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Quasiperiodic systems show a universal gap structure due to quasiperiodicity, which is analogous to gap
openings at the Brillouin zone boundary in periodic systems. The integrated density of states (IDoS) below
those energy gaps is characterized by a few integers, which is known as the “gap labeling theorem” (GLT) for
quasiperiodic systems. In this study, focusing on multilayer thin film systems such as twisted bilayer graphene
and stacked transition-metal dichalcogenides, we extend the GLT for multilayer systems of arbitrary dimensions
and number of layers, using an approach based on the algebra called “a noncommutative torus.” We find that the
energy gaps and the associated IDoS are generally characterized by DNCD integer labels in N layer systems in
the D dimensions, when the effect of the interlayer coupling can be approximated by a quasiperiodic intralayer
coupling for each layer. We demonstrate that the generalized GLT holds for quasiperiodic 1D tight-binding
models by numerical simulations.
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I. INTRODUCTION

Quasiperiodic systems are systems that possess long-range
order without translational symmetry. In 1982, quasiperi-
odic structure was discovered in a system of alloys [1], and
quasiperiodicity was later found in various systems [2–6]. The
structure of quasiperiodic crystals can be regarded as a pro-
jection of higher-dimensional crystalline structure [7,8], and
it would allow us to access the physics of higher-dimensional
space that is usually inaccessible in three-dimensional crys-
tals. Recently, a stacked system of two-dimensional thin films
was realized and studied intensively, including twisted bi-
layer graphenes [9–11] and the interface of transition-metal
dichalcogenides [12,13]. Multilayer systems made up of dif-
ferent crystals can also be considered quasiperiodic systems
[13,14]. They provide an interesting platform for quasiperi-
odic structures due to their controllability and a rich variety of
material combinations.

In periodic systems, the energy gap often opens at the
Brillouin zone (BZ) boundary due to anticrossing of energy
bands that are related by the reciprocal vectors. Similarly, in
quasiperiodic systems there exist energy gaps that originate
from quasiperiodicity. In quasiperiodic systems, BZ folding
takes place in the momentum space picture, and it leads to
replicas of energy bands that exhibit anticrossings. Since those
energy gaps stem from the geometry of quasiperiodic systems,
one can relate the energy gaps with the geometric parameters
of the system. Since the energy structure of quasiperiodic
systems cannot be captured by the energy dispersion in the
momentum space picture in general, understanding the energy
gap structure independent of the system size is particularly
important. For example, it is known that gaps in the energy
spectrum of Fibonacci quasicrystal can be labeled by two
integers [15–18]. Using those gap labels, one can discuss the
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physical property of the energy gaps regardless of the system
size.

Multilayer thin films (MLTFs) show a universal energy gap
structure that comes from the quasiperiodicity. Such a gap
structure can be understood using the so-called “gap labeling
theorem” (GLT). The GLT establishes a relationship between
those energy gaps with the integrated density of states (IDoS)
below the gap through integer labels, and it has been known
for quasicrystals for several decades [17,18]. A GLT for
MLTFs was originally proposed using an algebra called a
noncommutative torus (NCT) in the case of two-dimensional
homobilayer systems (which are made of the same type of
atomic layers) [19]. In Ref. [19], the GLT for a twisted bilayer
system consisting of the same type of atomic layers was de-
rived, which states that the IDoS below a certain energy gap
G is given by

IDoS(G) = n∅ +
∑

i, j=1,2

ni j
|ai × b j |

S
, (ni j ∈ Z). (1)

Here, ai is a primitive vector of one layer, b j is a primitive
vector of the other layer, and S is |a1 × a2|. Namely, the GLT
gives a labeling for the IDoS below the energy gap G with
integers n.

The GLT is also useful to understand the behavior of the
energy gaps when one changes a parameter that character-
izes the quasiperiodic system. For example, if we consider a
twisted bilayer system, |ai × b j | changes continuously with
varying the twist angle [Fig. 1(a)]. In this case, the energy
gaps for two twist angles can be smoothly connected with
each other when the corresponding IDoS has the same label
n, as depicted by the dashed curve in Fig. 1(b). More recently,
it has been pointed out that such an energy gap structure can
also be understood from charge transport that appears when
sliding two thin films relatively, which is characterized by a
topological quantity called the sliding Chern number (SCN)
[20,21].
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FIG. 1. (a) Parameters that characterize the MLTFs. They include stacking angle, lattice constants of the stacked layers, and deformation
strength. (b) A schematic picture of the energy spectrum of MLTFs when one changes the parameters characterizing the MLTFs. Blue regions
represent the energy bands, and white regions represent the energy gaps. Gray dashed lines are the energy gaps that originate from the
quasiperiodicity and can be captured by the GLT. Those energy gaps show a robust behavior, while other nonuniversal gaps originating from
band hybridizations can merge or split when the parameters are changed.

Since derivation of the GLT from the NCT approach only
requires information on the quasiperiodic lattice structure, the
NCT approach is concise and systematic compared to the
SCN approach. So far, the NCT approach for the GLT has
only been applied for two-dimensional homobilayer systems
[19]. Hence, it is an interesting problem to extend the NCT
method to MLTF heterostructures made of different types
of two-dimensional (2D) systems. An obstacle in extending
the NCT approach for MLTF heterostructures is that the in-
formation on the relative size of the unit cells of different
layers is not incorporated in the original NCT construction,
while it is indispensable to derive GLT for multilayer thin
films. Also, previous studies on homobilayer systems [19–21]
derived GLT by focusing on the IDoS of one layer, since the
system is invariant under exchanging the two layers in homo-
bilayer systems, which is no longer the case for general MLTF
heterostructures. Therefore, to understand the electronic struc-
ture of general MLTFs, it is necessary to treat the electronic
structure of all layers on an equal footing.

