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Semiclassical bounds on the dynamics of two-dimensional interacting disordered fermions
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Using the truncated Wigner approximation (TWA) we study quench dynamics of two-dimensional lattice
systems consisting of interacting spinless fermions with potential disorder. First, we demonstrate that the
semiclassical dynamics generally relaxes faster than the full quantum dynamics. We obtain this result by
comparing the semiclassical dynamics with exact diagonalization and Lanczos propagation of one-dimensional
chains. Next, exploiting the TWA capabilities of simulating large lattices, we investigate how the relaxation rates
depend on the dimensionality of the studied system. We show that strongly disordered one-dimensional and
two-dimensional systems exhibit a transient, logarithmic-in-time relaxation, which was recently established for
one-dimensional chains. Such relaxation corresponds to the infamous 1/ f noise at strong disorder.
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I. INTRODUCTION

Anomalous dynamics of strongly disordered systems with
many-body interactions has recently attracted significant
interest leading to numerous experimental and theoretical
studies. The problem emerged from studying the role of
electron-electron interactions in the fate of the Anderson lo-
calization of noninteracting particles [1,2]. Numerical studies
of one-dimensional (1D) chains indicated that, at sufficiently
strong disorder, interacting finite-size systems remain local-
ized or nearly localized even in the presence of local two-body
interactions [3–20]. The ultimate stability of the many-body
localization (MBL) in macroscopic systems is under debate
[21–25] and it has been questioned in a series of recent works
[26–30]. However, it is well established that at strong disorder
interacting chains exhibit very slow logarithmic-in-time relax-
ation [31–56]. Such slow dynamics in one dimension was also
found in systems where the noninteracting limit does not cor-
respond to the localized phase [42,48,57,58]. The finite-time
dynamics of strongly disordered systems is typically subd-
iffusive [15,41,59–64]. Such slow dynamics was frequently
considered as a precursor to localization [15,41,59–64] and
was attributed to the Griffiths effects due to the presence
of weak links responsible for the existence of rare localized
regions [39,47,65,66].

Despite the localized phase in the thermodynamic limit be-
ing likely unstable to interactions, there is a key open question
about long-time dynamics in such systems. Existing compu-
tational methods have severe limitations on accessible system
sizes and/or accessible timescales. Due to these limitations,
previous numerical studies focused mainly on the dynamics of
1D finite-size systems. At the same time, several recent exper-
iments show signatures that drastic slowing down of dynamics

at large disorder also exists in two-dimensional (2D) systems
[47,67,68] and three-dimensional systems [69]. Theoretically,
dynamics of strongly disordered systems beyond 1D remains
largely an open problem [70,71].

In this paper, we demonstrate that the semiclassical
description in terms of the fermionic truncated Wigner ap-
proximation (fTWA) [72–77] allows one to partially overcome
the limitations of other numerical methods and analyze long-
time dynamics both in 1D and in 2D systems. While the
semiclassical approach is not expected to be quantitatively
reliable at long times, namely it leads to faster relaxation
dynamics than seen within exact numerical methods, it shows
qualitative agreement with exact dynamics in 1D systems. At
the same time, fTWA allows one to overcome small size, short
time, and dimensionality limitations intrinsic to other methods
because the complexity of the fTWA calculations scales only
polynomially with the system size. Utilizing this approach,
we show for strongly disordered 2D systems that the imbal-
ance decays logarithmically in time, characteristic of glassy
behavior. Because fTWA gives a faster decay than in actual
systems, this result implies that the decay should also be at
most logarithmic in time. Such logarithmic time dependence
is reflected in the spectral functions showing approximate
1/ω dependence also established in 1D disordered systems
[28,42,78,79]. The emergence of such an inverse frequency
spectral function form, at least within fTWA, is thus not spe-
cial to 1D systems. We note that this form of the spectral
function is also known as 1/ f noise, which was observed
experimentally in a broad range of physical systems [80].

