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Late-time critical behavior of local stringlike observables under quantum quenches
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In recent times it has been observed that signatures of equilibrium quantum criticality surprisingly show up in
many-body systems, which are manifestly far from equilibrium. We explore such scenarios in interacting spin
systems subject to a quench and develop a robust method to systematically probe ground-state critical physics
through nonequilibrium post-quench dynamics. Analyzing late-time behavior of finite string-like observables,
we find emerging sharp signatures of equilibrium criticality. Specifically, these observables accurately detect
equilibrium critical points and universal scaling exponents after long times following a quench. This happens
despite the fact that the analyzed systems are strongly chaotic/ergodic and is interestingly due to a strong memory
of the initial conditions retained by these observables after quench. We find that our results can also be used
to explain critical signatures in post-quench domain formation, seen in a recent experiment with trapped ion
quantum simulators.
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I. INTRODUCTION

Understanding phase transitions have been a central theme
in the study of many body statistical mechanics. A plethora of
studies into the nature and classification of phase transitions
[1–3] has led to a comprehensive theoretical and experimen-
tal understanding of the phenomena. Phase transitions are
known to manifest as nonanalyticities in free energy densities
at finite temperatures and energy at very low temperatures.
Furthermore, it has been well established that a critical system
exhibits a diverging correlation length in the thermodynamic
limit and obeys universal scaling laws, which are not depen-
dent on microscopic details of the system. Similar to thermal
phase transitions driven by thermal fluctuations, a class of
phase transitions in the zero-temperature ground state of quan-
tum many-body systems have also been discovered [4,5].
These quantum phase transitions (QPTs) are solely driven
by quantum fluctuations arising from competing mechanisms,
resulting in different favored ground states in different phases.
Interestingly, continuous QPTs are also accompanied by a
diverging correlation length near criticality and follow uni-
versal scaling laws (see Ref. [6] for a review). Apart from
equilibrium quantum phase transitions, recent studies have led
to the discovery of a new type of quantum criticality exclu-
sive to out of equilibrium systems [7]. Known as dynamical
quantum phase transitions [8–15], these extend the concept
of criticality and universality to the early time dynamics of
nonequilibrium systems, which are far from their ground
states.

Even so, it is usually difficult to understand how equilib-
rium critical phenomena can manifest in generic high-energy
excited states of a system. In this light, there has been
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an extensive search for footprints of quantum criticality in
excited and particularly out of equilibrium systems [16–31].
Particularly, Refs. [24,25] and very recently Refs. [26,30],
reported signatures of equilibrium criticality following a
quench, which manifest in late-time observables and higher
order correlations. It is remarkable that some of these signa-
tures of quantum phase transitions persist even after chaotic
scrambling in quenched systems. On the other hand, a recent
quenching experiment in a trapped ion quantum simulator, has
also detected signatures of equilibrium QPTs; these are mani-
fested in the late-time domain statistics of a quenched chaotic
system of interacting spins [17]. Nonetheless, a generic the-
oretical origin of these surprising signatures of equilibrium
criticality in systems manifestly far from equilibrium has re-
mained elusive as yet.

In this paper, we set out to develop a unified theory
connecting several recent experimental and theoretical ob-
servations on such nonequilibrium signatures of quantum
criticality, particularly those reported in Refs. [17,26]. We
note that the theory also naturally explains the recently ob-
served critical behavior of local probes, such as magnetization
density, following chaotic quenches (see Ref. [24,32]). We be-
gin by demonstrating that the time-averaged Loschmidt echo
(LE), a nonequilibrium analog of the partition function, de-
velops sharp signatures following a sudden quench when the
quenched Hamiltonian crosses an equilibrium critical point
in both integrable (also seen in Refs. [33,34]) and chaotic
systems. Additionally, we observe that the time-averaged LE
satisfies universal finite-size scaling laws as the quenched
Hamiltonian approaches the critical point following a generic
quantum quench. To understand the definition of the LE,
consider a system in a many body initial state |ψ (0)〉 al-
lowed to evolve unitarily with a quenched Hamiltonian H ;
the Loschmidt echo following the sudden quench is then de-
fined as L = | 〈ψ (0)|ψ (t )〉 |2 = | 〈ψ (0)| exp [−iHt]|ψ (0)〉 |2.
However, as evident from its definition, due to an
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exponentially growing basis with system size, the LE is very
difficult to probe experimentally in many body systems.

We therefore proceed to systematically construct exper-
imentally accessible and time-insensitive local probes, out
of string type observables, which capture critical behavior
in quenched quantum systems. We find that mimicking the
behavior of the LE, sharp signatures indicative of the equi-
librium critical point can also emerge as a function of the
quenching parameter in time-averaged string observables.
Recently, such operators have been shown to efficiently de-
tect dynamical critical behavior and early time singularities
in both integrable and chaotic out of equilibrium systems
[14,35,36]. By construction, these local string operators even-
tually approach the projector onto the complete initial state
as their spatial support (string length) increases. Following
a quantum quench, the string observables are expected to
reach a steady state after sufficiently long times. Specifically,
for integrable quenches, generic local observables are known
to eventually relax into a generalized Gibbs ensemble in a
thermodynamically large system [37,38]. On the other hand,
if H is chaotic, the system eventually thermalizes and ex-
pectation values of local observables can be described by
a microcanonical ensemble. This is in accordance with the
eigenstate thermalization hypothesis (ETH) [39–42]. Thus,
expectation values of generic local observables are expected
to be smooth functions of energy, containing no information
of the initial state [43] except energy density. In contrast to
the long time behavior of LE, it is therefore unlikely for
local observables to develop true nonanalyticities in their
bare expectations following chaotic quenches. Nevertheless,
we find that, even after a sufficiently long ergodic evolution,
the observables remarkably hold strong and stable memory
of the initial state. Besides, the string observables are also
found to have much longer life times in chaotic eigenstates in
comparison to single-site observables such as magnetization
density. Consequently, after sufficiently long times follow-
ing the quench, we see robust and sharp signatures of the
equilibrium QCP in the local probes, even with bilinear ob-
servables, as found numerically in Ref. [26]. We therefore
show that string observables indeed allow us to systematically
access zero-temperature ground state properties, such as phase
transitions in quenching experiments [17], without having to
actually prepare the system in its ground state.

Interestingly, we further observe that the long time-
averaged string observables also satisfy critical scaling rela-
tions with the string length following near critical quenches
even in chaotic systems. This allows us to directly determine
critical exponents associated with the equilibrium QCPs in the
long time behavior of the local observables. Moreover, we
find that the simple time-averaged expectation of the string
operators reveal a much deeper connection with the prob-
ability of domain formation in the post-quench system. To
elaborate, the time-averaged projectors are nothing but the
late-time probability distribution of domains, thus enabling us
to perform a complete statistical analysis of polarized and do-
main formation, in the post-quench system. This connection
in turn, assigns a direct experimental meaning to the string
observables and at the same time shed light on the origin
of these sharp critical signatures in quenching experiments.
We find that not only does the domain statistics reveal the

position of equilibrium QCPs accurately, they also theoret-
ically explain the recent experimental findings [17] on a
quantum simulator [44].

To further probe the sensitivity of the results on the
choice of the initial state of the system, we analyze the long
time-averaged infinite temperature correlators of the string
observables. Particularly, we show that the time-averaged in-
finite temperature autocorrelation and out of time ordered
correlators (OTOC) also detect the equilibrium QCP sharply.
This establishes that the sharp signatures in string observ-
ables detecting equilibrium QCPs, are in general insensitive
to any specific choice of initial states in quenching experi-
ments. In recent times, infinite temperature OTOCs of local
observables have also become instrumental in the study of
information scrambling [45–47] and dynamical phases [36] in
chaotic many body systems. Furthermore, OTOCs have been
experimentally measured in ultracold atomic lattices through
various echo protocols [48–53]. As we demonstrate our ideas
through the experimentally accessible quantum Ising model
of spins [54], our claims are readily verifiable in state of the
art quantum simulators.

The paper is organized in the following sections: In Sec. II
we introduce the model system and elaborate on the quench-
ing protocol employed in the rest of the paper to demonstrate
the results. Section III contains a study of the complete an-
alytic structure of the time-averaged Loschmidt echo when
the system is quenched to a QCP in the integrable limit. In
Sec. IV, we define the local string operators and demonstrate
critical behavior of their long time average following both
integrable and chaotic quenches. In Sec. V, we proceed to
show that the time-averaged LE along with the local string ob-
servables follow appropriate scaling laws near the equilibrium
QCPs and calculate universal critical exponents characterizing
the QCPs. In Sec. VI, we probe the late-time statistics of
finite strings and show how it connects with recent experimen-
tal data on ultracold ion lattices measuring domain statistics
following a quench in interacting spin systems. Section VII
describes the infinite temperature two-time correlators of the
string operators as they develop sharp signatures at equilib-
rium QCPs, following both integrable and chaotic quenches.
In Sec. VIII we elaborate on the origin of the strong initial
state memory in string observables following ergodic evolu-
tion. Finally, we conclude in Sec. IX with a brief summary
of the important results and possible future directions of in-
vestigation. We further declare that everywhere in the paper
we will adopt the natural system of units unless otherwise
specified.