In this paper, we extend the NCT approach for the GLT
to MLTF heterostructures. To this end, we adopt an ap-
proach from the approximately finite C∗-algebra [22,23].
Specifically, we relate the traces for the different layers us-
ing the inductive limit for the parameters characterizing the
NCT obtained from the continued fraction, which is effec-
tively equivalent to considering large approximants of MLTF
heterostructures. Assuming that the interlayer coupling is ap-
proximated by quasiperiodic intralayer couplings for each
layer, which generally holds when states in different layers
are energetically separated, we extend the GLT for MLTF
heterostructures. The generalized GLT reveals that the IDoS
for N-layer heterostructures in D dimensions is characterized
by DNCD integer labels. We perform numerical simula-
tions for tight-binding models of 1D MLTF heterostructures,
and we demonstrate that the generalized GLT indeed
holds.

The rest of the paper is organized as follows. In Sec. II,
we review the GLT for MLTFs consisting of the same type
of atomic layers, and we introduce algebraic structure of op-
erators in the MLTFs. In Sec. III, we first extend the GLT to
the bilayer heterostructures in one dimension and then to the
general N-layer systems in arbitrary dimensions in Sec. IV. In
Sec. V, we show numerical calculation in a one-dimensional
MLTF heterostructure system to demonstrate that the general-
ized GLT holds.

II. GAP LABELING THEOREM

In this section, we briefly introduce the original gap label-
ing theorem [16–18]. In periodic systems, band folding at the
Brillouin zone boundary often leads to anticrossing between
folded bands and gap opening. When the energy gap appears
from such band folding, the IDoS below such a gap is given
by an integer times the BZ volume. In quasiperiodic systems,
a gap opening also appears from the band folding due to the
quasiperiodic structure, and a similar relationship for IDoS
holds, which is known as GLT.

To explain the GLT, we first define the IDoS as follows.
Let Ĥ be a Hamiltonian with energy eigenvalues E1 � · · · �
EdimĤ and eigenstates {|ψn〉}, (n ∈ {1, . . . , dim Ĥ}). We de-
note the projector to the states below the energy E as

P̂(E ) =
∑
Ei�E

|ψi〉〈ψi|. (2)

Since we mainly concentrate on energy gaps in this paper, it
is convenient to relate P̂(E ) to energy gaps. When we refer
to the energy gap between En and En+1 as G, we also write
P̂(G) := P̂(En). Using the projector, IDoS is defined as

IDoS(E ) = τ (P̂(E )), (3)

τ (Ô) = 1

dim(Ô)
Tr(Ô). (4)
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Here, τ is the normalized trace defined so that τ of identity
operator 1 becomes 1. In the same manner, we also write
it as IDoS(G) = τ (P̂(G)). While we can define the normal-
ized trace as in Eq. (3) for finite dimensions, in the case
of infinite dimensions we adopt the inductive limit from finite-
dimensional matrix algebras for construction of NCT and a
definition of τ [with Eq. (3)] [24–26]. In the rest of this
section, to explain the GLT, we explicitly derive the GLT for
a toy model.

A. Gap labeling theorem in one dimension

To extend the formalism of Ref. [19], let us review the
original GLT in the case of one dimension using the so-called
Harper model.

First, we demonstrate that the Hamiltonian of a lattice
under an incommensurate potential can be regarded as an
operator on an NC torus. Let us consider the following model:

Ĥ =
∑

n

[(t |n + 1〉〈n| + H.c.) + V (n)|n〉〈n|], (5)

where V (x) = V (x + θ−1) is a periodic function, which is
incommensurate when θ is taken to be irrational. We can
expand V into a Fourier series as

V (x) =
∑
η∈Z

vηe2π iηxθ . (6)

Let us define Ŝ and Û as

Ŝ =
∑

n

|n − 1〉〈n|, (7)

Û =
∑

n

e2π inθ |n〉〈n|, (8)

which follow the commutation relation

ŜÛ = e2π iθÛ Ŝ. (9)

With these operators, we can write the Hamiltonian as a poly-
nomial of Û and Ŝ as

Ĥ = t (Ŝ + Ŝ†) +
∑
η∈Z

vηÛ η. (10)

B. Noncommutative torus

The above commutation relation defines an algebra called
a noncommutative torus. The noncommutative D-torus is an
algebra of operators {Ûj} j=1,...,D, which follows the commuta-
tion relation

ÛiÛ j = e2π iθi j Û jÛi. (11)

Here, θi j is a real number that characterizes the noncom-
mutative torus, which can be regarded as an element of the
antisymmetric matrix θ . We call θ a noncommutative parame-
ter, and we denote a noncommutative D-torus defined by θ as
TD

θ . For example, a noncommutative two-torus appears in the
context of Hofstadter’s butterfly in quantum Hall systems. In
a noncommutative D-torus, we can also construct a projection
operator, whose trace is directly related to the IDoS. For any
Hamiltonian in an algebra of the noncommutative D-torus

TD
θ , it is known that the IDoS of the state below energy gap G

is expressed using θ as [27]

IDoS(G) = n∅ +
∑

J⊂{1,...,D}
nJPf(θJ ), (12)

where the subscript J labels subsets of {1, . . . , D}, Pf denotes
a Pfaffian, and θJ is a submatrix of θ defined as

{θJ}i j =
{

θi j, (i, j ∈ J ),

0, others.
(13)

Once we obtain the parameter θ for the quasiperiodic system,
application of the above formulas leads to the expression for
the IDoS.

For the case of Eq. (5), Ĥ is an operator belonging to the
NCT of parameter θ , and the associated IDoS is given by

IDoS(G) = n∅ + θn1. (14)

III. GAP LABELING THEOREM OF ONE-DIMENSIONAL
MULTILAYER THIN FILMS

In this section we focus on a one-dimensional system, and
we derive the generalized GLT for MLTF heterostructures us-
ing the NCT approach, which is consistent with those obtained
from other approaches [20,28].