The remainder of this paper is organized as follows: in
Sec. II we introduce the disordered spinless fermionic model
and the implementation of the fTWA method. In Sec. III we
show how fTWA bounds the actual decay of correlations in
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quantum systems. In Sec. IV we present an analysis of the
relaxation dynamics and the spectral function, focusing on
2D systems. Finally we summarize our results. In the Appen-
dices we show the analysis of finite-size effects on the system
dynamics.

II. DYNAMICS OF SPINLESS FERMIONS WITHIN fTWA

In this work we consider spinless fermions whose dynam-
ics is given by the following Hamiltonian:

Ĥ = − J
∑
〈i j〉

(ĉ†
i ĉ j + H.c.) + V

∑
〈i j〉

(
n̂i − 1

2

)(
n̂ j − 1

2

)

+
∑

i

�i

(
n̂i − 1

2

)
, (1)

where 〈i j〉 stands for nearest neighbor sites, ĉi (ĉ†
i ) is the

fermionic annihilation (creation) operator on the site i, n̂i =
ĉ†

i ĉi is the corresponding number operator, J is the hoping
amplitude, V is the nearest neighbor interaction coupling,
and �i is a local random potential drawn from a uniform
distribution in the range [−W, W ].

We describe the dynamics of the electrons within the
semiclassical fTWA method [72]. Within this framework,
fermionic bilinears Ê i

j = (ĉ†
i ĉ j − ĉ j ĉ

†
i )/2 are mapped to the

complex phase space variables ρi j (e.g., n̂i operator maps to
ρii + 1/2). The phase space variables satisfy the canonical
Poisson bracket relations [81] with the structure constants
given by the corresponding quantum commutation relations:

[
Ê i

j, Ê k
l

] = Ê i
l δk j − Ê k

j δil → {ρi j, ρkl} = ρilδk j − ρk jδil ,

(2)
where ρi j = ρ∗

ji. We note that the operators Ê i
j form a repre-

sentation of a su(N ) algebra, where N is the number of sites.
The operators are mapped to functions using the Wigner-Weyl
quantization [82]. In particular, the Hamiltonian Ĥ is mapped
to its Weyl symbol HW :

HW = J
∑
〈i j〉

(ρi j + c.c.) +
∑

i

(
�iρii + V ρ2

ii

) + V
∑
〈i j〉

ρiiρ j j,

(3)
and the initial density matrix ρ̂0 is mapped to the Wigner
function W ({ρ0

i j}), which plays the role of the initial prob-
ability distribution of the phase space variables [here, the
following notation is used: ρ0

kl ≡ ρkl (t = 0)]. The origin of
V ρ2

ii in HW is explained in Appendix A. The dynamics of the
phase space variables within the fTWA is described by the
classical Hamiltonian equations of motion:

i
dρkl

dt
= {ρkl , HW } =

∑
m

(
∂HW

∂ρlm
ρkm − ∂HW

∂ρmk
ρml

)
. (4)

To find an observable at the time, t , we need to evolve the
phase space variables in time starting from initial conditions
drawn from the Wigner function, compute the Weyl symbol of
the corresponding operator, and then average over the initial
conditions. In this paper we are focusing on the expectation
values of the number operators, such that this prescription

gives

〈n̂i(t )〉 ≈
∫ (

ρii(t ) + 1

2

)
W

({
ρ0

kl

})
Dρ0

kl , (5)

where Dρ0
kl stands for integration over all independent phase

space variables. In our simulations we use open boundary con-
ditions and start from the initial states which are the product of
single site states with 0 or 1 fermions. The latter allows us to
approximate the initial Wigner function as a factorizable over
different pairs of sites Gaussian distribution

W ({ρkl}) =
∏
kl

1

2πσ 2
kl

exp

(
(ρkl − μkl )(ρ∗

kl − μkl )

