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Quantifying unitary flow efficiency and entanglement for many-body localization
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We probe the bulk geometry of the Wegner Wilson Flow (WWF) in the context of many-body localization
by addressing efficiency and bulk entanglement growth measures through approximating upper bounds on the
boundary entanglement entropy. We connect these upper bounds to the Fubini-Study metric and clarify how a
central quantity, the information fluctuation complexity, distinguishes bulk unitary rotation from entanglement
production. We also give a short new proof of the small incremental entangling theorem in the absence of ancillas,
achieving a dimensionindependent, universal factor of c = 2.
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I. INTRODUCTION

Many-body localization (MBL) is centrally a failure to
thermalize [1–3]. At a phenomenological level, MBL is
described by an emergent, macroscopic set of quasilocal in-
tegrals of motion, known colloquially as � bits [2,4,5]. The
emergence of these � bits give rise to a myriad of effects,
including vanishing conductivity, logarithmic entanglement
growth, and area-law eigenstates [1,6,7]. Constructing � bits
from local operators via a diagonalizing unitary U establishes
the stability of the MBL phase and yields insight on the
dynamics of local observables [3,8–16].

Considerable effort has been devoted in recent years to-
ward finding appropriate �-bit construction methodologies,
including strong-disorder renormalization flows, perturbative
constructions, and infinite-time averaged local observables
[2,6,8,17]. One recent approach, the Wegner Wilson flow
(WWF), leverages a continuous renormalization flow that
generally produces more quasilocal � bits [17,18]. The WWF
renormalization technique has been successfully used to de-
scribe the flow of coupling constants, local observables, and
correlation lengths across the MBL phase transition [18,19].
As the WWF can be applied to ergodic or nonergodic
Hamiltonians, the breakdown of ergodicity upon entering the
area-law, MBL phase implies an efficient tensor network con-
struction of both eigenstates and � bits [20,21]. We give a full
description of the WWF in Sec. IV, but fundamentally the
renormalization flow is quite simple: given a Hamiltonian H
written in a basis {|φ0〉}, the equation of motion reads

dH

dβ
= [η(β ), H (β )], η(β ) = [Hd (β ), H (β )], (1)

where Hd is the diagonal part of the Hamiltonian in the basis
{|φ0〉}.

Following this intuition, recent works implemented ten-
sor network versions of the WWF [22,23]. Apart from the
computational advantage, tensor networks offer a framework
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for spacetime geometry to emerge from quantum information
[24]. Using this tensor network picture, we envision a generic
Hamiltonian H as describing boundary degrees of freedom,
while the unitary U that diagonalizes H represents the bulk.
If H is expressed in some product state orthonormal basis,
then the bulk unitary U effectively rotates the basis states
into eigenstates of H . Thus, U † disentangles eigenstates into
product states; the geometry of the bulk tensor network should
then inform the eigenstate entanglement structure. Apart from
this tensor network description, the WWF has strong ties to
quantum geometry and geodesicity in the projective Hilbert
space [25,26], as we later explore.

The idea that tensor networks describe a quantum-
informational bulk geometry is particularly relevant with
respect to the Ryu-Takayanagi (RT) conjecture, frequently
considered in the context of holographic tensor networks and
continuous multiscale renormalization ansatzes (cMERAs)
[27–32]. For such systems the bulk-boundary (AdS/CFT)
correspondence we broadly invoked above is rigorous: the
boundary entanglement corresponds to the area of the RT
surface in the bulk [29]. The AdS/CFT correspondence and
RT conjecture are foundational to the study of holographic
quantum error correction [27].

However, this connection between the bulk geometry of U
and the entanglement of the boundary eigenstates is much less
clear in a generic tensor network construction. A notion of
a gravitational theory in the bulk is not welldefined for area
law states, though several recent works investigated RT-esque
surfaces in bulk tensor networks that bound the boundary
entanglement [33]. Minimal surfaces in the bulk have also
been wellexplored in the context of random unitary circuits,
wherein Haar averaging and the Weingarten calculus affords
a mapping to statistical models of entanglement growth [34].
While we nonrigorously use the terms “bulk” and “boundary,”
it is evident that a quantum geometrical picture for a diagonal-
izing unitary U should shed insight on entanglement growth
for the eigenstates of H .