One obstacle in extending the GLT is the relation of the
normalized trace τ in MLTF systems. As we show below,
we compute the gap labels of the MLTF heterostructures
by approximately decoupling layers and applying the NCT
approach to each layer. However, since the normalized trace
τ has a different normalization factor for a different Hilbert
space, the IDoS of the entire MLTF is not simply obtained as
a sum of the IDoS of each layer. To derive the gap label for the
MLTFs, we need to know the relation between the τ ’s defined
in each layer. Specifically, for the infinite-dimensional case,
we take an inductive limit with finite-dimensional matrix al-
gebras, where the relation of the normalized trace for different
layers is incorporated in a straightforward way. This approach
is known as approximately finite (AF) algebra [22–24].

In this section we focus on one-dimensional MLTF het-
erostructures, and we apply the above operations to derive the
generalized GLT. We mostly consider the bilayer case, and we
mention the general N-layer systems in the end.

A. Hamiltonian for a quasiperiodic bilayer

We construct a Hamiltonian Ĥ for a quasiperiodic bilayer
by coupling two single-layer tight-binding models (we denote
the single-layer model of layer l as Ĥ l ) with interlayer cou-
pling Ŵ ,

Ĥ = Ĥ1 + Ĥ2 + Ŵ + Ŵ †. (15)

Here, the single-layer Hamiltonian Ĥ l does not depend on the
other layers, and it has no internal degrees of freedom (such
as sublattice degrees of freedom) for simplicity. Namely,

Ĥ l =
∑

nl ,ml ∈Z
hnl −ml |nl , l〉〈ml , l|. (16)
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FIG. 2. A schematic picture of the parameter ξ characterizing the layer stacking of the MLTFs. (a) Example of ξ(r) of an electron on layer
1. We focus on a particular unit cell in layer 1, and we suppose that the electron is located at the position ξ 1. (ξ 1 = 0 corresponds to the base
point of the unit cell in layer 1.) For the layer l other than 1, we define parameter ξ l by a position of the same electron measured within the
unit cell of layer l . In the tight-binding model, electrons are bound to the lattice sites, and ξ 1 = 0. (b) Translation of the layers and ξ. When
we translate the layers by −m1a1, the original parameter ξ(0) is replaced by ξ(m1a1).

Here, nl and ml are the labels of sites on layer l . Hereafter,
we omit the second (layer) index l for states as it is apparent
from the superscript of the first (site) index nl . The position of
site nl is defined as nlal , with al being the lattice constant of
layer l . From the periodicity of layer l , the hopping amplitude
h depends only on the relative distance between site nl and
site ml . In contrast, the interlayer coupling Ŵ depends on how
the two layers are stacked. We express Ŵ by a fully connected
model as

Ŵ =
∑
n1,m2

W (n1, m2)|n1〉〈m2|. (17)

B. Effective Hamiltonian in each layer

The GLT from the NCT approach can capture a gap struc-
ture that arises from the quasiperiodicity, which we call the
intraband energy gap. Such an energy gap originates from a
gap opening for folded bands due to a lattice constant mis-
match, and it appears at the Bragg lines, which is analogous
to the gap opening at the BZ boundary in periodic systems.
On the other hand, interlayer coupling in MLTFs also causes
hybridization between different bands, and it leads to a gap
opening that is not directly related to the quasiperiodic na-
ture, which we call the interband energy gap. To capture the
universal gap structure of intraband energy gaps by the NCT
approach, below we approximate the interlayer couplings in
Eq. (15) with quasiperiodic intralayer couplings. This approx-
imation is justified as far as energy bands of different layers
are energetically separated and the interlayer coupling is not
too large.

When we define a projector onto the space in layer l as P̂l ,
we can write the equation Ĥ |ψ〉 = E |ψ〉 as

EP̂1|ψ〉 = Ĥ1P̂1|ψ〉 + Ŵ P̂2|ψ〉, (18)

EP̂2|ψ〉 =Ŵ †P̂1|ψ〉 + Ĥ2P̂2|ψ〉, (19)

and the effective Hamiltonian in layer l is

Ĥ1
eff(E ) = Ĥ1 + Ŵ

1

E − Ĥ2
Ŵ †, (20)

Ĥ2
eff(E ) = Ĥ2 + Ŵ † 1

E − Ĥ1
Ŵ . (21)

In the following, we approximate E of H1
eff(H

2
eff ) with some

constant which is comparable with eigenvalues of H1(H2) of
interest. The second term of each line is the quasiperiodic
term that behaves as an intraband coupling subject to the
quasiperiodic pattern. We denote such quasiperiodic intralayer
coupling in layer l as V̂ l , which can be formally expressed as

V̂ l =
∑
nl ,ml

Ṽ l (nl , ml , ξ(0))|nl〉〈ml |. (22)

Here, ξ l is a function of r ∈ R, which specifies the position
in the unit cell of layer l [19]. As depicted in Fig. 2(a),
an electron at one layer defines the positions in unit cells
of other layers ξ l . For a general position r for an electron,
collecting the position ξ l (r) in the unit cell of each layer, we
write ξ(r) = {ξ 1(r), . . . , ξN (r)}, which determines the stack-
ing configuration of the unit cells of different layers at the
position r. From the periodicity of layers, specifying how
we stack unit cells is equivalent to specifying how we stack
layers. Thus, ξ at some point r specifies the quasiperiodic
pattern of the MLTF heterostructure. We mainly use ξ(0) to
specify the quasiperiodic pattern in the following sections.