2σ 2
kl

)
, (6)

where μkl and σkl are fixed by the expectation values and the
fluctuations of the operators Ê i

j [72], i.e.,

Tr
(
ρ̂Ê k

l

) =
∫

ρklW ({ρmn})Dρmn, (7)

1

2
Tr

(
ρ̂
(
Ê i

j Ê
k
l + Ê k

l Ê i
j

)) =
∫

ρi jρklW ({ρmn})Dρmn. (8)

Let us note that the complexity of the fTWA scales poly-
nomially with the system size L as the dimensionality of the
phase space, L2, is much less than the dimensionality of the
quantum Hilbert space 2L. In the interacting systems, fTWA
is guaranteed to be accurate only at early times [72,82], while
in noninteracting systems fTWA is exact at all times. This
method also becomes exact for fermions with infinite range
interactions and, in particular, it can accurately describe dy-
namics of systems with long-range interactions [75]. It can
also be made asymptotically exact by increasing the number
of fermion flavors [77]. It is also expected that accuracy of
fTWA increases with the dimensionality of the system.

III. FTWA AS A BOUND FOR RELAXATION DYNAMICS

Before we analyze 2D systems in this section we bench-
mark the applicability of fTWA in 1D systems by comparing
it to exact diagonalization (ED) and the Lanczos method
[83,84]. We consider quenches from an initial charge density
wave (CDW) product state at half filling:

|ψ (t = 0)〉 = |0〉|1〉|0〉|1〉 · · · , (9)

where |0〉 and |1〉 are empty and occupied states which al-
ternate between neighboring sites. Such states are accessible
experimentally, e.g., they were realized in ultracold atom
experiments [85–87]. They are easily represented by the ap-
proximate Wigner function in fTWA [72–77]. In simulations
we analyze the imbalance function related to the on-site den-
sities in the following way:

I (t ) = No(t ) − Ne(t )

No(t ) + Ne(t )
, (10)

where

No(t ) =
∑

i∈initially occupied sites

〈n̂i(t )〉, (11)

Ne(t ) =
∑

i∈initially empty sites

〈n̂i(t )〉. (12)
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FIG. 1. Time dependence of the imbalance for different disorder
strengths W . Numerical calculations are performed for a 1D lattice
with L = 20 sites. The fTWA and Lanczos data are represented by a
green and red line, respectively. Data from top to bottom are obtained
for disorders with strength W/J = 10, 6, 2, respectively, and are
averaged over 200 disorders realizations. The rest of the parameters
are V/J = 1, J = 0.5. In fTWA we use 500 trajectories for each
disorder realization.

This imbalance was widely used both in ultracold atom ex-
periments [47,67,85,86,88] and in numerical simulations [23]
as an indicator of thermalization. In Fig. 1 we show the time
dependence of the imbalance I (t ) computed within the fTWA
and the Lanczos methods starting from the CDW state in a 1D
system of size L = 20. We set interaction strength V = J . We
see that at short and intermediate times the fTWA accurately
describes the imbalance, correctly predicting the initial tran-
sient dynamics followed by a crossover to a slow relaxation
at strong disorder. At weaker disorder W/J � 2, the fTWA
nearly agrees with the exact dynamics at all times. However
at W/J > 2, we see that the fTWA predicts faster decay of the
disorder-averaged imbalance over a long time. Interestingly,
as the disorder keeps increasing the fTWA starts improving
again, successively approaching the imbalance plateau (com-
pare the results for W/J = 6 and W/J = 10 in Fig. 1). This
behavior is consistent with previous observations in disor-
dered spin systems [89,90] and in the long-range Hubbard
model [75].