In this work, we formalize this intuition by examining
bulk measures derived from the WWF or any other continu-
ously diagonalizing unitary U , with a focus on understanding

2469-9950/2023/107(6)/064203(7) 064203-1 ©2023 American Physical Society

https://orcid.org/0000-0002-9313-802X
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.107.064203&domain=pdf&date_stamp=2023-02-14
https://doi.org/10.1103/PhysRevB.107.064203


GREGORY A. HAMILTON AND BRYAN K. CLARK PHYSICAL REVIEW B 107, 064203 (2023)

entanglement growth via the WWF across the many-body
localized phase transition. In particular, our objective is to
identify bounds on the entanglement entropy of boundary
eigenstates via functionals of the bulk unitary U . We begin
by examining not a bulk geometry, but rather a speed limit
for the entanglement entropy. We use the small incremental
entangling (SIE) theorem as a starting point to probe the
entanglement structure and efficiency of unitary flows. Along
the way, we give a simplified proof of the ancilla-free version
of the SIE, and achieve a tighter bound than the state of the
art. Inspired by the RT conjecture, which connects the bound-
ary entanglement with distances in the holographic bulk, we
demonstrate how the SIE theorem identifies computable bulk
metrics intimately tied to notions of efficiency and quantum
complexity.

We then apply the SIE theorem and our bulk metrics to
the WWF in the context of an MBL system. We show that the
WWF is monotonically more efficient upon entering the MBL
phase, and that the boundary entanglement entropy mono-
tonically decreases with efficiency. What is more, we show
that some bulk metrics, while easily computable, fail to fully
diagnose the flow entanglement dynamics. We identify a key
quantity, the information fluctuation complexity, as a source
of this failure.

II. ENTANGLEMENT SPEED LIMITS

As noted above, the RT conjecture concerns bulk ge-
ometries specified by a renormalization flow; it states that
geodesics in the bulk theory directly relate to the boundary
entanglement [35]. Oftentimes, a unitary flow (e.g., Hamilto-
nian evolution) is parametrized as a function of RG time. A
natural route towards bounding entanglement entropy in the
spirit of RT is therefore to bound the entropic speed limit. This
prescription is central to proving the stability of the area law
for one-dimensional systems [36], as well as the logarithmic
lightcone and entanglement spread in MBL systems [6].

The small incremental entangling theorem (SIE), first
posited by Kitaev [37], gives an upper bound on the entan-
glement entropy rate of a pure state under unitary evolution:

|Ė (ρ(t ))| � c||H (t )||∞ ln dA, c ∈ O(1). (2)

Here E (ρ(t )) := S(ρA(t )) denotes the entanglement en-
tropy, || · ||∞ the operator norm, and dA the Hilbert space
dimension of subystem HA. The operator H (t ) is the gener-
ator of unitary evolution. The most general form of the SIE
theorem involves ancillary qudits [36,37], which we do not
consider here. Note that if we define H := HA + HAc + H∂,

then Eq. (2) depends only on the interaction term H∂ , where
we assume HA, HAc are Hamiltonian terms local to subsystem
A and its complement. However, as we detail below, in the
context of the WWF H∂ (t ) becomes increasingly difficult to
extract from H (t ).

Proving the general SIE theorem has a long history, starting
with Bravyi’s work [37] and culminating with a proven bound
c = 18 [36]. Since then, several works established tighter
bounds on c for the ancilla-assisted case-extensively detailed
in Ref. [38] numerical work suggesting an optimal value
c = 2 both with and without ancillas. In the no-ancilla case,
Bravyi’s original proof yielded a c(d ) bound with c(d ) →

1 as d → ∞ [37]. More recently, a bound was given for
no-ancilla SIE with c = 4, independent of dimension d and
valid for mixed states [39]. We offer a short proof here for
the no-ancilla SIE that easily achieves a bound c = 2 valid for
mixed states.