Next, we consider a term Ṽ l (nl , ml , ξ(0)). This represents
the hopping process where an electron at site ml hops to nl in
the MLTFs specified by ξ(0). When we translate the system
by −ml al , site nl is translated to nl − ml , and site ml is at
site 0. Regarding ξ, the ξ(0) of the translated system corre-
sponds to ξ(mlal ) in the original system [Fig. 2(b)]. Hence,
Ṽ l (nl , ml , ξ(0)) coincides with Ṽ l (nl − ml , 0, ξ(mlal )) after
the translation. Therefore, omitting 0 in the second argument,
we can write V̂ l as

V̂ l =
∑
nl ,ml

Ṽ l (nl − ml , ξ(mlal ))|nl〉〈ml |. (23)

When we consider layer l under the tight-binding approxima-
tion, electrons are bound to the sites with no internal degrees
of freedom. In this case, ξ l (mlal ) = 0, and we may omit ξ l

from ξ.
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C. Fourier expansion

Next, we expand V̂ l in a Fourier series. First, we consider
the layer l = 1 and define q1 = n1 − m1. Applying the discus-
sions in Sec. III B to a bilayer system, ξ 2 has the periodicity
ξ 2(m1a1 + a2) = ξ 2(m1a1). Using this periodicity, we expand
the quasiperiodic intralayer coupling in the Fourier series as

V 1(q1, ξ 2(m1a1)) =
∑
η1∈Z

vq1,η1 e2π iη1 ξ2 (m1a1 )
a2 . (24)

Defining the slide operator as Ŝ1 = ∑
n |n1 − 1〉〈n1|, we can

write

V̂ 1 =
∑
m1,q1

∑
η1

vq1,η1 e2π iη1 m1a1

a2 (Ŝ1†)q1 |m1〉〈m1| + H.c., (25)

where we have used e2π i ξ2 (m1a1 )
a2 = e2π i m1a1

a2 . Defining the gen-

erator Û1 as
∑

m1 e2π i m1a1

a2 |m1〉〈m1|, we rewrite the above
equation as

V̂ 1 =
∑

q1

∑
η1

vq1,η1 (Ŝ1†)q1
Û η1

1 + H.c. (26)

In this manner, we can express quasiperiodic intralayer cou-
pling as a polynomial of Û1 and Ŝ1. In the same procedure, we
can also decompose quasiperiodic intralayer coupling in layer
2 as

V̂ 2 =
∑

q2

∑
η2

vq2,η2 (Ŝ2†)q2
Û η2

2 + H.c., (27)

Û2 =
∑
m2

e2π i m2a2

a1 |m2〉〈m2|, (28)

Ŝ2 =
∑
m2

|m2 − 1〉〈m2|. (29)

D. Noncommutativity between translation and generator

To define a noncommutative torus, we define Û3 and Û4 by

Û3 = Ŝ1, (30)

Û4 = Ŝ2. (31)

Then, Ûi’s satisfy the following commutation relations:

Û1Û3 = e−2π i a1

a2 Û3Û1, (32)

Û2Û4 = e−2π i a2

a1 Û4Û2. (33)

From these relations, we construct a noncommutative torus
generated by (Û1, Û3) and (Û2, Û4). The parameter θ of the
corresponding NCT is obtained from the commutation rela-
tion ÛiÛ j = e−2π iθi j Û jÛi as

θ13 = a1

a2
, (34)

θ24 = a2

a1
. (35)

Hence, the effective Hamiltonian on each layer can be ex-
pressed as an operator defined on the noncommutative torus
Tθ13 and Tθ24 , and the total (effective) Hamiltonian of the

bilayer system becomes an element of the algebra Tθ13 ⊕ Tθ24 .
Thus the projector of the bilayer Hamiltonian is expressed as

P̂ = P̂1 ⊕ P̂2, (36)

where P̂ is the projector in Tθ13 ⊕ Tθ24 , and P̂l is the projector
in the layer l . Here, it is worth noting that the relation be-
tween the normalized trace of the bilayer system is not simply
given by a summation of the normalized trace of layer l as
τ (P̂) = τ 1(P̂1) + τ 2(P̂2), because the normalized trace τ l is
defined in a different subspace for each layer. Therefore, to
derive the GLT, we should examine the relation between τ 1

and τ 2. Directly relating τ 1 and τ 2 is hard since the dimension
of Ûi is infinity, as we have defined in Sec. III C. To overcome
this issue, we use the AF algebra [26,29]. This algebra de-
fines the NCT as the inductive limit of the finite-dimensional
matrix algebra, where we can relate the normalized traces for
different layers more easily.

In the following, we follow the approach by Primsner and
Voiculescu [23] to relate the traces in different layers. First,
one represents θ with a continued fraction,

θ = z0 + 1

z1 + 1
z2+ 1

z3+ 1
. . .

= [z0; z1, . . .], (37)

and then one approximates θ with an approximant of θ defined
as

θn = z0 + 1
. . . + 1

zn

= pn

qn
, (38)

where pn and qn are coprime integers. When we approximate
θ by θn, we can represent the generators of the noncommuta-
tive torus with qn-dimensional matrices and define IDoS using
a trace of the finite-size matrices. Next, to construct T 2

θn+1
,

we embed T 2
θn

and T 2
θn−1

to a qn+1-dimensional matrix with
a suitable unitary transformation [for details, see Eq. (2) in
Ref. [23]]. Continuing this embedding, we define T 2

θ as an
inductive limit, T 2

θ = limn→∞ T 2
θn

. In this construction, the
IDoS of T 2

θ is also defined as the inductive limit from the
IDoS of Tθn , which can be defined in the finite-dimensional
matrix algebra. When we consider an approximant θn for the
quasiperiodicity parameter θ = a1/a2 for the bilayer system,
we effectively consider a superlattice made of qn sites in layer
1 and pn sites in layer 2, which we call “the moiré unit cell.”
When we consider the system of length pn with the periodic
boundary condition, we may use a phase matrix Pθn and a
clock matrix Cθn as a representation of Û1 and Û3:

{
Pθn= pn

qn

}
i j =

{
e2π iθn j, i = j,

0, others,
(39)

{
Cθn= pn

qn

}
i j =

⎧⎪⎨
⎪⎩

1, j − i = 1,

1, (i, j) = (qn, 1),

0, others

(40)

for 1 � i, j � qn. Using these matrices, the representations of
Û ’s under this approximation are

Û1 = Pθn , (41)

Û2 = Pθ−1
n

, (42)
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Û3 =Cθn , (43)

Û4 =Cθ−1
n

. (44)