II. MODEL SYSTEM AND QUENCHING PROTOCOL

To demonstrate the efficacy of string operators and the
LE in capturing quantum critical physics in quenched sys-
tems, we use a ferromagnetic axial next-nearest-neighbor
(ANNNI) model [5], with nearest-neighbor interactions and
next-nearest-neighbor interactions, both ferromagnetic, and a
transverse external field h. Such a system having L spins can
be described completely by the many-body Hamiltonian

H = −
L∑

i=1

σ x
i σ x

i+1 − J2

L∑
i=1

σ x
i σ x

i+2 − h
L∑

i=1

σ z
i , (1)
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where σi represent Pauli matrices at the ith site. For numerical
advantage, we have used periodic boundary conditions, such
that σL+i ≡ σi. The line J2 = 0 in the parameter space is
the well-known integrable transverse field Ising model with
quantum critical points (QCPs) h = ±1, separating param-
agnetic and ferromagnetic phases in a thermodynamically
large (L → ∞) system. Interestingly, the system still hosts an
Ising critical line separating the ferromagnetic phase from a
paramagnetic phase in the plane of parameters J2 and h. For
perturbative integrability breaking strengths, the Ising critical
line is given approximately by a trancedental equation for
J2 < 0 and h (see Refs. [9,55]),

1 + 2J2 = h + J2h2

2(1 + J2)
. (2)

As one approaches the integrable point J2 → 0, the critical
point drifts towards the critical point of the transverse Ising
model, i.e., h = 1. The Ising phase transition is known to
reflect a spontaneous breaking of a global Z2 symmetry due
to spin inversion, in the ordered (ferromagnetic) phase ground
state. This allows the longitudinal magnetization density in
the ground state to serve as an appropriate order parameter,
which is nonzero in the ordered phase while vanishes in the
paramagnetic phase.

We analyze quench dynamics starting from an initial state
|ψ (0)〉 and inflict a sudden quench in the transverse field at a
time t = 0, thereby allowing the system to evolve with the fi-
nal quenched Hamiltonian. Following such a quench, the long
time average of local observables O in the thermodynamic
limit approaches the average given by the diagonal ensemble
(see Ref. [41]),

lim
T →∞

∫ T

0
dt 〈ψ (t )|O|ψ (t )〉 =

∑
α

|〈ψ (0)|φα〉|2 〈φα|O|φα〉 ,

(3)
where the states |φα〉 are the eigenstates of the quenched
Hamiltonian H . For nonintegrable quenches, it is also over-
whelmingly probable that the expectations 〈ψ (t )|O|ψ (t )〉
coincide with the diagonal ensemble average at almost all
times. Furthermore, because the system is ergodic, the eigen-
state expectation values of local observables 〈φα|O|φα〉 are
essentially given by corresponding microcanonical averages.
By the central limit theorem, the probabilities to occupy dif-
ferent energy states | 〈ψ (0)|φα〉 |2 are expected to be peaked
around mean energy, i.e., near Eα = E ≡ 〈ψ0|H |ψ0〉. From
this argument, any memory of the initial state except for the
total mean energy of the system and perhaps its variance,
determining the width of the energy distribution, should be
lost. However, we will show that for string observables these
simple considerations are not completely valid. Even though
in accordance with ETH, the mean state to state fluctuations of
these observables in nearby eigenstates decrease with system
size, we see a very rapid rise in their relative variance within
a narrow energy shell with increasing string size. These in-
creasing fluctuations prevent a purely thermal description of
comparatively longer strings and encode a persistent memory
of the initial state even after chaotic quenches. Because of
these large fluctuations, we further show that long string ob-
servables take comparatively longer to relax and have highly

FIG. 1. The rate function of the time-averaged Loschmidt echo
OL at the integrable point and in the limit of L → ∞ develops
nonanalyticities at equilibrium QCPs, in the thermodynamic limit as
a function of the quenched (final) transverse field starting from the
ground state of the integrable Hamiltonian H0.

oscillating late-time connected autocorrelation functions in
chaotic eigenstates.

III. TIME-AVERAGED LOSCHMIDT ECHO FOLLOWING
AN INTEGRABLE QUENCH

In this section, we discuss the complete analytic structure
of the time-averaged Loschmidt echo following a quench at
the integrable point. We start from the ground state of H0 ≡
H (J2 = 0, hi ) and quench the system at time t = 0 to a final
set of parameters H ≡ H (J2 = 0, h). Allowing the system to
evolve with the quenched Hamiltonian, we then probe the long
time-averaged LE,

L̄ = lim
T →∞

1

T

∫ T

0
dt |〈ψ (0)|ψ (t )〉|2. (4)

Expanding in terms of the eigenstates of the Hamiltonian
H |φα〉 = Eα |φα〉 and carrying out the integration one there-
fore arrives at (as usually we assume there are no extensive
degeneracies in the spectrum)

OL ≡ − 1

L
log L̄ = − 1

L
log

∑
α

|〈ψ (0)|φα〉|4. (5)

In Fig. 1 we plot OL as a function of h and observe that it
becomes nonanalytic at the equilibrium critical points, where
its first derivative with respect to h develops a discontinuous
jump.

In Appendix A we show that in the thermodynamic limit
Eq. (5) can be represented through the following contour
integral of the complex variable z = eik over the circle C ≡
|z| = 1:

OL = 1

2π i

∮
C

F (h, z)dz, (6)

where

F (h, z) = 1

z
log

[
1 − h2(z2 − 1)2

8z(h + z)(hz + 1)

]
. (7)
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FIG. 2. The positions of the poles z1 and z2 of the function ∂hF (h, z) [see Eq. (7)], which elucidate the analytic structure of the Loschmidt
echo OL in the thermodynamic limit. The arrows indicate the drift of the poles as one approaches the ferromagnetic phase from the
paramagnetic phase, i.e., as h decreases. The three panels correspond to an integrable quench to (a) h = 1.5 (paramagnetic), (b) h = 1 (critical),
and (c) h = 0.75 (ferromagnetic), starting from the ferromagnetic ground state at hi = 0. The unimodular circle C represents the contour of
integration employed in evaluating the derivative in Eq. (6).

To understand the origin of the nonanalyticity of OL it is easier
to analyze its derivative with respect to h:

∂hOL = 1

2π i

∮
C

∂hFdz. (8)

As evident from Eq. (7), the function ∂hF has simple poles
on the real axis at z1 = −1/h and z2 = −h, which cross at
the QCP h = hc = 1, as well as some additional poles, which
are not sensitive to hc. In Fig. 2 we show the movement of
these poles in the complex plane with the quenched field
h, near the critical point corresponding to the singularity
at hc = 1 and z = −1. The residues corresponding to these
poles are Res(z = z1) = −1/h and Res(z = z2) = 1/h (see
Appendix A for details). As h crosses hc the poles entering the
integration contour switch causing the integral to jump leading
to the cusp singularity in OL(h) shown in Fig. 1.

IV. TIME-AVERAGED EXPECTATION
OF LOCAL PROJECTORS

As discussed in Sec. I, it is in general difficult to experi-
mentally probe the LE in macroscopic systems. We therefore
proceed to define local scalable string operators Pn of finite
length n defined such that as n increases their expectation val-
ues Ln approach the Loschmidt echo. Specifically we define

Ln(t ) = 〈ψ (t )|Pn|ψ (t )〉 , (9)

where,

Pn = 1

L

L∑
i=1

1

2n

i+n−1∏
j=i

(
I j + σ x

j

)
. (10)

Clearly for n = L we recover the complete Loschmidt echo
for the fully polarized initial state corresponding to hi = 0,

LL(t ) = 〈ψ (t )|PL|ψ (t )〉 = |〈ψ (0)|ψ (t )〉|2. (11)

Note that one can add to Pn a similar operator projecting to the
left spin state composed of products of (Ii − σ x

i ).
Following an integrable quench (J2 = 0) at t = 0 starting

from the ground state at hi = 0 to h, we next analyze the long
time averages of the projectors Ln,

On = −1

n
logLn(t ), Ln(t ) = lim

T →∞
1

T

∫ T

0
dtLn(t ). (12)

According to Eq. (3) the function Ln(t ) can be expressed as
a weighted expectation value of the string operator Pn in the
eigenstates of the quenched Hamiltonian H . In Fig. 3(a) we
observe sharp nonanalyticities developing in O2, O3, and O4

in the thermodynamic limit, which we also compare to ex-
act diagonalization results in finite systems with numerically
accessible system sizes, obtained using the QuSpin package
[56,57]. Further, Fig. 3(a) also compares the infinite and finite
time averages of the observables Ln(t ) showing robustness
of the observed nonanalyticities to the duration of the time-
averaging window. Figure 3(b) shows the jump discontinuities
following critical quenches in the first derivative response
∂hOn for finite strings (see Appendix B for a detailed ana-
lytical derivation).

It is also evident that the sharp signatures detecting the
QCP in the string observables are not exclusive to inte-
grable systems. To demonstrate this, we numerically analyze
quenches to a nonintegrable Hamiltonian (J2 = 0.5) stating
from the same polarized initial state. In Fig. 4, we show the
results for On when averaged over sufficiently long times
and the full time-averaged Loschmidt echo corresponding to
n = L. Both the LE and the observable On develops a sharp
singularity at the transition point h = hc ≈ 1.6 for the chosen
parameters. We note that using the string observables, we are
able to accurately detect the corresponding position of the
QCP despite high energy dumped into the system during the
quench.
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FIG. 3. (a) The observables On develop nonanalyticities at quantum critical points, following a quench of the transverse field in an
integrable model in the thermodynamic limit (shown in dashed lines). The discrete points show the corresponding quantities in a system with
L = 16 spins, calculated using exact diagonalization The solid (hollow) symbols represent the diagonal ensemble-averaged (time-averaged)
quantities. To simplify calculations, only the even spin-parity sector has been considered and all time averaging has been performed up to
T = 30 starting from the ferromagnetic ground state at hi = 0. (b) Jump singularities at the critical point h = 1.0 in the first derivative of the
local observables On, following an integrable quench in the thermodynamic limit. Exact analytical calculations of the discontinuous jumps are
presented in Appendix B.