From recent literature [75,89,90], it can be concluded that,
in comparison to the exact numerics, nonlinearities presented
in the semiclassical description are responsible for the faster
disappearance of the memory effects encoded in the initial

state of disordered systems. Here we show that this condition
obtained previously for disorder averages holds for almost
every single disorder realization. For long-time simulations
we compare time averages of fTWA and ED imbalances in
the time window t ∈ (1000, 5000):

Ĩ s
fTWA/ED = 1

�t

∫ t0+�t

t0

Is
fTWA/ED(t )dt, (13)

where t0 = 1000, �t = 4000 and s index denotes that imbal-
ance is calculated for single disorder realization. For larger
disorder strengths points (Ĩ s

ED, Ĩ s
fTWA) are plotted in Figs. 2(a)

and 2(b). We observe that the majority of points satisfy
Ĩ s
fTWA � Ĩ s

ED, which suggest that fTWA dynamics can be re-
garded as an upper bound for relaxation rates. While we
observe some violations of the proposed bound, we note a
steady decrease of the number of disorder realizations with
system size that do so; see insets in Figs. 2(a) and 2(b). Conse-
quently, we expect a negligible effect of these rare realizations
for the much larger systems studied in the next section.

We also check that the statistical uncertainty of Ĩ s
ED for

the most upper point in Fig. 2(b), which satisfies Ĩ s
fTWA >

Ĩ s
ED, coincides with Ĩ s

fTWA ≈ Ĩ s
ED condition within two stan-

dard deviations (2σ ); see Fig. 2(c). The definition of σ is
given by

σ 2 = 1

�t

∫ t0+�t

t0

(
Is
ED(t ) − Ĩ s

ED

)2
dt . (14)

IV. SPECTRAL FUNCTION IN 1D AND 2D LATTICES

To achieve further insight into the relaxation dynamics, it
is convenient to analyze the spectral function defined as the
Fourier transform of the imbalance function I (t ),

S(ω) =
∫ ∞

−∞
I (t )e−iωt dt = 2 Re

[∫ ∞

0
I (t )e−iωt dt

]
. (15)

First, we focus on the 1D system. Using data presented in
Fig. 1, S(ω) is calculated for exact and fTWA imbalance;
see Fig. 3. From obtained data, fTWA for the weak disorder
strength (W/J = 2) is almost exact. For larger values of W/J ,
fTWA reflects ED results quantitatively down to ω of order
O(10−1). Interestingly, for larger values of disorder strength,
fTWA predicts almost 1/ω behavior, which was also ob-
served in other works [28,42,78,79]. Such nontrivial behavior

FIG. 2. Location of (Ĩ s
fTWA, Ĩ s

ED) points for 100 disorder realizations [(a) and (b)]. Panel (a) corresponds to W/J = 6 and panel (b) to
W/J = 10. Ĩ s

fTWA/ED are calculated from averaging imbalances in time window t ∈ (1000, 5000); see Eq. (13). The initial state is CDW with 16
lattice sites and, due to long-time dynamics, exact diagonalization method was used. Panel (c) represents one (σ ) and two standard deviations
(2σ ) of ED data with respect to fTWA dynamics for the most upper point in (b). The insets in (a) and (b) show percentage of points satisfying
the Ĩ s

fTWA > Ĩ s
ED condition (vertical axis) when the system size (horizontal axis) is varied from 12 to 16 lattice sites (in calculations 200 disorder

realizations were used). For fTWA 500 trajectories were used and the interaction strength was set to V/J = 1 with J = 0.5.
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FIG. 3. (a)–(c) Spectral function S(ω) in a 1D system with L = 20 lattice sites. Disorder strength is set to (a) W/J = 2, (b) W/J = 6,
(c) W/J = 10. Results for fTWA and Lanczos method (a)–(c) are shown as a green and red line, respectively. In (d), lattice sizes L = 12, 16,
20 are plotted. The fTWA parameters are as follows: (a) and (d) 500 trajectories, (b) and (c) 400 trajectories due to long computation time
requirements. In (a), (b), and (d) averaging over 200 disorders is taken while in (c) the number of disorder realizations is increased to 1000 in
order to avoid noisy Lanczos data at strong disorder strength W/J = 10.

comes from logarithmic-in-time decay of the imbalance and
is also partially visible in the propagation within the Lanczos
method. These results suggest that fTWA upper bound for
relaxation rates is of logarithmic type.

