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Melting in the deep rocky portions of planets is important for understanding the thermal evolution of these
bodies and the possible generation of magnetic fields in their underlying metallic cores. But the melting tempera-
ture of silicates is poorly constrained at the pressures expected in super-Earth exoplanets, the most abundant type
of planets in the galaxy. Here, we propose an iterative learning scheme that combines enhanced sampling, feature
selection, and deep learning, and develop a unified machine learning potential of ab initio quality valid over a
wide pressure-temperature range to determine the melting temperature of MgSiO3. The melting temperature
of the high-pressure, post-perovskite phase, important for super-Earths, increases more rapidly with increasing
pressure than that of the lower pressure perovskite phase, stable at the base of Earth’s mantle. The volume of
the liquid closely approaches that of the solid phases at the highest pressure of our study. Our computed triple
point constrains the Clapeyron slope of the perovskite to post-perovskite transition, which we compare with
observations of seismic reflectivity at the base of Earth’s mantle to calibrate Earth’s core heat flux.
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I. INTRODUCTION

Cosmic abundances, stellar spectroscopy, observations of
polluted white dwarfs, and mass-radius relations point to-
wards the abundance of planets in our galaxy with Earth-like
compositions, with a mantle dominated by the MgSiO3 com-
ponent (∼70% in the case of Earth) and an iron-rich core, and
masses similar to or greater than that of Earth (1-10 Earth
masses) [1,2]. Studies of planetary accretion and thermal
evolution suggest that these bodies may have begun in a com-
pletely molten state and that mantle and core are still partially
molten after billions of years [3–6]. The melting temperature
of MgSiO3 exerts a first-order control on thermal evolution
because of the large change in viscosity across the melting
transition, which sets the time scale for thermal evolution. The
density contrast between liquid and solid is also important
because this determines whether crystals freezing out of a
deep molten portion of a planet sink or float, setting the vector
of chemical evolution [7].

The melting temperature of MgSiO3 has therefore attracted
considerable attention, yet no consensus exists, in part be-
cause of the experimental challenges at very high pressure
[8–11]. While melting of the bridgmanite phase has received
the most attention, melting of its high-pressure polymorph–
post-perovskite–is also important because this is the stable
crystalline phase at pressures greater than 140 GPa (nearly
coinciding with the pressure at the base of Earth’s mantle) to
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pressures as high as 750 GPa [12] (the pressure at the base of
the mantle in a 5 mass super-Earth). The melting temperature
also constrains the triple point at which all three phases are
stable (bridgmanite, post-perovskite, liquid) and therefore the
Clapeyron slope of the solid-solid transition, which is ob-
served via seismic reflection at the base of Earth’s mantle [13].
The Clapeyron slope of the solid-solid transition is also very
uncertain at present, leading to large uncertainties in the heat
flux from Earth’s core [14], the existence of an active dynamo
to generate the magnetic field, and the habitability of planets.

Simulation of the MgSiO3 system at deep Earth and super-
Earth conditions presents many challenges. Among these are
the subtle energetics of structurally similar phases and the
nature of the bonding, which is dominantly ionic, but may
also include covalent and metallic contributions, which may
account for the discrepancy of previous attempts to simulate
melting in this system on the basis of empirical potentials
[15–17]. The situation points towards density functional the-
ory (DFT) as an accurate means of representing the energetics
of this system that makes no a priori assumption about the na-
ture of bonding. However, DFT is very costly, and melting is a
rare event in standard molecular dynamics simulations, which
is why there have been no ab initio determinations of the
melting temperature. The solid-liquid two-phase coexistence
simulation has been shown to yield robust results for many
simpler materials [18–20]. However, the two-phase method
requires a large system size to stabilize the coexistence, and
very long runs, thus rendering this method computationally
demanding or even impossible in the context of the DFT.

Machine learning potentials (MLPs) are an emerging ap-
proach to atomistic simulations that combines, in principle,
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ab initio accuracy, with the ability to simulate large sys-
tems for a very long time [21,22]. Therefore, MLPs are well
suited to perform two-phase coexistence simulation and study
melting behavior. However, developing a robust MLP of a
three-component system of multiple phases over a wide range
of pressure and temperature is very challenging [23] and
has not yet been attempted. Machine learning potentials are
generally trained on DFT results for a finite set of config-
urations, for example from an ab initio molecular dynamics
simulation, but there are three difficulties. First, the range of
thermodynamic conditions sampled by a molecular dynam-
ics simulation is narrow, necessitating multiple simulations
covering the pressure-temperature range of interest. Second,
in any one of these simulations, only one phase will be
sampled, since phase transitions are rare events, biasing the
MLP towards that phase. Third, transition states, crucial for
capturing the physics of the solid-liquid interface are transient
and therefore rarely encountered.