V. UNIVERSAL SCALING LAWS FOLLOWING CRITICAL
QUENCHES

Given the sharp behavior of string observables detecting
equilibrium criticality, it is natural to ask whether the time-
insensitive local probes also capture universal physics near
equilibrium QCPs following a quench. Starting with the long
time-averaged Loschmidt echo, we address this question by
studying how the string observables behave under scaling
transformations near critical quenches. Specifically, close to
the equilibrium critical point h = hc + δ, we estimate the sin-
gular part of the observable OL by a universal function under
scaling transformations δ → L1/νδ. Namely, in the finite-size
scaling regime (L1/ν |δ| � 1), the singular part of the time-
averaged LE is observed to scale as

|OL(hc + δ) − OL(hc)| ∼ L−α/ν
(L1/νδ), (13)

FIG. 4. The observables On for finite strings of length n in the
nonintegrable ANNNI model (J2 = 0.5) exhibit sharp transitions at
the Ising QCP (h ≈ 1.6) in a system of L = 16 spins. All the time
averages have been performed up to T = 30 following the quench
from a completely polarized initial state.

where ν and α are critical exponents and 
 is an universal
scaling function (see Appendix C for a detailed discussion on
the scaling form). In Fig. 5(a) we show a finite-size scaling
collapse following a nonintegrable and integrable quench,
respectively. In the finite-size scaling regime, the transition
in OL for different system sizes is seen to collapse near the
equilibrium critical point into a single function for the scaling
exponents ν = α = 1, thus verifying the scaling relation in
Eq. (13). We therefore find that the sharpness of the transition
detected by OL exhibit a universal approach to a true nonana-
lyticity as one approaches the thermodynamic limit.

Also, due to the emergence of a nonanalyticity at equi-
librium QCPs, the second derivative |∂2

δOL| diverges in the
thermodynamic limit. In the finite-size scaling regime, owing
to the scaling form in Eq. (13), we expect the second derivative
near the QCP to diverge as∣∣∂2

δOL

∣∣ ∼ L
2−α

ν �(δ1/νL), (14)

in the regime L1/νδ � 1, for some dimensionless scaling
function �(x) satisfying �(0) = const 
= 0. Therefore, for an
Ising critical point, the quantity |∂2

δOL| diverges polynomially
in the thermodynamic limit as∣∣∂2

δOL

∣∣ ∼ L�(Lδ), (15)

near the critical point. This scaling behavior has been verified
in Fig. 5(b), where the rescaled derivative response L−1∂2

δOL

when plotted against Lδ shows a good collapse near the criti-
cal point for different system sizes. We analytically derive this
scaling form for integrable quenches in Appendix C.

Moving on to the finite projectors Pn (n < L), due to the
introduction of another length scale n, we assume a modified
scaling ansatz near an equilibrium QCP in the limit n � L,

|On(hc + δ) − On(hc)| = n−α/ν�(n1/νδ), (16)

where � is the associated scaling function. Similar to the
finite-size scaling of the full projectors OL, in Fig. 6 we show
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FIG. 5. (a) Finite-size scaling of the observable OL when the av-
eraging is done over the diagonal ensemble, following an integrable
quench starting from the ground state at hi = 0. On choosing the
critical exponents to be ν = α = 1 [see Eq. (13)], all data points for
different L collapse into a single scaling function near the critical
point. (Inset) Zoomed-in image of the finite-size scaling collapse
near the critical point (L1/νδ � 1) for the same critical exponents.
(b) The second derivative of OL diverges with increasing system
size near the QCP. (Inset) Scaling collapse of the rescaled derivative
response L−1∂2

δ OL near the critical point [see Eq. (15)].

FIG. 6. The finite string observables On collapse near the equi-
librium QCP in the nonintegrable regime (J2 = −0.2) following a
quench from a completely polarized ferromagnetic ground state at
h = 0. The time averaging has been done over the interval [0, T =
30] in a chain of L = 16 spins. The exact critical point is at hc =
0.6393 as established in previous works using DMRG calculations
(see Ref. [55]).

that the data for On having different string sizes n, collapse
under scaling transformations with the exponents α = ν = 1
for strongly chaotic quenches. Again, we derive this scaling of
the observables with n in the integrable regime in Appendix B.
These scaling forms allow us to extract universal critical in-
formation following a quench using the string observables in
a scalable approach. Furthermore, this suggests that by mea-
suring string expectations accessible to measurements, which
are local in space and time, it is possible to accurately de-
termine the universality class of equilibrium QCPs in generic
quenching experiments. In Appendices D and E we show how
this scaling behavior is modified under stronger integrability
breaking. In particular, we show that these critical signatures
scale with both the system size and the string length and
gradually disappear in the thermodynamic infinite time limit
for finite n in agreement with ETH. Nevertheless, the scaling
given in Eq. (16) works very well even far away from integra-
bility if we preform very long but finite-time averages and one
can still extract very accurately the position of QCP even with
short strings in quenches to the strongly chaotic regime (see
also Fig. 16).

VI. STATISTICS OF FINITE STRINGS

To further assign an experimental relevance to the string
observables, we look for post-quench signatures of the critical
point in the statistics of local strings with a close connection
to recent experimental results. The string observables are very
natural to detect in local projective measurement schemes
typically used in various quantum simulators. For example
P3 in Eq. (10) measures the density of instances, where three
or more spins polarized along the x axis are detected next to
each other. Particularly, using site resolved florescence imag-
ing of trapped-ion lattices, Ref. [17] showed that it is indeed
possible to directly measure domain formation probabilities
in a post-quench many-body spin system. We numerically
simulate such quenching experiments and probe the connec-
tion of the proposed string operators with domain formation
probabilities.

The observable Ln(t ) as defined in Eq. (9) is the average
density of the projectors

Pi
n = 1

2n

i+n−1∏
j=i

(
I j + σ x

j

)
.

For translationally invariant states we are considering, this
average is nothing but the probability of having a string of
length n or more starting from any given site i and continuing
to the right of this site. Correspondingly L̄n defined in Eq. (12)
represents a time average of the probability of observing such
a string after the quench, which is also equivalent to the
probability of observing this string in the time-averaged post-
quench density matrix. We now show that the operators Pn

provide us with sufficient information to extract post-quench
domain statistics. For this purpose, it is convenient to intro-
duce the following notation:

L̄n = ρ(l+ � n), (17)

with ρ(l+ � n), as we just discussed, representing the late-
time probability of finding → − strings having length l+ = n
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FIG. 7. (a) For quenches into the paramagnetic phase both → and ←-polarized strings contribute equally after long times for L = 16
spins. The hollow (solid) symbols representing the single measurement probabilities L̄n (L̄−

n ), collapse for a particular string length n when the
quenched field lies in the disordered phase. The noise in the data near the critical point is a finite-size effect (see Appendix F). (b) The mean
longest size of domains after N measurements show a prominent dip precisely near the critical point in a system of size L = 16. (Inset) The
coefficient of variation of the maximum domain length from N = 10 uncorrelated measurement data showing maxima for a critical quench in
the nonintegrable setup. (c) Time-averaged probability distribution of domains of either polarization. The probabilities of formation of long
domains are smallest for the quench close to the critical point (green triangles) in a qualitative agreement with the experimental observations
of Ref. [17]. In all plots time averaging was done over the window of time T = 30 following the quench starting from the completely polarized
state |→→ ...〉 in the nonintegrable regime corresponding to J2 = 0.5.

or longer to the right (or to the left) of an arbitrary site [58].
This observation in turn implies that 1 − L̄n = 1 − ρ(l+ �
n) = ρ(l+ < n) is the probability of finding polarized strings
of length n or smaller. Therefore

ρ(l+ � n) = 1 − L̄n+1. (18)

Now consider N independent measurement sequences on the
system determining the time-averaged spin configurations fol-
lowing a sudden quench, as it was employed in the experiment
[17]. In this setting, we proceed to find the probability that the
longest → − polarized string starting at some fixed position,
say i = 0, observed after all such independent measurements
has a length n as

M+
n (N ) = ρ(l+ � n)N − ρ(l+ � n − 1)N

= (1 − L̄n+1)N − (1 − L̄n)N . (19)

It is easy to see that as expected

L∑
s=0

M+
s (N ) = 1. (20)

Similar to the distributions L̄n of →-polarized domains,
we now construct the post-quench distribution of ←-polarized
strings following a quench as L̄−

n . The probabilities L̄−
n are

simply given by time-averaged expectation of the strings,

P−
n = 1

L

L∑
i=1

1

2n

i+n−1∏
j=i

(
I j − σ z

j

)
. (21)

projecting onto ←-polarized clusters of length l− � n. Fol-
lowing Eq. (19), one can now proceed to define probability
distributions M−

n that the longest ←-string detected has a
length l− = n in the post quench state. In Fig. 7(a), we observe
such probability distributions L̄n and L̄−

n averaged over a long
finite-time window following a chaotic quench starting from

the completely polarized initial state |→→ ...〉. Interestingly,
in contrast to quenches into the ordered phase, h < hc where
there is a very large anisotropy in the occurrence of left and
right strings, for quenches into the paramagnetic phase h > hc

the isotropy is restored after long waiting times. At small am-
plitude quenches starting from a completely polarized ground
state |→→ ...〉 such anisotropy is not surprising as only large
domains of the same polarization are likely to appear (see
Appendix G). Interestingly, we find that the probabilities of
creating left and right domains meet exactly at the zero tem-
perature transition point despite pumping large energy into
the system during the quench and remain essentially identical
after that. The crossover between the anisotropic and isotropic
regimes is very even for nonperturbative integrability breaking
quenches and for short strings. We note that this behavior
of domain distributions is also consistent with recent studies
in quenched systems (see also [24]), studying the signatures
of QCP through finite but long-time behavior of single-spin
observables (see Appendix H).