We now detail our proof for no-ancilla SIE. Let ρ be a
normalized density matrix acting on a Hilbert space H ∼=
HA ⊗ HAC . We take H to be time independent for the moment
and assume dA � dAC , where dA denotes the Hilbert space
dimension. The entanglement rate is quickly derived as

|Ė (ρ(t ))| = |Trρ(t )[H, ln ρA(t ) ⊗ 1AC ]|. (3)

The Robertson-Schrodinger uncertainty relation then implies

|Trρ(t )[H,Y (t )]| � 2σH (t )σY (t ), (4)

where Y (t ) := ln ρA(t ) ⊗ 1AC . Here σ 2
X = Trρ(t )X 2 −

(Trρ(t )X )2 � ||X ||2∞ for Hermitian X , with || · ||∞ denoting
the operator norm. The variance

σ 2
Y (t ) = TrAρA(t ) log2 ρA(t ) − (TrAρA(t ) ln ρA(t ))2 (5)

is also known as the information fluctuation complexity (IFC)
for the probability distribution p, where p is the spectrum
of ρA [40]. We assume p has n � dA nonzero compo-
nents, where dA denotes the Hilbert space dimension of A.
Then σ 2

Y � ∑n
i=1 pi log2 pi = M (2)

n , the second moment of
the self-information ln p. To bound the IFC, we follow and
considerably simplify an approach first given in Ref. [41].
Using the normalization condition

∑
i pi = 1, we define pn =

1 − ∑n−1
i=1 pi. Simple calculus yields

∂M (2)
n

∂ pi
= (ai − an)(ai + an − 2), (6)

where ai := − ln pi. Clearly maxima of M (2)
n vanish for each

of the n − 1 instances of Eq. (6). The solutions ai = an for all
i implies the trivial solution p = (1/n, . . . , 1/n). In the case
n = 2, we find p1 = 1

2 (1 + √
1 − 4e−2) is maximal. In this

case one can easily check ln 2 is an upper bound for M (2)
n .

Our goal now is to show the trivial solution is the only
maxima for M (2)

n when n � 3. We regard the set of variables
p1, p2, r with pn = 1 − p1 − p2 − r, r ∈ [0, 1). Without loss
of generality, there are two cases to consider for a nontrivial
solution:

Case 1: p1 = pn, p2 pn = e−2,

Case 2: p1 pn = e−2, p2 pn = e−2.

We utilize Gröbner bases to write Case 1 as the null space
of the following set of equations: {pn − p1, p2 + r + 2pn −
1, 2p2

n + (r − 1)pn + e−2}. A check of the discriminant of
the last polynomial yields (1 − r)2 − 8e−2 < 0 for any r. For
Case 2 a Gröbner basis is {2p1 + r + pn − 1, 2pn + r + pn −
1, p2

n + (r − 1)pn + 2e−2}, with the same discriminant as be-
fore. Therefore, the uniform distribution is the only maxima
of M (2)

n for n � 3. For n � 2 we then have σ 2
Y � log2 n and a

final bound

|Ė (ρ(t ))| � 2||H ||∞ ln dA. (7)

While the logarithmic dependence of Eq. (7) can be saturated
[37], most states have a slow entanglement spread under the
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FIG. 1. Histogram and box plot of Ė (ρ ) for a two-qubit sys-
tem, over 2 × 106 realizations of pure states and Hamiltonians H ,
||H ||∞ = 1. See main text for details on the sampling. The vertical
lines in the box plot reflect interquartile ranges, while the mass of
points starting around 0.4 denote outliers. The red line demarcates
the bound defined in the main text.

unitary evolution induced by a large ensemble of Hamilto-
nians [39]. In Fig. 1, we depict a histogram of two million
realizations of two-qubit Hamiltonians and pure states. The
Hamiltonians are generated by uniformly sampling eigen-
values from [−1, 1] and then applying a Haar unitary. The
pure states were generated by uniformly sampling a full rank
Schmidt vector p = (p1, 1 − p1). The interquartile range in-
dicates most quantum states will not saturate the SIE bound.