The dimension of Û1 and Û3 is qn, and that of Û2 and Û4 is
pn. Thus, in the finite-dimensional matrix algebra, the IDoS
of layer 1 is expressed as

IDoS1(G) = 1

qn
Tr(P̂(G)). (45)

Since the Hamiltonian of the bilayer system is the direct sum
of H1

eff and H2
eff, the IDoS of the bilayer system and those of

layers 1 and 2 satisfy the following relation:

(pn + qn)IDoS(G) = qnIDoS1(G) + pnIDoS2(G). (46)

According to Ref. [30], the IDoS for each layer is given by
IDoS1(G) = n1

1 + θnn
1
2 (n1

1, n
1
2 ∈ Z) and IDoS2(G) = n2

2 +
θ−1

n n2
1 (n2

1, n
2
2 ∈ Z), which leads to

IDoS(G) = (n1
1 + n2

1

) qn

(pn + qn)
+ (

n1
2 + n2

2

) pn

(pn + qn)
.

(47)

Taking the inductive limit of pn/qn → θ = a1/a2, we obtain

IDoS(G) = 1
1
a1 + 1

a2

[
n1

a1
+ n2

a2

]
. (48)

Here, nk = ∑
l=1,2 n

l
k . As a result, we can label IDoS of the

bilayer system with two integers. This result is consistent
with the previous results including Fig. 6.3 in Ref. [28] and
Eq. (A3) in Appendix from the SCN approach.

As one can easily see, qn is the number of unit cells inside
the moiré unit cell of layer 1, and pn is that of layer 2. There-
fore, qn/(pn + qn) is the density of unit cells of layer 1 inside
the moiré unit cell. Thus relating the trace of each layer can be
intuitively understood as introducing the ratio of the number
of unit cells of two layers. This allows us to extend the above
formalism to multilayer and higher-dimensional systems in a
straightforward way.

In a similar manner, we can also extend GLT to the N-layer
system. Considering an N-layer system with lattice constant
al , we can write IDoS of layer l (IDoSl ) as

IDoSl =
N∑

l ′=1

nl
l ′

al

al ′ . (49)

Here, {nl
1, . . . , n

l
N } are integers. From the relationship be-

tween IDoSl and the IDoS of the entire system,(
N∑

l=1

1

al

)
IDoS =

∑
l

1

al
IDoSl , (50)

we obtain

IDoS =
(∑N

l=1
nl
al

)
(∑N

l=1
1
al

)
(
nl ′ =

∑
l

nl
l ′

)
. (51)

IV. GAP LABELING THEOREM
OF D-DIMENSIONAL MLTFs

In this section, we extend the GLT to D-dimensional MLTF
heterostructures. We first summarize our notations to describe

D-dimensional MLTFs. In D-dimensional MLTFs, we define
the ith primitive vector of layer l as al

i , and its reciprocal
vector bl

i is defined such that al
i · bl

j = δi j . Alternatively, we
also denote the ith primitive (reciprocal) vector in layer l as
a(l−1)D+i = al

i . In a D-dimensional system, we can express the
D-dimensional volume of the region spanned by ai1 , . . . , aiD
as Si1···iD = | det(ai1 , . . . , aiD )|. When we replace aiD with unit
vector eD such that eD · ai j = 0 ( j = 1, . . . D − 1), we can
omit the Dth index iD from S and define

Si1···iD−1 = ∣∣ det
(
ai1 , . . . , aiD−1 , eD

)∣∣. (52)

In a similar manner, we can also define Si1···id as

Si1···id = ∣∣ det
(
ai1 , . . . , aid , ed+1, . . . , eD

)∣∣, (53)

where ai · e j = 0 (i = i1, . . . , id , j = d + 1, . . . , D). In par-
ticular, if some vectors from ai1 to aiD are parallel with each
other, Si1···iD = 0. To label sites in layer l , we use integers
{nl

i }i=1,...,D and the parameter r̃ ∈ {∑D
d=1 ñl

d al
d |0 � ñl

d < 1}
that specifies the origin of layer l in RD space, where the
coordinate of the site r ∈ RD is represented as

r =
D∑

d=1

nl
d al

d + r̃. (54)

A. 2D systems

First, we extend Ref. [19] to two-dimensional heterobilayer
systems. Then, we derive GLT for the two-dimensional multi-
layer system.

1. Bilayer case

We consider bilayer systems. In this case we have four
primitive vectors, and the parameter of the noncommutative
torus for layer 1 is given by

θ1 = 1

S34

⎛
⎜⎜⎝

0 0 S13 S14

0 0 S23 S24

−S13 −S23 0 0
−S14 −S24 0 0

⎞
⎟⎟⎠. (55)

The derivation of θ1 is as follows. In layer 1 of the two-
dimensional bilayer, the period of the quasiperiodic pattern is
equal to the primitive vectors of layer 2. Specifically, omitting
ξ1(r) = 0, we can represent the quasiperiodic coupling term
only with ξ2(r), which is the position of an electron on layer
1 in the unit cell of layer 2. Writing ξ2(r) = ξ̃3(r)a3 + ξ̃4(r)a4

with ξ̃ j (r) ∈ [0, 1), we define

û j =
∑

r1∈R2

e2π iξ2(r1 )·b j |r1〉〈r1| =
∑

r1∈R2

e2π iξ̃ j (r1 )|r1〉〈r1|, (56)

where j = 3, 4, and r1 runs the position of sites in layer 1 in
Eq. (54). Denoting the shift operators that translate the layer 1
by −a1 and −a2 as û1 and û2, we obtain

û3û1 =
∑

r1∈R2

e2π iξ2(r1−a1 )·b3 |r1 − a1〉〈r1 − a1| (57)

and

û1û3 =
∑

r1∈R2

e2π iξ2(r1 )·b3 |r1 − a1〉〈r1 − a1|. (58)
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Hence the commutation relation of û1 and û3 is