Equipped with the independent distributions of detecting
polarized → / ←-domains, we next proceed to construct joint
distributions of detecting longest →-polarized string having
length l+ = n and longest ←-polarized string having length
l− = m in the late-time state,

M(n, m) = ρ(l+ � n ∩ l− � m) = M+
n M−

m . (22)

This in turn allows us to explicitly write down post-quench
probability distributions that the longest string observed after
N independent measurements has a length n as

Mn(N ) = (M+
n M−

n )N − (M+
n−1M−

n−1)N ,

irrespective of its polarization. We now find the mean longest
domain length observed after N independent measurements in

064105-7



BANDYOPADHYAY, POLKOVNIKOV, AND DUTTA PHYSICAL REVIEW B 107, 064105 (2023)

the post quench state as

nu
max =

L∑
s=0

sMs(N ). (23)

In Fig. 7(b), we show that the mean longest domain size
exhibits a minima close to the equilibrium QCP, which allows
for an accurately experimentally accessible determination of
the critical point in quenching experiments. In fact, such
minima of the mean maximum domain length near a critical
quench were recently observed in Ref. [17] using a quantum
simulator. The string observables therefore offer a compre-
hensive understanding of the recent experimental findings. At
the same time, the coefficient of variation/relative deviation
of the maximum domain length,

Var
(
nu

max

) = σ
(
nu

max

)
nu

max

, (24)

σ denoting the standard deviation of the longest domain
length after long times, also shows a sharp maxima when
the system is quenched to the critical point, reflecting large
fluctuations near critical quenches [see the inset of Fig, 7(b)].
In Fig. 7(c), we plot L̄n + L̄−

n defining probabilities of finding
strings of any polarization and of length n or longer. The
probabilities of large domains clearly reach a minimum for
quenches close to the ciritcal point (green triangles) again in
a qualitative agreement with the experiment [17]. Recently,
the domain statistics of polarized spins have also been seen
[35,36,59] to detect dynamical quantum phase transitions at
early times developing sharp cusp singularities. Our results
suggest that similar singularities near equilibrium QCPs, now
as a function of quench amplitude, develop in the long time
behavior of finite string observables.

VII. INFINITE TEMPERATURE UNEQUAL
TIME CORRELATIONS

Apart from the equal time expectations, we now proceed to
examine the various two-time probes constructed out of string
operators, which are manifestly insensitive to the choice of
the initial state in quenching setups. The infinite temperature
autocorrelation and OTOC of the string operators provide
a good testbed for this purpose, as they are experimentally
measurable in optical lattices and at the same time contain
no information of the initial state of the system. Particularly,
we consider the long time averages of the infinite temperature
autocorrelation and OTOCs,

Dn = −1

n
log lim

T →∞
1

T

∫ T

0
dt

1

2L
Tr[Pn(t)Pn(0)],

Cn = −1

n
log lim

T →∞
1

T

∫ T

0
dt

1

2L
Tr[Pn(t)Pn(0)Pn(t)]. (25)

Note that for extensive projectors, i.e., when the string sizes
span the complete chain, we recover the full Loschmidt echo
from these infinite temperature probes,

Tr[PL(t)PL(0)] = 〈ψ0|PL(t )|ψ0〉 = LL(t ),

Tr[PL(t)PL(0)PL(t)] = Tr[PL(0)PL(−t)PL(0)]

= 〈ψ0|PL(−t )|ψ0〉 = LL(−t ). (26)

FIG. 8. Logarithmic infinite temperature time-averaged OTOC
following a quench to a transverse field h starting from a com-
pletely polarized state |→→ ...〉 in the nonintegrable ANNNI model.
The OTOC is seen to develop a sharp transition at the equilibrium
critical point hc ≈ 1.6 for J2 = 0.5. (Inset) Sharp signatures in the
corresponding logarithmic autocorrelation function. In both the sim-
ulations, the time averaging has been done up to T = 20 in a chain
of L = 10 spins.

Also, for the local strings (n < L), the infinite-time av-
erages in Eq. (25) can be replaced by averages over all
eigenstates |φα〉 of the quenched Hamiltonian, such that

e−nDn = 〈φα|Pn|φα〉2, (27)

represents the second moment of the distribution of diagonal
matrix elements 〈φα|Pn|φα〉 over the spectrum of the quenched
Hamiltonian H . Equation (27) further reflects the fact, that the
averaged correlators are completely insensitive to both initial
state information and time. Similarly, the long time-averaged
OTOC in Eq. (25) reduces to a time-insensitive weighted
average over all eigenstates |φα〉,

e−nCn = 〈φα|Pn|φα〉 〈φα|P2
n |φα〉. (28)

In Fig. 8, we see that similar to On, finitely long time-
averaged correlations Cn and Dn develop sharp signatures
near the equilibrium critical point following a nonintegrable
quench. Particularly, the observables are seen to be sensitive
to even a small shift in the critical point due to an integrability
breaking perturbation. Physically the observables Cn(t ) and
Dn(t ) reveal a similar information as On but now here is no
dependence on the initial state. Indeed Pn(0) does a partial
projection to a polarized string and Pn(t ) measures the mem-
ory effect for this string observable. As with On we see that
the long time limit of this correlation function develop a very
sharp singularity with increasing string length corresponding
to the QCP, even though we are averaging over the infinite
temperature ensemble, which in itself does not distinguish
ground states from excited states.

VIII. THERMALIZATION AND PERSISTENT MEMORY
OF FINITE STRINGS

From the generic behavior of the distributions L̄n/L̄−
n and

the post-quench domain statistics, it is evident that string
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FIG. 9. (a) The distribution of diagonal matrix elements of the local projectors Pn, when plotted against energy density in the eigenspace
of a quenched chaotic ANNNI Hamiltonian, shows a diminishing contribution of excited states with increasing string lengths. Starting from
an initial ground state of the Hamiltonian [see Eq. (1)] for J2 = 1.0, h = 2, the system is quenched to J2 = 1.0, h = −2.5 in a chain of L = 16
spins. These quench parameters have been chosen such that the mean energy after the quench (marked by the vertical dashed line) lies near the
middle of the spectrum, where we have a sufficiently high density of states. (b) Mean state-to-state fluctuation of the operators Pn in nearby
eigenstates, averaged over 50% of the eigenstates centered about the mean energy after quench.

observables retain strong memory of the initial ground state
after long times even for a chaotic quench. In this section, we
attempt to understand this seemingly conflicting behavior of
such operators in light of the ETH, which on the contrary, sug-
gests that systems should reach thermodynamic equilibrium
only retaining their memory of the conserved energy (in the
absence of other conservation laws). We note that while ETH
is generally expected to apply to all local operators, its validity
to string observables was not analyzed in prior literature. It
is clear that in order to have long memory it is necessary
that these observables should have large fluctuations between
different eigenstates with similar energies. In what follows we
are going to address this question.

The approach of the local string projectors to the com-
pletely polarized state projector with increasing string length
can be seen to manifest in the eigenstate distribution of the
diagonal matrix elements (Pn)αα = 〈φα|Pn|φα〉. In Fig. 9(a),
we show the distribution of the diagonal matrix elements in
the eigenstates of a chaotic ANNNI Hamiltonian. As the string
length n increases, the operators quickly become localized
near the polarized state, reflecting how the probe Ln(t ) ap-
proach the full Loschmidt echo in quenching setups. Further
according to ETH, the expectation of local observables should
be smooth functions of energy when it is the only conserved
quantity. This implies that the state to state fluctuations be-
tween nearby eigenstates

F (n)
α = |(Pn)(α+1)(α+1) − (Pn)αα| (29)

should decay exponentially with the systems size: F (n)
α ∼

exp[−S(L)/2], where S is the entropy of the system.
In Fig. 9(b), we show the dependence of the mean fluc-

tuations F (n) on the system size. This mean is obtained
by averaging the differences F (n)

α over high-energy eigen-
states near the average energy E = 〈ψ0|H |ψ0〉, following the
quench. We see a clear exponential decay of F (n) with system
size irrespective of the string length. Moreover, while the

overall magnitude of fluctuations is strongly suppressed with
increasing n, the slope does not depend on n. Both observa-
tions are consistent with ETH [41,60,61] confirming that the
string observables indeed satisfy ETH.

We see that the strong memory effects of the initial state in
string observables are not coming from any ETH violations.
What happens instead is that for string observables their fluc-
tuations rapidly increase with n. To quantify this effect we
consider relative fluctuations of the diagonal matrix elements
of Pn averaged over a narrow energy window,

σ (n) =
√

Var[(Pn)αα]

|(Pn)αα| . (30)

The averaging is done in a finite-energy window [E −
δE , E + δE ] around the mean energy E . In quenching exper-
iments with a local Hamiltonian, the variance in energy after
quench usually scales as ∼√

L with system size. We therefore
choose the width of the energy shell to scale as δE ∼ √

L
while calculating fluctuations of the diagonal matrix elements.

We show σ (n) vs the string size n for three different system
sizes in Fig. 10. We see that these fluctuations rapidly increase
with n. This increase is consistent with the exponential scal-
ing. Moreover these fluctuations only weakly depend on the
system size as expected for local observables. Because in a
system with local interactions after a global quench energy
variance is extensive, large fluctuations of the string operators
allow for preserving sharp memory of the initial state for large
system sizes scaling exponentially with n.

In thermodynamic limit large fluctuations of observables
within a narrow energy window allow for very long relaxation
times, i.e., for very long lived nonequilibrium states [62]. To
explore this physics for string operators we analyze numeri-
cally their spectral function over high-energy eigenstates

| fn(Eα, ω)|2 =
∑

β 
=α | 〈φα|Pn|φβ〉 |2δ(ωαβ − ω)〈
φα

∣∣P2
n

∣∣φα

〉
c

, (31)
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FIG. 10. Relative fluctuation of the diagonal matrix elements of
string observables against string length n, within a small energy shell
of half-width δE = 0.1

√
L about the mean energy E . (Inset) The

relative fluctuations decay with system size very slowly with increas-
ing L indicating a much weaker dependence on system size than on
string length. The initial and final quenching fields were chosen to be
h = −2.2 and h = 1.8 respectively in the ANNNI Hamiltonian with
J2 = 1.0, such that E lies near the center of the spectrum.

where ωαβ = Eα − Eβ and we have used a Lorentzian filter
for the delta function δ(ω) → μ/[2π (ω2 + μ2)], such that
μ = 0.9ωmin where ωmin is the minimum level spacing. To en-
sure proper normalization of the spectral function, we divide
by the eigenstate fluctuations 〈P2

n 〉c = 〈P2
n 〉 − 〈Pn〉2, which is

equivalent to the spectral function summed over all frequen-
cies [63].