As noted above, the form of the SIE proven here utilizes the
full Hamiltonian H , more generally, the generator for unitary
evolution. The operator norm ||H ||∞ is in general extensive,
which would imply Ė scales linearly with ln |H|. This seems
paradoxical, as the entanglement entropy of A should not
scale differently if |H| was, say, doubled while |HA| remained
fixed. However, it is only H∂ (t ) which generates entanglement
(we could always express ρ in the eigenbasis of HA, HAc ,
respectively), and ||H∂ (t )||∞, assuming a local Hamiltonian,
is intensive.

There are two reasons we focus on H instead of the
entanglement-generating term H∂ . The first is theoretical: As
we detail below, the generator for unitary rotations in the
projective Hilbert space is H , not H∂ . As our goal is to relate
the quantum geometry induced by the diagonalizing unitary U
to entanglement bounds, the full generator of unitary rotations
is the relevant observable. The second reason is practical. In
the context of the WWF it is η from Eq. (1), not H , that
dictates the unitary rotation. η∂ (β ) becomes more quasilocal
as a function of flow and therefore determining η∂ via a Pauli
string decomposition quickly becomes infeasible. We discuss
the issue of how ||η∂ || scales with ||η|| in more detail in
Sec. IV.

III. CONNECTING TO QUANTUM
INFORMATION GEOMETRY

We now use the SIE theorem in Eq. (2) as a bridge to con-
sider bulk geometry by identifying computable bulk quantities
and metrics related to the flow entanglement entropy. The
RT theorem indicates that minimal cuts in the bulk should
be proportional to the boundary entanglement; thus, making
an identification with the flow entanglement entropy helps
preserve this correspondence. As we show, these bulk metrics
comprise two components: A quantity related to distances in
the projective Hilbert space, and the information fluctuation
complexity (IFC), described above. Approximations to either

of these quantities yields a variety of bulk metrics: We find
that there is a tradeoff between approximations which hew
closely to the entanglement flow, and those which are easier
to compute.

In this spirit we examine computable approximations to the
two quantities on the RHS of Eq. (4), which we write as

E (ρ(t )) � 2
∫ t

0
σH (t ′)σY (t ′)dt ′ =: 2DRS (8)

for initial state ρ = |ψ〉 〈ψ |.
As noted above, σH is less than or equal to the operator

norm ||H ||∞, equivalent to the largest singular value smax of
H†H . Computing ||H ||∞ amounts to determining the extremal
values of the eigenspectrum of H , which can be achieved
via Lanczos or similar methods with complexity that scales
as O(|H|2ω), where ω is the sparsity (average number of
nonzero elements in a row) of H . In contrast, the Frobenius
norm ||H ||F :=

√
TrH†H scales as O(|H|3). As we describe

below, ||H ||F is closely related to metrics on the projec-
tive Hilbert space. Leveraging the fact that ||A||∞ � ||A||F �√

r||A||∞ for any rank r operator A, we can approximately
bound σH by ||H ||F /

√
d , where d := dAdAC = |H|. The term

||H ||F /
√

d can be seen as the root of the expectation value
〈ψ0|H†H |ψ0〉, where {|ψ0〉} is an orthonormal basis for H
chosen at the beginning of the flow.

If we now consider the average entanglement entropy of
an initial orthonormal basis {|ψ0〉} and make the replacement
σH → ||H ||F /

√
d , we get

〈E (ρ(t )〉 � 2√
d

∫ t

0
||H ||F σY =: 2DXY , (9)

where 〈·〉 denotes averaging over the flowed states {|ψ0(t )〉}.
Turning now to approximations for the information fluc-

tuation complexity (IFC), we can decompose σY (t ) into a
running average and fluctuating component (with respect
to the time parameter t), σY (t ) = σ̄Y + σ̃Y (t ). Assuming
σ̃Y (t ) � σY yields

〈E (ρ(t ))〉 � 2 〈σ̄Y 〉√
d

∫ t

0
dt ′||H (t ′)||F = 2 〈σ̄Y 〉 DX , (10)

where we have defined

DX (t ) := 1√
d

∫ t

0
dt ′||H (t ′)||F . (11)

We interpret DX , first suggested as a bulk metric in the context
of the WWF in Ref. [22], as quantifying the average strength
of rotation induced by the unitary process, integrated with
respect to the flow. The term DX is, for traceless H , the arc
length of the unitary U under a standard bi-invariant Rie-
mannian metric [42]. Different metric choices that penalize
many-qubit Hamiltonian operators give rise to a geometrical
notion of quantum circuit complexity [42,43].