û1û3 = e2π i[ξ2(r1 )−ξ2(r1−a1 )]·b3 û3û1, (59)

where this phase factor does not depend on r1. Indeed, when
we expand a1 as

a1 = θ̃13a3 + θ̃14a4, (60)

ξ̃3(r1 − a1) ≡ ξ̃3(r1) − θ̃13 mod 1 holds, so that

e2π i[ξ2(r1 )−ξ2(r1−a1 )]·b3 = e2π iθ̃13 . (61)

From the definition of reciprocal vectors,

|θ̃i j | = |ai · b j | = Si j̄

S34
, (62)

where { j, j̄} = {3, 4}. As the sign does not affect the deriva-
tion of GLT, we may use Si j̄/S34 instead of θ̃i j . Thus, defining

(Û1, Û2, Û3, Û4) = (û1, û2, û4, û3), (63)

we obtain the noncommutative parameters in Eq. (55). Apply-
ing Eq. (12) for θ1, IDoS of the associated NC torus is given
by

IDoS1 = n1
∅ +

∑
J⊂{1,2,3,4}

n1
JPf
(
θ1

J

)

= n1
∅ +

∑
i=1,2

∑
j=3,4

n1
i j

Si j

S34
+ n1

1234
S12

S34
, (64)

where θ1
J is a submatrix of θ1 defined in Eq. (13), and we used

the following formula:

S13S24 − S23S14 = (a1 × a3) · (a2 × a4)

− (a2 × a3) · (a1 × a4)

= (a1 × a2) · (a3 × a4) = S12S34. (65)

This result means that we need six integers to label energy
gaps of a single layer in a two-dimensional bilayer system,
which coincides with the result in Ref. [31].

Similarly, the IDoS for layer 2 is given by

IDoS2 = n2
∅ +

∑
i=1,2

∑
j=3,4

n2
i j

Si j

S12
+ n2

3412
S34

S12
. (66)

Next, we glue these two tori following the procedure we have
discussed in the previous section. As a result, we obtain IDoS
of a two-dimensional bilayer system as

IDoS = 1

S12 + S34

⎡
⎣ 4∑

i=1

4∑
j=i+1

ni jSi j

⎤
⎦. (67)

2. Trilayer and N-layer cases

First, we consider a two-dimensional trilayer system.
In this case, we have six primitive vectors, and the

noncommutative parameter of layer 1 is

θ1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 S13
S34

S14
S34

S15
S56

S16
S56

0 0 S23
S34

S24
S34

S25
S56

S26
S56

− S13
S34

− S23
S34

0 0 0 0

− S14
S34

− S24
S34

0 0 0 0

− S15
S56

− S25
S56

0 0 0 0

− S16
S56

− S26
S56

0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (68)

From Eq. (12), the IDoS of layer 1 is

IDoS1 = n1
∅ +

∑
i=1,2

∑
j=3,4

n1
i j

Si j

S34
+
∑
i=1,2

∑
j=5,6

n1
i j

Si j

S56

+ n1
1234S12

S34
+ n1

1256S12

S56
+

∑
i=3,4, j=5,6

n1
12i j

S12Si j

S34S56
.

(69)

In Eq. (69), the first five terms appear as a combination of
IDoS1 in bilayer systems, while the last term does not. For
example, the fifth term comes from the bilayer between layer
1 and layer 2. In this case, the quasiperiodic pattern generated
by primitive vectors a3 and a4 opens the energy gaps. In
contrast, the last term with n1

12i j treats the energy gap that orig-
inates from the quasiperiodic pattern generated by primitive
vectors ai of layer 2 and a j of layer 3, reflecting the trilayer
nature. Combining IDoS for each layer, we obtain(

1

S12
+ 1

S34
+ 1

S56

)
IDoS

= 1

S12S34S56

[(
n1

∅ + n2
3412 + n3

5612

)
S34S56

+ (
n1

1234 + n2
∅ + n3

5634

)
S12S56

+ (
n1

1256 + n2
3456 + n3

∅
)
S12S34

+
∑
i=1,2

∑
j=3,4

(
n1

i j + n2
i j + n3

56i j

)
Si jS56

+
∑
i=1,2

∑
j=5,6

(
n1

i j + n2
34i j + n3

i j

)
Si jS34

+
∑
i=3,4

∑
j=5,6

(
n1

12i j + n2
i j + n3

i j

)
Si jS12

]
. (70)

Since labels such as n1
i j + n2

i j + n3
56i j appear only as a com-

bination in the expression for the IDoS, we regard them as a
single label. Therefore, redefining labels, we obtain

IDoS =
∑

J⊂{1,...,6}
|J|=2

nJ
1
SJ

1
S12

+ 1
S34

+ 1
S56

, (71)

where J labels a set of two integers from 1 to 6. The number of
combinations to choose two integers J from 1 to 6 is 15. Thus
to label a one-dimensional trilayer, we need 15 integers. In a
similar manner, to label two-dimensional N-layer systems, we
need to choose two vectors from 2N primitive vectors, which
leads to 2NC2 = N (2N − 1) integers.
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B. General D-dimensional N-layer systems

Similarly, we can also formulate the GLT in the D-
dimensional N-layer MLTFs. The noncommutative parameter
of the NCT for layer 1 is written as

θ1 =
(

O 	

−t	 O

)
,

	 =

⎛
⎜⎝ (a1 · bD+1) · · · (a1 · bDN )

...
. . .

...

(aD · bD+1) · · · (aD · bDN )

⎞
⎟⎠. (72)

From this matrix, we choose submatrix θ1
J and calculate the

Pfaffian. When dim θ1
J = 2d , a condition to obtain nonzero

Pfaffian is to choose d indices from 1, . . . , D and d in-
dices from D + 1, . . . , DN . We denote chosen indices as μ ⊂
{1, . . . , D} and ν ⊂ {D + 1, . . . , DN}. Then, the Pfaffian of

the submatrix is given by

Pf
(
θ1

J

) = det

⎛
⎜⎝(aμ1 · bν1 ) · · · (aμ1 · bνd )

...
. . .