In Fig. 11 we plot the average spectral function | fn(ω)|2
over central 50% of the eigenstates in the nonintegrable
ANNNI model. It is seen that for finite strings the average
spectral function at low frequencies develop a uniform plateau

as predicted by the random matrix limit of ETH. However,
with increasing string length, the magnitude of the plateau
�(n, L) = | fn(ω → 0)|2 rapidly decreases, which is indica-
tive of forming a spectral gap characteristic of integrable
systems [64]. Further, the spectral weight of the string oper-
ators quickly approaches a sharply localized monochromatic
distribution at frequencies increasing with the string size. The
average spectral function is nothing but the Fourier transform
of unequal time connected autocorrelation functions of the
string operators [39,65],

| fn(Eα, ω)|2 = 1

4π

∫ ∞

−∞
e−iωt 〈φα|{Pn(t ), Pn(0)}|φα〉c〈

φα

∣∣P2
n

∣∣φα

〉
c

dt

(32)
where {.} is the anticommutator and

〈{Pn(t ), Pn(0)}〉c = 〈{Pn(t ), Pn(0)}〉 − 2 〈Pn(t )〉 〈Pn(0)〉 .

Thus, the spectral function encodes the real-time dynamics
of local observables and sets the relaxation time scale of
Pn in eigenstates of the chaotic Hamiltonian. The narrowing
of the spectral bandwidth with increasing string length seen
in Fig. 11 therefore suggests that the connected correlations
of long string operators show prominent and rapid late-time
oscillations rather than vanishing steadily due to loss of mem-
ory (see Appendix I). This in turn indicates that the string
observables indeed have a very long lifetime in chaotic states
as compared to single-site observables.

It is now evident that the projectors Pn have two distinct
properties, i.e., (i) with increasing string length they project
states onto the completely polarized state |→→ ...〉 and (ii)
in quenching experiments, they retain a strong memory of
the initial state even after sufficiently long chaotic dynamics.
Given this, it is natural to ask which of these features plays a
dominant role in capturing the equilibrium QCPs following a

FIG. 11. (a) The average spectral function of the string observables Pn, over central 50% of the eigenstates in the chaotic ANNNI Hamil-
tonian with J2 = 1 for L = 16 spins. The data shown has been averaged over 50 Hamiltonians with equispaced magnetic fields h ∈ [0.9, 1.1].
With increasing string length, the low frequency spectral function is seen to approach a highly localized distribution indicating late-time
oscillatory behavior of connected autocorrelation functions [see Eq. (32)]. At the same time the low frequency plateau �(n, L) = | fn(ω → 0)|2
characteristic of chaotic random-matrix behavior of the spectral function at late times rapidly goes down with the string size indicating a rapid
formation of the spectral gap. (b) The low frequency plateau of the spectral function for a particular string length rises slowly with increasing
system size in accordance with ETH. However, the high frequency peak is clearly visible for sufficiently long strings even with increasing
system size (inset). In panel (c), we see that while the low frequency plateau height is linearly dependent on system size consistent with
late-time diffusion (inset), the spectral gap forms exponentially fast with increasing string length.
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FIG. 12. (a) The quantity O(E ) (discrete symbols) against the quenched field h for different string lengths n. In contrast to the time-averaged
projectors On (solid lines), the single-eigenstate expectations O(E ) fail to detect the equilibrium QCP accurately. (Inset) The difference between
the mean energy after quench and energy E of the actual eigenstate chosen to evaluate O(E ). This difference is expected to decrease fast with
increasing system size. (b) The string probes Sn contrasted with the local projectors On for different string lengths n against the quenched field.
Although the probes Sn develop a maxima near the equilibrium QCP, unlike On they fail to approach any sharp singularity with increasing
string length. In both the panels the quenching simulation has been started from the polarized initial state |→→ ..〉 in a nonintegrable ANNNI
model (J2 = 0.1) of L = 16 spins and all time averages have been performed up to T = 30. The vertical dashed lines indicate the position of
the actual QCP in equilibrium.

quench. To address this question, we study the quantity

On(E ) = −1

n
log 〈φγ |Pn|φγ 〉 , (33)

where |φγ 〉 is an eigenstate of the chaotic ANNNI Hamilto-
nian H having energy E , which is closest to the mean energy
E after a quench. This quantity On(E ) being closest to the
typical value of On after quench, is not expected to contain any
information of the initial state whatsoever. In Fig. 12(a), we
contrast the behavior of On(E ) with the time-averaged probes
On following different quenches across the equilibrium QCP.
However, unlike the time-averaged local probes, we do not
observe any sharp signature in the quantity On(E ) detecting
the equilibrium QCPs. This suggests that the memory of the
initial state in a quench indeed plays an instrumental role in
capturing signatures of equilibrium criticality in the string
observables.

Let us note that while we focused on particular string ob-
servables, which are partial projectors into polarized strings,
some signatures of the zero temperature QCP can be seen in
other strings as well. For example, (see also Ref. [26]) we can
define a product of spin operators

Sn = 1

L

L∑
i=1

i+n−1∏
i

σ x
i (34)

and observe the time insensitive probe

∫n = −1

n
log lim

T →∞
1

T

∫ T

0
dt 〈ψ (t )|Sn|ψ (t )〉 , (35)

following nonintegrable quenches. In Fig. 12(b), we contrast
the late-time behavior of such observables with that of the
local projectors On after finite but sufficiently long time av-
eraging. The observables ∫n do indeed detect the equilibrium
QCPs having a similar dependence on the quenched field

as the probes On. However, unlike On, the observables ∫n

do not develop nonanalyticities remaining smooth even with
increasing string length.

IX. SUMMARY AND OUTLOOK

In summary, we studied local string observables as probes
of quantum phase transitions after quenching a system into
highly excited states. We particularly showed that one can
accurately determine both the position of a quantum critical
point and the associated universal critical exponents even
long after the system equilibrates into effectively a high-
temperature state. This analysis applies both to integrable and
ergodic systems satisfying the ETH. As we explain in this
paper, state to state fluctuations of local observables, which
vanish exponentially with the system size, do not prevent the
system from retaining memory of the initial state.

We first analyzed the long time-averaged Loschmidt echo
following a generic quench; its rate function develops sharp
nonanalyticities, which precisely detect QCPs of the equi-
librium system. Along with discontinuous jump singularities
in its derivative responses, the nonanalyticities of the time-
averaged LE can be explained by its topologically different
pole structure for quenches across the equilibrium critical
point in the integrable situation. Extending the connec-
tion of the nonanalyticities with equilibrium criticality, we
further proceed with a finite-size scaling analysis of the time-
averaged Loschmidt echo and find universal critical exponents
associated with the QCPs in integrable as well as noninte-
grable situations.

Furthermore, the Loschmidt echo can also be interpreted
as an expectation value of a particular string operator given
by a product of all the spins in the system. Such an oper-
ator is obviously completely nonlocal and is therefore hard
to measure. In order to connect with experimentally relevant
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observables, we then analyzed finite strings, i.e., operators
involving finite products of spins. Interestingly, such string
observables develop sharp signatures precisely at equilibrium
QCPs of the quenched system even when the string size is very
small. Furthermore, using these local observables, we are able
to extract critical scaling information and universal exponents
associated with equilibrium QCPs even after a long ergodic
time evolution.

The local string operators were also found to serve as
probability distributions of domain formation in the late-time
state of a quenched system. We analyzed such distributions
revealing an underlying memory of equilibrium critical in-
formation encoded in the post quench domain statistics of
generic quantum systems. Specifically, the mean longest do-
main length observed in the post-quench state, develops a
sharp dip precisely near critical points of the equilibrium
system. Our results explain recent experimental findings in
a trapped ion quantum simulator [17]. They also agree with
recent numerical studies [24,32] observing sharp features in
local single-site observables.

We also probed time-averaged versions of unequal time
infinite temperature correlations of the local string observ-
ables following a quench. The time-averaged autocorrelation
and infinite temperature OTOC of the string operators were
constructed such that they approach the long time-averaged
LE as the string size increases. Interestingly, similar sharp
features near equilibrium QCPs emerge in the infinite temper-
ature correlators in both integrable and chaotic spin chains.
Furthermore, these infinite temperature correlators do not de-
pend on any specific choice of initial states.

Finally, given the emergence of critical signatures follow-
ing a chaotic quench, it seems evident that despite an ergodic
evolution, the string observables retain strong memory of the
initial ground state after long times. In fact, we showed that
this persistent memory of the initial state plays a significant
role in sharply detecting the equilibrium critical points in
quenching experiments. We also showed that this memory
are encoded in large state-to-state fluctuations near the mean
energy after quench, which increase exponentially with the
string length. These large fluctuations in the string expecta-
tions, together with a very small value of the low-frequency
plateau of the spectral function ensure very slow thermal-
ization of sufficiently long string observables even when the
thermodynamic limit is approached. In turn these long re-
laxation times allow the strings to both retain the long-time
memory of the initial state and be very sensitive to the ground
state properties of the quenched Hamiltonian despite the sys-
tem being in a highly excited state after the quench. These
observations collectively lead to the possibility of a unified
approach in which the string observables serve as a scalable
probe to systematically access ground state information in
generic quenching experiments.