To summarize our analysis so far, we can place bounds on
the average entanglement entropy of initial orthonormal states
{|ψ0〉} evolving under a Hamiltonian (or generator of unitary
rotation) H using Eq. (4). The terms in Eq. (4) can be approx-
imated by taking norms and functionals of operators through
the course of the unitary flow. Cruder approximations, as we
will see in Sec. IV, lead to worse bounds on the entanglement
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TABLE I. Approximations to each term in Eq. 4 for the bulk
metrics (DRS, DXY , DX ).

Bulk metric Approx. to σH Approx. to σY

DRS σH σY

DXY ||H ||F /
√

d σY

DX ||H ||F /
√

d 〈σY 〉

entropy. Table I depicts the approximations made to Eq. (4)
for each bulk measure.

In addition to contributing to the entanglement bounds in
Eq. (4), we can relate σH to the efficiency of the unitary
flow. Note that for pure state ρ = |ψ〉 〈ψ | the term σ 2

H ≡
gtt is simply the diagonal part of the Fubini-Study metric,
gμν = (Qμν ) under unitary evolution U (t ) where Qμν is the
quantum geometric tensor defined as

Qμν ≡ 〈∂μψ | (1 − |ψ〉 〈ψ |) |∂νψ〉 . (12)

The imaginary part of Qμν is then proportional to the Berry
curvature [44]. Note that in general μ, ν denote parameters
for the state ψ (t ); in our case the only meaningful parameter
is the time (or RG flow parameter) t , thus our restriction to
the diagonal gtt . An arclength in the projective Hilbert space
determined by a continuously parametrized unitary is defined
(up to a universal constant) by dFS (ψ (t )) := ∫ t

0 dt ′√gtt =∫ t
0 dt ′σH (t ′). The efficiency of U (t ) with respect to flow state

ψ (t ) is characterized by the ratio of the geodesic arclength to
the arclength taken by U [45]:

ε(ψ (t )) := cos−1 | 〈ψ (t )|ψ (0)|〉
dFS (ψ (t ))

= cos−1 | 〈ψ (t )|ψ (0)〉 |∫ t
0 dt ′σH (t ′)

.

(13)

Put more plainly, the efficiency ε of a continuous unitary U (t )
with respect to an initial state ψ (0) is the ratio of the geodesic
distance between (ψ (t ), ψ (0)), and the distance of the path
from (ψ (t ), ψ (0)) dictated by U .

Using Eq. (4) and the Fubini-Study definition of σH , we
extract another upper bound on the entanglement entropy of
the boundary state ψ (t ) via

E (ρ(t )) � 2 cos−1 (| 〈ψ (t )|ψ (0)〉 |)ε(ψ (t ))−1 ln dA. (14)

That the entanglement entropy bound scales inversely with
the efficiency is consistent with shallow-depth local quantum
circuits obeying area-law entanglement.

Thus, we see that two components comprise our entan-
glement entropy bound in Eq. (4): A distance measure in
the projective Hilbert space, and a complexity measure (IFC)
particular to the bipartition. While the IFC is difficult to
numerically obtain, the divergence between entanglement
growth and unitary rotation becomes manifest, as we now
explore in the context of MBL.

