson model, all the many-body correlations of an eigen-
ket |m〉 can be obtained (using Wick’s theorem) from the

V × V generalized one-body correlation matrix [3,110,111]

(Jm)i j = 〈m| ĉ†
i ĉ j − ĉ j ĉ

†
i |m〉 = 2(ρm)i j − δi j, (B1)

where ρm is the one-body correlation matrix of |m〉. To calcu-
late the von Neumann entanglement entropy of a many-body
eigenket |m〉, we bipartition the system into connected subsys-
tems A and B and restrict the entries i, j of Jm in Eq. (B1) to
the subsystem A. Then, upon diagonalizing the restricted Jm,

the von Neumann entanglement entropy can be calculated as
[3,112]

S(m)
vN = −

VA∑
i=1

(
1 + λi

2
ln

[
1 + λi

2

]
+ 1 − λi

2
ln

[
1 − λi

2

])
,

(B2)

where {λi} is the spectrum of the restricted Jm.

When calculating averages in the actual numerical calcula-
tions, we obtain

SvN = 〈〈
S(m)

vN

〉
m

〉
, (B3)

where 〈...〉m denotes the average over randomly chosen
many-body eigenkets, and 〈...〉 denotes the average over
Hamiltonian realizations.
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