A recent theoretical study [66] has also reported the ob-
servation of Kibble-Zurek physics in the early time dynamics
of OTOCs (see also Ref. [18]), in quenched one-dimensional
conformal field theories (CFT). The precise connection be-
tween the late-time behavior of string observables with their
early-time growth and OTOCs is yet to be understood. An-
other intriguing area of study might be to probe the efficacy
of the string observables to retain critical information in

systems undergoing topological phase transitions. For exam-
ple, in short-ranged integrable systems, it has been reported
[67,68] that the residual energy following a quench might
become nonanalytic at critical points separating topologically
inequivalent phases in equilibrium. The exact connection of
the residual energy in such systems to the local string observ-
ables is yet to be studied.
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APPENDIX A: COMPLETE POLE STRUCTURE
OF THE TIME-AVERAGED LE

To exactly derive the sharp nonanalyticities of the time-
averaged quantity OL following critical quenches, we impose
periodic boundary conditions on the Hamiltonian Eq. (1) in
the integrable limit (J2 = 0). In the thermodynamic limit, one
can then rewrite the Hamiltonian in decoupled single-particle
momentum sectors as

H =
⊗

k

Hk, (A1)

where

Hk = �h(k).�σ ,

hx(k) = −2 sin k,

hy(k) = 0,

hz(k) = −2h − 2 cos k. (A2)

The eigenstates of the above Hamiltonian at any parameter
value can be expressed as Bloch states,

|+〉k =
(− cos θ/2

sin θ/2

)
, |−〉k =

(
sin θ/2
cos θ/2

)
,

such that cos θ = hz(k)√
hx(k)2 + hz(k)2

, (A3)

with eigenvalues ±| �h(k)| respectively. We start from the
ground state of Hi(h = hi ) and quench the system at time
t = 0 to a final set of parameters H (h) and probe the loga-
rithmic time-averaged LE, OL following the quench. Using
the translational invariance of the problem, one arrives at the
momentum resolved equivalent of Eq. (5),

OL = − 1

π

∫ π

0
dk log [ f+(k)2 + f−(k)2], (A4)
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where

f+(k) = |〈ψk (0)|+k〉|2,
f−(k) = |〈ψk (0)|−k〉|2, (A5)

which can be further simplified to

OL = − 1

π

∫ π

0
dk log

[
1 − 1

2
sin2 (θ − θi )

]
. (A6)

We solve the integral in Eq. (A6) by an analytic continuation
into the complex plane, i.e., we substitute z = eik , thereby
changing the measure of integration to dk = −iz−1dz. Using
the definition of the Bloch angles in Eq. (A3) we obtain an
integration over a closed contour C, which is a unimodular

circle about the origin z = 0,

OL = 1

2π i

∮
C

F (z)dz, (A7)

where

F = 1

z
log

[
h2(z2 − 1)2

8z(h + z)(hz + 1)
+ 1

]
. (A8)

We define the measure of a nonanalyticity of OL at the critical
point hc = 1 as

δ = ∣∣∂h+
c
OL − ∂h−

c
OL

∣∣, (A9)

such that any nonzero δ signals a breakdown of continuity of
∂hOL and hence, analyticity of OL. To analytically probe the
jump singularities in the derivative of OL at the equilibrium
QCP, we must therefore focus on the first derivative of the
function F with respect to the quenching field h. The deriva-
tive ∂hF is found to be a meromorphic function

∂hF = h(z2 − 1)2(hz2 + h + 2z)

z(h + z)(hz + 1)(h2z4 + 6h2z2 + h2 + 8hz3 + 8hz + 8z2)
, (A10)

with simple poles on the real axis at

z1 = −1

h
, z2 = −h, z3 = 0,

z4 =
√

2 − h2 − √
2h

√
3−2

√
2−h2

h2 − 1 − 2

h
,

z5 =
√

2 − h2 + √
2h

√
3−2

√
2−1h2

h2 − 1 − 2

h
,

z6 =
−√

2 − h2 − √
2h

√
2
√

2−h2+3
h2 − 1 − 2

h
,

z7 =
−√

2 − h2 + √
2h

√
2
√

2−h2+3
h2 − 1 − 2

h
. (A11)

Figure 13 shows all the poles of ∂hF when the transverse
field h lies in both the paramagnetic and ferromagnetic phase.
We note that the pole structure changes abruptly across the
quantum critical point h = hc = 1 resulting in a finite nonzero
value of δ and consequently a breakdown of analyticity in
OL(hc). In particular, as seen from Figs. 2 and 13, the poles
represented by z1 and z2 exchange their positions with respect
to the contour of integration C, as one moves across the critical
point. Similarly, calculating the residues of the relevant poles
contributing to the discontinues jump in the derivative ∂hOL

around the critical point h = 1 + ε (ε � 1), we obtain

Residue(z1) = −1 + ε; Residue(z2) = 1 − ε;

Residue(z3) = 1 − ε;

Residue(z5) =
{√

2, ε > 0,

−√
2, ε < 0;

Residue(z7) = −
√

2.

(A12)

To exactly calculate the discontinuous jumps in derivatives,
we apply Cauchy’s residue theorem,

δ =
∣∣∣∑ Residue

(
∂h+

c
F, zpara

in

) − Residue
(
∂h−

c
F, zferro

in

)∣∣∣,
(A13)

where zpara
in and zferro

in are the poles lying inside the contour C
in the paramagnetic and the ferromagnetic phase respectively
and the summation is over all the poles. Taking into consider-
ation the residue of the poles in Eq. (A12), we obtain in the
limit ε → 0,

δ = 2(
√

2 − 1) ≈ 0.82, (A14)

which agrees with the discontinuous jump found numerically
in Fig. 1. This explains the development of a jump discon-
tinuity (see Fig. 1) in the derivative of OL at the critical
points. When quenched on the critical point, the poles z1 and
z2 lie exactly on the contour, thus making the observable OL

nonanalytic.

APPENDIX B: CRITICAL BEHAVIOR OF LOCAL
PROJECTORS IN THE THERMODYNAMIC LIMIT

For shorter strings of length n < L, the long time averages
Ln can be evaluated exactly by solving the corresponding
fermionic problem for integrable quenches in the thermody-
namic limit. Through a Jordan-Wigner transformation, the
Ising Hamiltonian in Eq. (1) can be rewritten in terms of
noninteracting spinless fermions,

σ z
j = 2c†

j c j − 1,

σ x
i = (ci + c†

i )
∏
j<i

(1 − 2c†
j c j ), (B1)
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FIG. 13. The complete pole structure of the derivative ∂hF when analytically continued into the complex plane following a quench to
the (a) paramagnetic phase (h = 1.2) and the (b) ferromagnetic phase (h = 0.8), for J2 = 0. The color scheme represents the complex phase
whereas white and black colors represent poles and zeros of the function respectively. As is evident from both (a) and (b), the poles z1 and z2

exchange their positions with respect to the contour C as one moves across the critical point. At the critical point the poles are seen to lie on
the contour C, which in turn results in the nonanalyticity of OL at the critical point.

where the operators ci satisfy the standard fermionic algebra.
Depending of the fermion parity specified by the operator

P± = 1
2 (I ± �), where

� =
∏

j

(2c†
j c j − 1) =

∏
j

σ z
j , (B2)

it can be shown that the Hamiltonian can be decoupled into
two independent parity sectors,

H = P+HP+ + P−HP−. (B3)

To simplify calculations, we choose the initial state |ψ (0)〉 to
be the ground state at h = 0 in the even parity sector. Since,
the Hamiltonian H respects parity, the time-evolved state of
the system also resides in the same parity sector. Therefore,
the expectation value of all strings in Pn that do not conserve
parity vanish identically. It is for this reason that P1 has a
trivial time independent expectation throughout the evolution
and we do not consider it in this section. We now express the
local projectors in terms of transformed fermionic operators,

Ai = c†
i + ci and Bi = c†

i − ci. (B4)

In terms of the A and B fermions, the short projectors assume
the form

P2 = 1

22L

∑
i

1 + BiAi+1,

P3 = 1

23L

∑
i

1 + 2BiAi+1 + BiAi+1Bi+1Ai+2. (B5)

Due to the noninteracting nature of the Hamiltonian for J2 = 0
[see Eq.(1)], while evaluating the late-time averages in Ln,

we use Wick’s contraction to decompose longer correlations
to algebraic functions of two point correlations. Using this
prescription, it can be shown that in noninteracting systems,
for expectation values of strings containing generic fermionic
operators fi one obtains〈

l∏
i=1

fi

〉
= |Pf(M)| =

√
det M, (B6)

where M is an antisymmetric l × l matrix of two-point corre-
lations such that

Mμν = 〈 fμ fν〉 ; 1 < μ < ν < l. (B7)

We therefore evaluate the two point correlations comprising
of the A and B fermions in the asymptotic steady state, which
will in turn allow us to evaluate the finite projectors. Utilizing
the translational invariance of the system and the consequent
decoupling into conserved quasimomenta modes k, it can be
shown that the two point correlators in the steady state assume
the form

〈AmAm+ j〉 = 〈Bm+ jBm〉 = δ j0,

〈AmBm+l〉 = 1

2π

∫ π

−π

dke−ilke−iθk
1 − h cos k√

1 + h2 − 2h cos k
,

(B8)

where θ is the Bloch angle of the quenched Hamiltonian as
also mentioned in Eq. (A3). Also, to simplify calculations, we
have repositioned the momentum modes like k → π − k with
respect to that in Eq. (A2), such that the exact gapless critical
mode for the QCP h = 1 now lies at k = 0. To analytically
calculate the expectation of Pn, we recast the integrals in
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Eq. (B8) for quenches near the critical point h = 1 + δ,

〈AmBm−1〉 = 1

π

∫ π

0
C1(k, δ)dk, (B9)

where

C1(k, δ) = ((δ + 1) cos(k) − 1)2

δ2 + 2δ − 2(δ + 1) cos(k) + 2
. (B10)

Since, the integrand C1(k, 0) has a removable singularity at the
point k = 0, a power series expansion of C1 about δ = 0 does
not converge everywhere within the interval of integration. In
the first approach, to understand the nature of the function O2,
we evaluate the integral in Eq. (B9) exactly by an analytic
continuation into the complex plane. Specifically, we substi-
tute z = eik to obtain an integration over a closed contour C,
which is a unimodular circle about the origin z = 0,

〈AmBm−1〉 = 1

2π

∮
C

i(δ + z(δz + z − 2) + 1)2

4z2(−δ + z − 1)(δz + z − 1)
dz.