...

(aμd · bν1 ) · · · (aμd · bνd )

⎞
⎟⎠, (73)

where J = μ ∪ ν. When d = D, this simplifies to

Pf
(
θ1

J

) = det

⎛
⎜⎝(aμ1 · bν1 ) · · · (aμ1 · bνD )

...
. . .

...

(aμD · bν1 ) · · · (aμD · bνD )

⎞
⎟⎠

= det

⎛
⎜⎝− aμ1 −

...

− aμD −

⎞
⎟⎠ det

⎛
⎝ | |

bν1 · · · bνD

| |

⎞
⎠

= Sμ

Sν

= S1

Sν

. (74)

In the other cases, we obtain

Pf
(
θ1

J

) = det

⎡
⎢⎣
⎛
⎜⎝− aμ1 −

...

− aμd −

⎞
⎟⎠
⎛
⎝ | |

bν1 · · · bνd

| |

⎞
⎠
⎤
⎥⎦

= det

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

− aμ̄1 −
...

− aμ̄D−d −
− aμ1 −

...

− aμd −

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎝ | | | |

bμ̄1 · · · bμ̄D−d bν1 · · · bνd

| | | |

⎞
⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= (±1)
S1

Sμ̄1,...,μ̄D−d ,ν1,...,νd

. (75)

Here, μ ∪ μ̄ = {1, . . . D}, and ±1 is the sign of the permuta-
tion of ai’s with {μ̄1, . . . , μ̄D−d , μ1, . . . , μd}. This sign is not
important to express IDoS, as we can get rid of it by redefining
integer labels. Using the results above, the IDoS for layer 1 is
expressed as

IDoS1 = n1
∅ +

∑
μ⊂{1,...,D}

ν⊂{D+1,...,DN}
|μ∪ν|=D

n1
μν

S1

Sμν

. (76)

In a similar manner, we can also calculate the IDoS for layer
l . Using the relationship,(∑

l

1

Sl

)
IDoS =

∑
l

1

Sl
IDoSl , (77)

we obtain the IDoS for the D-dimensional N-layer as

IDoS =
∑

J⊂{1,...,DN}
|J|=D

nJ
1
SJ∑

l
1
Sl

. (78)

This formula shows that the number of choices of J that
have a nonzero contribution is DNCD, which indicates that

we need DNCD integers to label the energy gap structure of
D-dimensional N-layer MLTFs generally.

V. NUMERICAL CALCULATION

We demonstrate the validity of the obtained gap labels in
the case of one-dimensional systems. First, we consider the
bilayer system. We then move on to the trilayer system with
large gaps between layers, which is ideal to project out the
other layers into potentials.

First, we consider a bilayer consisting of layers with lattice
constant 1 and θ . The Hamiltonian is composed of the two
single-layer Hamiltonians with nearest-neighbor coupling and
an interlayer coupling term:

Ĥ =
∑
l=1,2

∑
nl

[t l |nl + 1〉〈nl | + H.c.]

+
∑
n1,n2

[Ve−γ r(n1,n2 )|n1〉〈n2| + H.c.]. (79)

Here r(n1, n2) is the distance between sites n1 and n2, which
we define r(n1, n2) = |n1a1 − n2a2|, and we take t1 = 1, t2 =
2,V = 5, γ = 10. The result is shown in Fig. 3. The color
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FIG. 3. The IDoS of the bilayer system against lattice constant θ .
The color changes with energy. The region where the color changes
sharply corresponds to the energy gap. White lines are energy gaps
predicted by the GLT with labels (n1, n2) defined in Eq. (51). The
labels of energy gaps whose IDoS is 1 at θ = 0 satisfies n1 = 1 and
n2 < 1. The labels of energy gaps whose IDoS is 1 at θ = 1 satisfies
n1 + n2 = 2 and n2 < 0.

corresponds to the energy of eigenstates. The sharp color
changes correspond to the energy gaps. The white solid curves
are the position of the energy gap predicted from the general-
ized GLT in Eq. (51), where we indicate the associated integer
labels. The white curves coincide with the position of the
energy gap (where the color changes sharply), and they show
that the generalized GLT holds in the present system. Vertical
lines without a color change appear in fractional θ ’s. While
we show the curves associated with a few labels, we can also
reproduce the positions of other energy gaps from the GLT
as well. Next, we show numerical calculations in a trilayer
system. Lattice constants are a1 = 1, a2 = α, a3 = αβ, and β

is fixed to 12/13. The Hamiltonian is

Ĥ =
3∑

l=1

∑
nl

[t l (|nl + 1〉〈nl | + H.c.) + El |nl〉〈nl |]

+
∑
n1,n2

[(Ve−γ r(n1,n2 ) )2|n1〉〈n2| + H.c.]

+
∑
n2,n3

[(Ve−γ r(n2,n3 ) )2|n2〉〈n3| + H.c.]

+
∑
n3,n1

[Ve−γ r(n3,n1 )|n3〉〈n1| + H.c.]. (80)

Here we take t1 = t2 = t3 = 2,V = 2, ξ = 2. El ’s are addi-
tional parameters to show the energy gap clearly, and we set
E1 = 10, E2 = 0, E3 = −10.

The energy spectrum under the PBC is shown in Fig. 4.
Blue points are the energy spectrum, and red arrows show
the energy gap predicted by the GLT. Among the energy
gaps, there are two trivial gaps (n1, n2, n3) = (0, 0, 1) and
(0,1,1). (0,0,1) corresponds to filling layer 3 only, and (0,1,1)
corresponds to filling layers 2 and 3. These gaps open without

FIG. 4. Trilayer model with large gaps. Here, we set β = 12/13.
Parameters are t1 = t2 = t3 = 2, V = 2, ξ = 2, E1 = 10, E2 =
0, E3 = −10. Blue points are the energy spectrum, and red lines
are the energy gap predicted by the GLT. Arrows indicate the energy
gap, and their labels (n1, n2, n3).

quasiperiodicity, so they are stable against the change of α. In
Fig. 4, the sizes of the energy gaps are different. This is due
to the exponential decay of the interlayer coupling. When the
interlayer coupling takes a large value, on the Bragg lines the
energy gap is also large. Even in the case in which the energy
gaps are small, e.g., (5,−2, 1), we can also label energy gaps.
Therefore, we can also predict energy gaps in the trilayer
systems using GLT.