Moreover, analyzing finite-size effects of S(ω) in Fig. 3(d),
we observe that in Lanczos simulations the spectral function
weakly drifts to 1/ω while the change in fTWA is negligible.
For a more accurate comparison, lattice sites at boundaries
were removed symmetrically when system sizes were de-
creased from L = 20 to L = 12 without changing the disorder
distribution of the remaining sites.

As the main result of this work, we focus on the 2D systems
in which fTWA is capable of simulating larger system sizes.
We consider the initial product state of densities in the form
of stripes [see inset in Fig. 4(a)]. Such stripelike structures are
directly accessible in experiments [47,86]. In this work we
simulate numerically 8 × 8 lattice sites in the long-time limit;
see Fig. 4. As in the 1D system, we also observe logarithmic-
in-time decay of imbalances which is also reflected in its
spectral functions as 1/ω dependence [Fig. 4(b)]. Due to the
higher value of the coordination number in a 2D lattice we do
not observe a sharp resonant feature around ω/J ≈ 1.

FIG. 4. Time dependence of imbalance (a) and spectral function S(ω) (b) in a 2D system with the size 8 × 8. The inset in (a) represents
striped CDW initial condition (black circles represent occupied sites and white empty). Results represent data for fTWA with disorder strength
W/J = 2, 6, 10, where the average over 30 disorder realizations was used. In fTWA there are 25 trajectories simulated for each disorder
realization. The rest of the parameters are V/J = 1, J = 0.5.
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FIG. 5. Time dependence of imbalance [(a) and (c)] and spectral function S(ω) [(b) and (d)] for different lattice geometries 64 × 1 (finite
1D lattice), 8 × 8 (finite 2D lattice), and 32 × 2 (crossover region between 1D and 2D). Data for (a) and (b) represent disorder strength
W/J = 2 for 1D, W/J = 4 for 2D and ladder type. Results for (c) and (d) represent disorder strength W/J = 6 for 1D, W/J = 12 for 2D and
ladder type. For better comparison of 1D and 2D data, the disorder strength is doubled for 2D case. Each line is averaged over 30 disorder
realization. In fTWA there are 25 trajectories for each disorder realization. Moreover, in the inset of (a), the same data as in (a) are presented
but with the additional logarithmic scale on the vertical axis. The rest of the parameters are V/J = 1, J = 0.5.

To compare the crossover region between the 1D and
2D system we simulated 64 × 1, 32 × 2, 8 × 8 lattice sizes
(see also finite-size effects analysis in Appendix B). Data
obtained for imbalances together with their spectral func-
tions are plotted in Fig. 5. To more efficiently compare data
for different lattices, the disorder strength in 2D is set to
two times larger value than in 1D. We observe that for the
weaker disorder strengths [Fig. 5(a)] decay of imbalance
at long times follows diffusive behavior, i.e., I ∼ 1/t0.5 in
1D and I ∼ 1/t in 2D. Therefore 1/ω behavior is natu-
rally not achieved in the spectral function analysis presented
in Fig. 5(b). However, for the larger strengths of disorder,
we observe that 1/ω behavior emerges and is immune to
the shape of the lattice [see Fig. 5(d)]. This confirms the

universal 1/ω behavior for interacting, strongly disordered
systems.

Interestingly, obtained data also show that it is enough
to consider a ladder-type lattice to observe almost two-
dimensional behavior of the spectral function [compare
Figs. 6(b) and 6(c). However, proper scaling of disorder
strength with lattice dimension shows that the role of dimen-
sionality is limited; see Figs. 5(b) and 5(d).