(B11)

Note that the integrand in Eq. (B11) is meromorphic with
poles at z = 0, z = 1 + δ and at z = (1 + δ)−1. Except the
pole at z = 0, only one of the other two lie inside the contour
of integration depending on the sign of δ. Therefore, by sum-
ming over nonzero residues from the poles, we evaluate the
correlations and hence the quantity O2, in the different phases
separately as

O2 =
{− 1

2 log
[

1
4 {1 + 1

2 (−δ2 − 2δ + 1)}] for δ < 0,

− 1
2 log

(
3
8

)
for δ > 0.

(B12)

It is then straightforward to estimate the jump discontinuity in
the first derivative of O2 exactly at δ = 0,

�2 = |∂δ+O2 − ∂δ−O2| = 0.33. (B13)

Similar to the correlation function 〈AmBm−1〉, we evaluate
the correlations contained in P3 to obtain

O3 =
{

− 1
3 log

[
1
4 (9 − 7δ(δ + 2))

]
for δ < 0,

− 1
3 log [9/4] for δ > 0.

(B14)

This gives the discontinuous jump in the first derivative of O3

at the critical point δ = 0 as

�3 = |∂δ+O3 − ∂δ−O3| = 0.51. (B15)

By performing higher order Wick’s contractions [see
Eq. (B6)], it is then possible to exactly calculate the late-time
expectation of Pn for arbitrary string lengths.

Another approach to probe the critical nature of the ob-
servables On is to regularize the integrals like in Eq. (B9) near
the critical point. To numerically evaluate the integrals, we
introduce an infrared cut-off ε,

〈AmBm−1〉 → 1

π

∫ π

ε

C1(k, δ)dk, (B16)

such that ε � |δ| and ε � n−1. The condition ε � |δ| ensures
that the length ε−1 is much larger than the correlation length
δ−1 near the critical point. In passing we note that a cut-off

scale ε near the exact critical point naturally arises when
dealing with finite-size systems as ε ∼ L−1. The condition
ε � n−1 in such a situation ensures that we are in a regime
where the observables scale with the shorter length n rather
than with ε−1 ∼ L. Following this regularization, the function
C1(k, δ) becomes well behaved everywhere within the inter-
val of integration [ε, π ]. To understand how the derivatives
diverge in lowest order, we then expand the function C1(k, δ)
as a power series near δ = 0 up to quadratic order and perform
the integral in Eq. (B16) to finally obtain

O2 ≈ −1

2
log

[
1

8

{
δ2

(
ε − π

2
+ cot

(ε

2

))

+ δ(ε + sin(ε) − π )

π
+ 3

}]
. (B17)

In Figs. 3(b) and 14(a), we numerically show the dis-
continuous jumps of the first derivative and divergences in
the second derivative of O2, O3, and O4 near the critical
point with a lower cut-off ε = 0.01. The rescaled derivatives
n−1∂2

δOn when plotted against nδ, collapse near the critical
point for different n, where 0 < ε � |δ|. The exact jump
discontinuities in the first derivatives �2 and �3 found in
this Appendix [Eq. (B13) and Eq. (B15), respectively] agree
very well with the jump discontinuities shown in Fig. 3(b).
Also, exactly at the critical point δ = 0, the second derivatives
diverge as

∂2
δO2 |δ=0 ∼ − 2

3ε
, (B18)

∂2
δO3 |δ=0 ∼ − 32

27ε
, (B19)

when the correlators are evaluated up to a quadratic order
in δ near δ = 0, thus reflecting the discontinuity of the first
derivatives at the critical point in the thermodynamic limit.

APPENDIX C: EMERGENCE OF FINITE-SIZE SCALING

In Appendix A, we discussed how in the thermodynamic
limit, the time-averaged Loschmidt echo OL following a sud-
den integrable quench reduces to the expression

OL = − 1

π

∫ π

0
dk log

[
1 − 1

2
sin2 (θ − θi )

]
, (C1)

where

cos θ = hz(k)√
hx(k)2 + hz(k)2

, (C2)

θi and θ being the Bloch angles representing the single particle
Hamiltonian Hk = �h(k).�σ [see Eq. (A2)], before and after the
quench, respectively. At the critical point (h = hc), the Bloch
angle θ is not well-defined. Rather, the angles θk=π,0(h = ±1)
assume indeterminate 0/0 forms in the thermodynamic limit.
Therefore, the integrand Eq. (C1) is ill defined at the isolated
critical points.

However, as argued in Sec. V, the observable OL for
finite systems, exhibit universal critical scaling near the equi-
librium critical point. To see the emergence of the scaling
theory, we proceed to analytically evaluate the integral in
Eq. (C1) following quenches in finite-size systems. As also

064105-15



BANDYOPADHYAY, POLKOVNIKOV, AND DUTTA PHYSICAL REVIEW B 107, 064105 (2023)

FIG. 14. (a) The divergence of the second derivative of the finite observables O2,O3, and O4 calculated numerically, in a thermodynam-
ically large integrable Ising chain near the critical point δ = 0, following a quench starting from the initial ground state at hi = 0, J2 = 0
to hf = 1 + δ, J2 = 0. The cut-off scale ε has been chosen to be 0.01 [see Eq. (B16) and the discussion following it]. (Inset) The rescaled
derivatives n−1∂2

δ On collapse into a single curve for ε � |δ| near the critical point. (b) The bare and (inset) rescaled derivatives n−1∂2
δ On of

the probes O2 and O3 constructed from the series expansions truncated up to quadratic order, such as in Eq. (B17) with ε = 0.01.

seen in Sec. III, the critical singularity drifts towards the mo-
mentum kc = π as one approaches the critical point hc = 1.
Expanding the integral in Eq. (C1) near the critical point we
obtain

OL ≈ − 1

π

∫ π

0
dk log

[
1 − 1

2
sin2

(
k

2

)
− δ

2
sin2

(
k

2

)

+ 1

8
δ2 tan2

(
k

2

)]
, (C3)

where h = 1 + δ. From Eq. (C3) it is evident that exactly
at the mode k = π , the term quadratic in δ in OL diverges.
This divergence in the second derivative reflects the emerging
nonanalyticity of OL near the equilibrium QCP. We therefore
estimate the singular part of OL by focusing on the contribu-
tion to the integral from the critical mode k = π .

However, since we are dealing with systems having a finite
size L, the integral in Eq. (C3) has to be approximated by a
finite Riemann sum in discrete momenta separated by dk ∼
π/L. With increasing system size, k assumes continuous val-
ues and modes near the critical mode k = π − ε, approach
k = π as ε ∼ L−1. Therefore, to study the singular part of
the integral in Eq. (C3), we expand it near kc by substituting
k = kc − ε. Further using ε ∼ L−1, we obtain in leading order
for the singular part,

Oc
L ≈ − 1

L
log

[
1

2
+ x2

2
+ O

( x

L

)]
, (C4)

where x = Lδ is dimensionless. For x = Lδ � 1, L being the
smallest length, we expect the emergence of finite-size critical
scaling in the singular part Oc

L with system size L. In this

(a) (b)

FIG. 15. (a) The distribution M+
1 for N = 10 uncorrelated measurement sequences against the quenched field h, for quenches into the

paramagnetic phase in a chaotic ANNNI model. The distribution is seen to approach a slowly varying function of the quenched field h with
increasing system size L (a darker color represents a higher system size). (b) The relative deviation of M+

1 from its mean decreases rapidly with
increasing system size irrespective of the number of measurements N . In both the panels the quench was started from a completely polarized
initial state |→→ ...〉.
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FIG. 16. The flow of the QCP hc(n, L) extracted from the second
derivatives of time-averaged [see Eq. (D1)] finite strings having
length n in finite systems of L spins. With increasing system size
the hc(n, L) drifts fast towards the QCP hc = 0.6393 obtained from
DMRG calculations (represented by the green horizontal line). The
horizontal dotted line represents the position of the QCP obtained
using a second order perturbation theory of the spectral gap vanishing
(see Ref. [55]). The dashed blue line corresponds to a highly nonlin-
ear numerical fit (∼L−2.75) of the convergence to the DMRG result.
The time averaging window has been chosen to be t ∈ [0, 100] start-
ing the quench from a completely polarized initial state |→→ ...〉,
with antiferromagnetic interaction strength J2 = −0.2.

scaling regime we can hence approximate

Oc
L ≈ − 1

L

(
x2 + x4

2
+ O(x6)

)
, (C5)

such that

Oc
L ≈ L−1
(Lδ), (C6)

where 
 is a scale invariant universal scaling function. This
validates our scaling ansatz in Eq. (13) for ν = α = 1. Also,

from Eq. (C4) it is clear that for sufficiently large but finite-
system sizes, the singular part approaches zero as the QCP
is approached with δ. Thus, exactly at the critical point in
finite systems, OL can be estimated by the analytic non-
singular part of the integral in Eq. (C1). Hence, to extract
the critical scaling in the singular part of the time-averaged
Loschmidt echo in Sec. IV, we show a scaling collapse of
L|OL(hc + δ) − OL(hc)| against Lδ near the QCP.

APPENDIX D: ACCURACY OF QCP DETECTION

In this Appendix we show that it is indeed possible to
extract equilibrium QCPs very accurately, using the dynamics
of even comparatively short string observables in a scalable
approach. Specifically, we compare our results with DMRG
(density matrix renormalization group) calculations that are
available in literature about the very precise location of QCPs
in the ANNNI model. For this purpose, we choose the inte-
grability breaking interaction to be antiferromagnetic (J2 < 0)
for which the location of the QCP is already well known [55]
through various numerical and experimental studies in the
past.