IV. WEGNER WILSON FLOW AND MBL

The entanglement analysis given above is applicable to
any continuous unitary flow; however, our interests lie in one
unitary particularly relevant to MBL and generating � bits:

The Wegner Wilson flow. The WWF is fundamentally a diag-
onalization protocol that continuously evolves an orthonormal
set of initial states into eigenstates of a given Hamiltonian. For
Hamiltonian H0 and initial basis {ψ0}, the WWF is succinctly
expressed by the differential equation

dU (β )

dβ
= η(β )U (β ), (15)

whereby we define H (β ) = U (β )H0U †(β ) as the flow
Hamiltonian. The term η(β ) = [Hd (β ), H (β )] is the com-
mutator of the diagonal component (with respect to the
ψ0 basis) of the flow Hamiltonian, Hd (β ), with H (β ). We
define the variance of the WWF as V (β ) = 〈V0(β )〉0 :=
〈(H (β ) − Hd (β ))2〉0, where 〈·〉0 denotes averaging over {ψ0},
and V0(β ) = 〈ψ0|(H (β ) − Hd (β ))2|ψ0〉. The WWF ensures
V (β ) → 0 monotonically; in particular, the decay of off-
diagonal elements of H (β ) scales exponentially with [β] =
energy−2 [25,26]. Moreover, the WWF induces a geodesic
flow with respect to the Fubini-Study metric given appro-
priate constraints on H0 and {ψ0} [25], which motivated our
discussion in Sec. III. Numerical studies have demonstrated
the WWF produces more quasilocal integrals of motion in the
MBL phase than other flow equation methodologies [18,46].
The WWF is also easier to implement, though it is susceptible
to numerical stiffness issues [46].

As a testbed for our analytics, we consider the prototypical
MBL Hamiltonian, the one-dimensional spin-1/2 Heisenberg
model with on-site disorder and open boundary conditions.
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FIG. 2. Average WWF arclength dFS against DX for L = 8. Col-
ors denote varying disorder strengths; the red diagonal line is a guide
to the eye. (Left inset) Median efficiency against disorder strength W
for both L = 8 and L = 10. Shading denotes standard deviation es-
timated via bootstrap sampling. (Right inset) Average entanglement
entropy against WWF efficiency for L = 8, with color coding the
same as the main plot.
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FIG. 3. The three bulk entanglement measures (DRS, DXY , DX )
against E (ρ ). The dashed lines denote L = 8, while the solid lines
denote L = 10.

The Hamiltonian is given by

H = 1

4

∑
i

σ i · σ i+1 + hi

2
σ z

i , (16)

where hi ∈ [−W,W ] is sampled uniformly. A large body of
numerical and theoretical work has placed the MBL transition
in the thermodynamic limit at Wc ≈ 3.8 for this model, though
the dependence on system size has recently come into ques-
tion [1,47,48]. We perform WWF in the zero magnetization
sector and work within the computational σz basis. We utilize
the same numerical procedure and tests for convergence out-
lined in previous works [18,22]. We performed our analysis
on L = 8 and L = 10 system sizes, and average within a
disorder realization before averaging over realizations. Due to
calculating the IFC at each stage of the flow, we are relegated
to smaller system sizes. For the case of L = 10, we choose to
calculate the IFC at each flow step for only a subset of flow
states. However, the qualitative results of our analytics given
above is still clear.

Figure 2 depicts the median WWF efficiency [as defined in
Eq. (13)] as a function of disorder, where we see a clear mono-
tonic climb toward unity upon entering the MBL phase. This
monotonicity is coincident with the increasing quasilocality of
the integrals of motion: in the infinite disorder limit, the eigen-
states are effectively product states, and therefore the flow is
essentially geodesic with respect to the Fubini-Study metric.
Figure 2 also shows dFS , the average WWF arclength from
initial to final state, against DX , the root-mean WWF Fubini-
Study arclength. By Jensen’s inequality, DX is larger than
dFS , though this inequality becomes parametrically weaker
upon entering the MBL phase. Figure 2 further depicts the
average entanglement entropy of the eigenstates against the

0 10 20
W
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Y

FIG. 4. (Top) Average (over flow states) IFC σ̄Y and eigenstate
entanglement entropy against disorder strength W for L = 8 (left)
and L = 10 (right). Shading denotes standard deviation. (Bottom)
Average IFC against E (ρ ) for L = 8 (left) and L = 10 (right).
The points represent values averaged within a disorder realization,
while the red line denotes the trend after averaging over disorder
realizations.