In this section all presented data for S(ω) starting from
Fig. 4 and data in the inset of Fig. 5 have been passed through
a Kaiser filter to remove some of the noise coming mostly
from sampling of the initial Wigner function (for comparison
of data with and without a filtered noise see Fig. 7 and the
discussion in Appendix C).

FIG. 6. Spectral function S(ω) of imbalance for different lattice shapes 64 × 1 ((a) finite 1D lattice), 32 × 2 ((b) crossover region between
1D and 2D lattice) and 8 × 8 ((c) finite 2D lattice). Results represent data for fTWA with disorder strength which varies from W/J = 2 to
W/J = 10. Each line is obtained from averaging over 30 disorder realizations. In fTWALOC 25 trajectories were simulated for each disorder
realization. The rest of the parameters are V/J = 1, J = 0.5.
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FIG. 7. Example of data for imbalance I and spectral function
S(ω) with and without filtering of the noise. Panel (a) corresponds to
data in the inset of Fig. 5(a), and panel (b) corresponds to the data
from Fig. 6(c). In the insets, a detailed comparison of the original
and filtered data is plotted without a log-log scale.

V. SUMMARY

In this work we analyze the slow dynamics of spinless in-
teracting fermions on one- and two-dimensional lattices with
disorder. Using fTWA and exact simulations we show that the
fTWA method gives an upper bound on the relaxations rates at
single disorder realization. We exploit this method to analyze
fermionic dynamics for up to 64 lattice sites at half filling and
for times of order O(103), obtaining bounds on the quantum
dynamics of the system.

Moreover, we demonstrate that fTWA exhibits 1/ω be-
havior of the spectral function in one and two dimensions,

suggesting the universality of such behavior in strongly disor-
dered systems. The 1/ω feature is a footprint of logarithmic-
in-time imbalance decay which was previously observed also
in one-dimensional disorder systems [28,42,78,79]. Analyz-
ing the spectral functions in 1D systems we observe that, upon
increasing the system size, results from the Lanczos method
drift to the fTWA results, while the size dependence in fTWA
is negligible. The origin of this unexpected feature remain an
open problem. It deserves further investigations also for other
quantum systems.
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APPENDIX A: PHASE SPACE REPRESENTATION
OF SPINLESS FERMIONIC HAMILTONIAN

We check that adding to the Hamiltonian Ĥ the effective
local interaction term V

∑
i(n̂i − 1/2)2 [Eq. (1)] leads to the

significant improvement of fTWA at early times up to order
O(10). At later times improvement of fTWA is also visible.
We present these results in Fig. 8(a), in which results with-
out local interaction term are denoted by fTWANONLOC. The
explanation of this behavior is the following. In Ref. [75] it
was shown that, for the long-range interacting model, fTWA
dynamics can be significantly improved by including the lo-
cal interaction term between the same fermion species. This
is because the semiclassical dynamics becomes exact in the
long-range limit only if this term is explicitly included in
the equations of motion. Formally it means that the term
V

∑
i(n̂i − 1/2)2, which is irrelevant in the exact dynamics

FIG. 8. Comparison of fTWA and fTWANONLOC for time-dependent imbalance I (t ) (a) and its spectral function S(ω) (b). There are 500
trajectories in both fTWA and fTWANONLOC (green and blue lines, respectively). The inset in (b) shows a sharp peak around ω/J = 1 frequency.
The rest of the parameters in (a) and (b) correspond to Figs. 1 and 3(b), respectively.
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FIG. 9. Finite-size effects in fTWA for time-dependent imbalance (a) and spectral function S(ω) (b) for different lattice topologies with 64
lattice sites and 36 lattice sites. Presented data represent lattices with shapes 6 × 6, 18 × 2, and 36 × 1, where W/J = 6 disorder strength was
used. Each simulated curve is averaged over 75 disorder realizations. In fTWA there are 25 trajectories for each disorder realization. The rest
of the parameters are the same as in Fig. 5.