As we previously demonstrated, time-averaged local
strings develop sharp signatures near the equilibrium QCPs.
We therefore resort to their prominent second derivative re-
sponse near the QCP, which is expected to capture any
emerging nonanalyticity in On with a divergence,

Dn = −∂2
h log L̄n |hc

(D1)

to accurately extract QCPs following a quench. Similar to the
integrable situation, the quantity Dn develop very clear dips
near equilibrium QCPs even for strongly chaotic quenches.
We extract the critical magnetic field hc(n, L) from the
minima of the second derivatives with finite-system size
and string length, while keeping the time averaging win-
dow sufficiently large. Interestingly, we do not detect any

FIG. 17. (a) The second derivative response of the time-averaged distributions log L̄n develops a sharp dip near the critical point, which
diverges with increasing string length n. (b) The derivative minima at the QCP [see Eq. (D1)] scales linearly with string length and (Inset)
decreases with increasing system size (shown for string length n = 2). In both panels (a) and (b), the simulation has been done for L = 20
spins with a time averaging period of t ∈ [0, 100]. (c) The variation of the derivative dips is significantly slower with different system sizes
when the time averaging period is cut-off such that T ∝ L (here taken to be T = 5L) (demonstrated for n = 2). In all the panels the quench
was started from a completely polarized initial state |→→ ...〉 in the chaotic ANNNI model with J2 = −0.2. The vertical dashed lines indicate
the position of the critical field hc = 0.6393 according to DMRG studies.
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FIG. 18. (a) The second derivatives of the time-averaged distributions log L̄n develop a sharper dip near the QCP with increasing string
length n when the integrability breaking term J2 = 1.0 and (Inset) J2 = 0.5. The vertical dashed line corresponds to the extracted critical field
he

c = 1.5987 for J2 = 0.5. (b) On quenching the next-nearest interaction J2 while keeping the magnetic field fixed to h = he
c, the time-averaged

observables On as a function of the quenched interaction strength develop sharp signatures exactly at J2 = 0.5. (c) Scaling collapse of On with
string length [see Eq. (16)] and (d) finite-size scaling collapse of the time-averaged LE [see Eq. (13)] near the QCP against quenched field
for J2 = 0.5. In all the panels the simulation has been performed for L = 20 spins with the fixed time averaging period t ∈ [0, 100]. In all the
panels the quench was started from a completely polarized initial state |→→ ...〉.

significant flow of the extracted QCP with string size. How-
ever, the extracted QCP shows a rapid nonlinear flow (which
is possibly not universal) towards the accurate DMRG value
with increasing system size. In fact, for high enough system
sizes, hc(n, L) quickly converges very close to the DMRG data
for all finite string sizes (see Fig. 16).

We further probe how the amplitude of the second deriva-
tive signal scales with string length and system size for
sufficiently long time averaging. As seen in Fig. 17, for a
fixed time averaging window, the derivative peaks indeed de-
crease with increasing system size. However, at the same time,
they increase systematically and get sharper with the string
size. This indicates that longer strings can still approach the
nonanalyticity at the QCP precisely even though single-site
observables like magnetization might loose this information
eventually due to thermalization (see for example Ref. [69]).
Interestingly, in Fig. 17(c) we observe that that if the time
averaging period [0, T ] is cut-off to finite but long times,

such that T ∝ L, the variation in the derivative signals with
increasing L slows down significantly.

APPENDIX E: ROBUSTNESS AGAINST STRONG
INTEGRABILITY BREAKING

We further probe the fate of the nonanalyticities at the
equilibrium QCP for strongly chaotic quenches. Particularly,
in Fig. 18(a) we observe that the second derivative dips de-
tect the QCP accurately even when the integrability breaking
interaction is of the same order as other energy scales in the
system. Using a similar method described in Appendix D, we
extract the critical field for J2 = 0.5 to be he

c = 1.5987, which
is close to the approximately known value 1.6, as has been
verified through other methods in previous works (see for
example Ref. [18]). To further verify that we indeed have the
correct critical field, we perform a self-consistency check by
simulating an interaction quench starting from the extracted
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FIG. 19. (a) The observable On develop sharp signatures at the critical point even for a weakly chaotic quench with J2 = 0.1. (b) The
distributions L̄n detecting even a small shift in the critical point for J2 = 0.1. In both the panels the quench was started from a completely
polarized initial state |→→ ...〉 in a chain of L = 16 spins. The vertical dashed line represents the critical point hc ≈ 1.14 obtained from the
analytical perturbative expression in Eq. (2).

critical field he
c. By doing so, we expect a clear nonanalyticity

in the observables On as a function of the quenched interaction
J2 near the accurately known critical value Jc

2 = 0.5, corre-
sponding to the critical field hc. In Fig. 18(b) we demonstrate
that this is indeed what we obtain following an interaction
quench.

Furthermore, in Fig. 18(a), it can be seen that though
for very short strings the derivative dips broaden, making
it difficult to extract the QCP, the signal becomes sharper
with increasing string length for a fixed system size and
time averaging window. This clearly demonstrate the advan-
tage of using string observables to detect QCP in strongly
chaotic systems over single-site observables. This is par-
ticularly interesting as measuring these string observables
introduce no additional experimental challenges over single
site observables in quantum simulators (as has been already
demonstrated in Ref. [17]). In Figs. 18(c) and 18(d) we further
verify the scaling of the time-averaged observable On for local
strings with string size n and the finite-size scaling of the
full LE, respectively, near the QCP in the limit of strongly
nonintegrable quenches.

We further emphasize that the string observables also ac-
curately detect any small shift in the critical point, which we
demonstrate using weakly nonintegrable quenches in Fig. 19
and compare with the perturbatively obtained critical point in
Eq. (2).

APPENDIX F: SUPPRESSION OF NOISE
WITH INCREASING SYSTEM SIZE

In Sec. VI, we noted that the time-averaged domain dis-
tributions in the paramagnetic phase changes very slowly
with the quenched field h, apart from small fluctuations [see
Eq. (19) and Fig. 7]. We argue that this noise in the nu-
merical data, particularly for quenches into the disordered
phase, is due to a finite-system size. In this regard, Fig. 15(a)
shows that for quenches into the paramagnetic phase, the long
time-averaged distribution M+

1 after N = 10 uncorrelated
measurement sequences, gradually approaches a slowly vary-
ing function of h with increasing system sizes. Furthermore,
the relative deviation of M+

1 from its mean over different

quenched fields in the disordered phase

σ [M+
1 ] =

√
Var[M+

1 ]

M+
1

(F1)

decreases fast with increasing system size [see Fig. 15(b)]
regardless of the number of measurements N . Thus, in the
thermodynamic limit, the functions M+

n indeed approach a
smooth distribution with the quenched field in the paramag-
netic phase. This is also shown for an integrable quench in the
thermodynamic limit in Fig. 3(a).

APPENDIX G: OVERLAP OF A POLARIZED INITIAL
STATE WITH THE POST-QUENCH STATE

In connection to our discussion in Sec. VI, in Fig. 20
we calculate the overlap between the complete initial and
time evolved states lim

t→∞ | 〈ψ (0)|ψ (t )〉 |2 with respect to the

FIG. 20. Overlap of the polarized initial state with the late-
time state following a quench in the nonintegrable ANNNI model
(J2 = 0.1) starting from a completely polarized state |→→ ...〉 to a
transverse field h in a system consisting of L = 20 spins for T =
30. (Inset) The corresponding distribution following an integrable
quench. The vertical dashed lines indicate the analytical position of
the critical point in both the plots.
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FIG. 21. Time-averaged expectation of polarized single-spin
projectors with respect to the quenched transverse field h, averaged
up to T = 30 following a quench in the chaotic ANNNI model (J2 =
0.1). (Inset) The time-averaged longitudinal magnetization density
vanishes following quenches into the disordered phase. The time
evolution was started from a polarized unentangled initial |→→ ...〉,
in a system consisting of L = 18 spins.

quenched transverse field following both nonintegrable and
integrable quenches. As seen in Fig. 20, the completely po-
larized initial state has a significant overlap with the late-time
post-quench state for quenches in the ferromagnetic phase but
the overlap becomes negligibly small following quenches into
the paramagnetic phase. It is, however, important to note that
at some finite time after quench, the single-shot distribution
of larger domains can entail comparatively bigger temporal
fluctuations as suggested from long relaxation times of longer
string operators in Sec. VIII.

APPENDIX H: TIME-AVERAGED LOCAL
MAGNETIZATION

As argued in Sec. VI, unlike quenches into the ordered
phase, following quenches into the paramagnetic phase, do-
mains of both polarizations contribute equally in the long time
state. This can be explicitly seen by observing the behavior of
finite but long time-averaged local magnetization following a
quench (see also Ref. [24,32]). In Fig. 21 we demonstrate this
effect for a perturbative integrability breaking quench. We see
that the time-averaged expectation of single-spin projectors
L̄1 (L̄−

1 ) into local → (←)-spin polarizations, collapse into a
single curve following quenches into the paramagnetic phase.
This directly leads to the vanishing of local magnetization
density,

M(h) = L̄1 − L̄−
1 , (H1)

FIG. 22. The connected autocorrelation function against time t
of string observables averaged over 20 eigenstates about the center
of the spectrum of the chaotic ANNNI Hamiltonian H with J2 =
h = 1 for L = 14 spins. After long times, longer string operators
show faster oscillations with increasing amplitudes, indicating that
they have comparatively longer lifetimes as compared to single-site
observables. (Inset) The time-averaged fluctuations for long string
observables increases exponentially with string length.

after finite but sufficiently long times following a weakly
chaotic quench into the paramagnetic phase.

APPENDIX I: RELAXATION DYNAMICS
OF STRING OPERATORS

In Sec. VIII we observed that the low frequency spectral
function of string operators approaches a sharply peaked dis-
tribution with increasing string length. This suggests late-time
oscillations in their real-time connected correlation functions
about zero [see Eq. (32)], in an eigenstate |φα〉,

Cα
n (t ) = 1

2

〈φα|{Pn(t ), Pn(0)}|φα〉c

〈φα|P2
n |φα〉c

. (I1)

In Fig. 22 we see that this is indeed what happens. Particu-
larly, we plot the average connected correlation function Cn(t )
over a few central eigenstates of the chaotic Hamiltonian. To
further quantify the late-time oscillations in the connected
correlations, we calculate the variance,

�Cn =
√

C2
n − Cn

2

Cn
, (I2)

where the bar (.) represents time averaging. We find that for
long string operators, the fluctuations increase almost expo-
nentially with string length.
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