WWF efficiency. Consistent with our claim above, a higher
efficiency correlates with a lower entanglement entropy.

The Fubini-Study metric is intimately tied to the diagonal-
ization rate of the WWF. In particular, we have

gββ (ψ ) = −1

2

dV0(β )

dβ
, (17)

where ψ is the flow state for initial state ψ0 [22]. As the disor-
der terms hiσ

z
i are diagonal in the spin configuration basis, and

limβ→∞ V0(β ) = 0, the energy functional
∫

gββdβ ∝ V0(0) is
independent of disorder strength or realization for every flow
state ψ . Our recasting of the Fubini-Study metric then implies
[22,26]

DX =
∫

dβ

(
− 1

2d

dV (β )

dβ

)1/2

. (18)

In Fig. 3, we depict DX against the average eigenstate entan-
glement entropy E (ρ) (we suppress the averaging notation for
brevity), as well as DRS := ∫

σησY , proportional to the integral
of Eq. (4). We note that DRS is strongly linear throughout the
phase diagram, in strong contrast to DX . The nonlinearity in
DX is most manifest for small E (ρ) (large disorder strength
W ), as in the infinite disorder limit both E (ρ) and DX should
approach zero.

The central difference between DX and DRS lies in σY ,
the information fluctuation complexity (IFC). In Fig. 4, we
depict the average IFC σ̄Y (recall this average is over the flow
trajectory, then over the set of eigenstates) against disorder
strength W . We simultaneously plot E (ρ) against W , and note
that E (ρ) decreases at a faster rate than σ̄Y . The lower panels
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of Fig. 4, wherein we plot σ̄Y against E (ρ), more clearly
shows the discrepancy. The consequence of this nonlinear-
ity is that the degree of rotation quantified by DX fails to
linearly correlate with the degree of entanglement growth as
the system enters the MBL phase. To phrase this differently,
a measure of unitary rotation is inequivalent to a measure of
entanglement growth.

This discrepancy is fundamentally tied to the distinction
between η(β ) and η∂ (β ), the terms in η that couples the
degrees of freedom across the bipartition. Early in the flow, η∂

is wellapproximated as a sum of local quadratic and quartic
terms [23,26] and is therefore intensive, while η is extensive;
thus, the entanglement bound DX is poor for small β. As
the flow progress, η couples degrees of freedom more and
more distant from the bipartition cut, such that ||η∂ ||∞ is
wellapproximated by ||η||∞. While η∂ couples more nonlocal
degrees of freedom late in the flow, the strength of those
couplings exponentially decay with β, in correspondence to
the decay of off-diagonal elements of H .

It is interesting to note that, in the context of cMERAs, the
Fubini-Study/Bures metric serves as a suitable bulk measure
for the entanglement entropy, unlike the nonlinear relation
presented in Fig. 3. We suspect this difference stems from the
cMERA hyperbolic geometry in the thermodynamical limit,
in which geodesics (minimal surfaces) are lines extending into
the bulk, and the Fubini-Study metric effectively measures
the strength of disentanglers [29,30,35]. In the present WWF
context, the unitary bulk represents an energy diagonalization
flow, as reflected in the energy functional V0(0) = ∫

dβgββ ;

the goal of the WWF is a projective Hilbert space trajectory
such that V (β ) optimally decays. As demonstrated here, that
goal is generally at odds with a flow that optimally generates
entanglement. We leave open the question of whether a more
natural bulk metrical construction quantifies the entanglement
entropy generated by the WWF.

To briefly conclude, we investigated connections between
the growth of entanglement entropy and quantum geometrical
metrics. By giving a new proof to the small incremental entan-
gling theorem, we established how bounds on entanglement
entropy scale with the efficiency of the operators generating
unitary evolution. Focusing on a prototypical MBL model,
we numerically determined the degradation of boundary en-
tanglement entropy bounds upon approximating key quantum
informational functionals. We determined that the information
fluctuation complexity is a pivotal quantity delineating unitary
evolution from entanglement growth.
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