(because it is proportional to the total number of particles), has
to be implemented in the phase space description as V

∑
i ρ

2
ii.

Such a term introduces nonlinearity in the equations of mo-
tion needed for recovery of exact long-range behavior within
fTWA.

Moreover, one can also give an alternative explanation of
the V

∑
i ρ

2
ii term’s presence in the semiclassical represen-

tation. Namely, such a term naturally appears in the su(N )
invariant Hubbard model, and it was recently studied in the
large-N flavor limit within fTWA [76].

In the end, it is also worth stressing that fTWA perfectly
recovers imbalance oscillations at initial times, which are seen
as sharp peaks around ω/J = 1 [92] and which do not ap-
pear in the standard fTWANONLOC description [see Figs. 8(a)
and 8(b)].

APPENDIX B: FINITE-SIZE EFFECTS

In Secs. III and IV we analyze imbalance function and
its Fourier transform for the system at half filling with 64
lattice sites. In order to analyze finite-size effects we compare
dimensional crossover with simulations for 32 lattice sites
in Fig. 9. We conclude that, for disorder strength W/J = 6,
finite-size effects have a small impact on the analyzed dynam-
ics in this paper. We expect that the finite-size effect can be
more important for weaker disorder strength. However, main
results of our work concern strong disorder, so we omit this
analysis.

APPENDIX C: NOISE ANALYSIS

For the sake of clarity of the presentation in Figs. 4–9
we use noise filtering implemented by the convolution of the
numerical data with the Kaiser window. Denoting the original
and filtered data points by Ooriginal(xi ) and Ofiltered(xi ), respec-
tively, the convolution is defined as

Ofiltered(xi ) = 1

N

y+(i)∑
x j=y−(i)

Ooriginal(x j )w(xi − x j ), (C1)

where y±(i) = xi ± �x(M − 1)/2, the number M is an (odd)
integer which set the window width, and the Kaiser window

has the form

w(xi ) = I0

⎛
⎝α

√
1 − 4x2

i

�x2(M − 1)2

⎞
⎠/

I0(α). (C2)

The normalization condition N is given by

N =
�x(M−1)/2∑

xi=−�x(M−1)/2

w(xi ). (C3)

Moreover, O corresponds to the imbalance (I) or spectral
function (S) and xi = i�x is a discrete variable representing
time t or frequency ω, respectively (�x denotes the step in
the numerical data). I0 is the modified zeroth-order Bessel
function. The time window, tuned by parameters M, α, was
correspondingly larger for later times in order to smooth the
noise more efficiently (e.g., M = 401, α = 2, �t = 0.1 are
chosen for imbalance and M = 101, α = 10, �ω = 2π/Ttotal

for the spectral function, where Ttotal is the total time of
simulations). To take into account the boundary effects of the
convolution defined in Eq. (C1), original data at boundaries
were extended by its mirror reflection. To inspect how noise
filtering works at later times, see insets in Figs. 7(a) and 7(b).

FIG. 10. The mean squared error calculated between the original
and filtered data [see Eq. (C4)] for (a) imbalance I (t ) and (b) spectral
function S(ω) when the inverse number of trajectories is varied. The
data correspond to those presented in Fig. 7 with the same color style
of the curves.
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Next, we show that a significant part of the noise comes
from the finite sampling of the initial Wigner function. To this
end we calculate the mean squared error (MSE) between the
original and filtered data where the number of trajectories is
increased,

MSE(O) = 1

N

N∑
i=1

[Ooriginal(xi ) − Ofiltered(xi )]
2, (C4)

where N is the number of data points. The MSE is calculated
in the whole range of available data in a time and frequency
domain. From Fig. 10 it is easy to notice that a filtered signal
is subsequently approached by original data when the number
of sampled trajectories is increased. We also checked that
further increasing the number of trajectories does not change
the filtered signal.
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