We note the limitations for the choices of El . In this calcu-
lation, we added energy offsets to separate the energy bands of
the three layers. This allows us to focus on intraband energy
gaps that can be captured by the GLT. When energy bands are
energetically close and hybridized with each other, interband
energy gaps appear that are not necessarily captured by the
GLT. Characterization of those interband energy gaps remains
a future problem.

VI. DISCUSSIONS

In this paper, we have extended the GLT to MLTFs using
the approach from the noncommutative torus, which allows
us to treat all layers on an equal footing. We derived the GLT
for general D-dimensional N-layer systems by combining
previous results on the GLT [19,32] and redefinition of the
normalized trace for each layer using a continued fraction and
the inductive limit. As a result, we have obtained the general
expression of IDoS in Eq. (78), and we found that the number
of gap labels is generally given by DNCD. In addition, the
obtained GLT formula was found to be consistent with the
result from the SCN approach. The present NCT approach
also gives a reinterpretation of the result obtained from the
SCN approach. (For details, see Appendix).
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We note the validity of treating the interlayer coupling as
an effective quasiperiodic intralayer coupling for each layer.
In this paper, we focused on the situation in which we can
treat the interlayer coupling as an effective intralayer coupling
for each layer. This is a good approximation when the energy
bands from different layers are energetically separated. When
the states from different layers are energetically close and
hybridized due to the interlayer coupling, the resulting energy
gaps do not arise from the quasiperiodicity, and they are not
expected to be characterized by the GLT. To be more precise,
it is not evident whether one can rewrite the Hamiltonian
with general interlayer couplings as an operator belonging
to a NC torus without projecting to the effective intralayer
coupling.

An interesting future direction will be studying the rela-
tionship between the GLT and the flat bands in the MLTFs.
In MLTFs such as twisted bilayer graphene, an emergence of
flat bands at certain angles has been reported. This is a con-
sequence of the gap opening between replicas of the energy
band, and it originates from the quasiperiodicity. Recently,
the flat band in twisted bilayer graphene has been studied
using Jacobi θ functions [33–35], where one can define a com-
mutation relationship for quasiperiodic functions in a similar
manner to those for S and U used in Sec. III [36]. One can
interpret that the θ functions are describing the wave functions
of quasiperiodic systems, while the NC torus is describing the
Hamiltonian. Thus, the GLT may also be useful to study the
flat bands in quasiperiodic systems if a relationship between
the GLT and the θ function is established.
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APPENDIX: SLIDING CHERN NUMBER

In MLTFs, a new topological index that comes from the
sliding of two-dimensional layers was proposed indepen-
dently in Refs. [20,37,38]. Here, we call it the sliding Chern
number (SCN) following Ref. [20].

1. Gedanken experiment to relate SCN and gap labels

In Ref. [20], a gedanken experiment was conducted to
clarify the relationship between the SCN and a quantized
charge transport. This argument can be used to obtain GLT
for one-dimensional bilayer systems with an extension.

We consider a one-dimensional bilayer system without the
internal degree of freedom. The lattice constant of the bottom
layer is 1 and the top layer is p/q. Here, p and q are coprime
to each other, and two layers are connected through interlayer
coupling.

In this case, we can define the moiré unit cell for the bilayer
system and its lattice constant to be q.

When we slide the top layer by q, the system before and
after the sliding is identical, yet electrons on the top layer
are transferred. With the constraint that the system must be
identical in two cases, the number of transferred electrons is a
multiple of sites inside the moiré unit cell, nt q (nt ∈ Z).

In a similar manner, we can also slide the bottom layer
by q into the opposite direction. In this case, the number of
transferred electrons is a multiple of nb p (nb ∈ Z).

Since two slid bilayers are related through the translation of
the entire system by q. We can obtain the following equation:

nt q = nb p + N. (A1)

Here, N is the number of electrons inside the moiré unit cell.
In Ref. [20], it was shown that nt and nb are the sliding Chern
number.

To see the relationship of the above argument with the
IDoS, we divide both sides with the system size p + q, which
leads to

IDoS = nt
q

p + q
− nb

p

p + q
. (A2)

From the definition, IDoS is the number of electrons divided
by the system size N/(p + q). Finally, we take the incommen-
surate limit. Replacing p/q with an irrational number θ , we
obtain

IDoS = nt − nbθ

1 + θ
. (A3)

Therefore, we can also relate the SCN with IDoS. This
gedanken experiment does not depend on the detail of the
Hamiltonian, and Eq. (A3) coincides with the result in Sec. III.

2. Two and higher dimensions

In Ref. [31], the relationship between the energy gaps
of hBN/graphene/hBN trilayer heterostructure and integer
labels were pointed out, and later the authors studied the
relationship between the energy gap structure and the in-
teger labels in general two-dimensional multilayer systems
in Ref. [21]. From these studies, they derived the following
expression for the IDoS:

IDoS(G) = n∅ +
∑
i=1,2

∑
j=3,4

ni j
Si j

S12
+ n1234

S34

S12
, (A4)

which is consistent with the generalized GLT formula for the
D = 2, N = 2 case. More recently, Yamamoto and Koshino
pointed out that one can label energy gaps of the three-
dimensional system under incommensurate potential with the
third Chern number [39]. This is consistent with our result of
the generalized GLT, in that we can transform the Hamiltonian
of a D-dimensional lattice under incommensurate potential to
an NC 2D torus, and the top Chern number is the Dth Chern
number [40].
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