We have overcome these challenges by combining en-
hanced sampling of configuration space [24] with the deep
learning algorithm [22]. The enhanced sampling is driven by a
carefully designed set of collective variables (CVs) to capture
configurations corresponding to multiple phases, two-phase
interfaces, and rare transition states. These methods have
previously been used to study phase transitions in simpler sys-
tems over much narrower ranges of pressure and temperature
[23,25]. We develop a unified machine learning potential that
encompasses the physics of the three phases of interest over a
wide range of pressure and temperature.

II. BUILDING THE MACHINE LEARNING POTENTIAL

A machine learning potential is a nonparametric repre-
sentation that approximates the Born-Oppenheimer potential
energy surface to arbitrary accuracy. In our approach, the
machine learning potential is trained on a set of configurations
drawn from multithermal and multibaric (MTMP) simulations

[24], which are used to efficiently sample multiphase config-
uration space. The key to driving the sampling is the design
of an appropriate CV that captures key aspects of the struc-
ture. We use an iterative learning scheme to efficiently select
distinct samples from the molecular dynamics trajectories.
We have found that efficient training of the machine learning
potential is greatly facilitated by performing the underlying ab
initio calculations at very high precision.

A. Multithermal-multibaric simulation

The MTMP simulation is an enhanced sampling technique
designed to sample uniformly in energy and volume simulta-
neously by taking the intervals of temperature and pressure as
inputs. It is based on variationally enhanced sampling (VES)
[26], where a functional of the bias potential V (s) is intro-
duced as

�[V (s)] = 1

β
log

∫ dse−β[F (s)+V (s)]

∫ dse−βF (s)
+ ∫ dsp(s)V (s), (1)

where s is a set of CVs that are a function of the atomic
coordinates R; β = 1/kBT is the inverse temperature with
kB and T the Boltzmann constant and temperature, re-
spectively; F (s) is Helmholtz free energy with F (s) =
−1/β log ∫ δ[s − s(R)]dRe−βU (R) where U (R) is the inter-
atomic potential; and p(s) is a preassigned target distribution.
This functional �[V (s)] is guaranteed to be convex and has a
stationary point at

V (s) = − lnp(s)

β
− F (s). (2)

In this way, one transforms the problem of modifying
the Hamiltonian to an optimization problem given the target
distribution p(s). To generate a multithermal-multibaric en-
semble at the pressure and temperature intervals of P1 < P <

P2 and β1 > β > β2, respectively, one chooses the potential
energy E = U (R) and the volume V as CVs to perform a VES
simulation with the following target distribution:

p(E ,V ) =
{

1
�E ,V

, if there is at least one β and P such thatβFβ,P(E ,V ) < ε

0, otherwise
, (3)

where ε/β is a predefined energy threshold. The value of
ε/β is set according to the nucleation/melting energy barrier
between the solid and liquid states. In practice, we have per-
formed VES simulation using sx as CV to roughly estimate
the energy barrier, and ε/β should be larger than the energy
barrier.

We used PLUMED 2 [27] with variationally enhanced
sampling module and LAMMPS [28,29] to perform the
multithermal-multibaric simulation on systems of MgSiO3

consisting of 160 atoms. The bias potential was constructed
using VES with the energy E, the volume V and sx [Eq. (4)]
as CVs. The basis sets of the bias potential are Legen-
dre polynomials of order 8 for each CV. As a result, there
are 729 variational coefficients to be optimized. The inte-
grals of the target distribution were performed on a grid
of size 40 × 40 × 40. Multiple MTMP runs with a pres-

sure interval of 20 GPa are performed. For instance, in the
temperature range of 3500–5000 K and pressure range of
40–60 GPa, the intervals where the polynomials were defined
are −108000 < E < −9500 kJ/mol, 1120 < V < 1480 Å3,
−200 < sx < 3000, and the exploration threshold ε/β is set to
150 kBT. To improve computing performance, the target dis-
tribution was discretized on a grid of dimensions 40 × 40 ×
40 and smoothed using Gaussians with σE = 200 kJ/mol,
σV = 0.05 nm3, and σsx = 2. The coefficients of the bias
potential were optimized every 500 steps using the averaged
stochastic gradient descent algorithm with a step size of μ =
10 kJ/mol.

B. Collective variables

For the CV, we use the structure factor, which was
shown to be an effective CV to drive the first-order phase
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FIG. 1. Simulated structure factors (i.e., diffraction intensity) of bridgmanite (a) and liquid. (a) Schematic illustration of the crystal structure
of bridgmanite, where the orthorhombic unit-cell is indicated by solid box. (b) and (c) Projected crystal structures of bridgmanite in the x-y
and x-z planes, respectively. (d) and (e) display the simulated structure factors of bridgmanite and liquid from the three-dimensional and
two-dimensional perspectives, respectively. The components of the collective variable, in which the descriptors, components of the collective
variable sx , are highlighted with black arrows. The corresponding planes of the two-dimensional descriptors are denoted in (b) and (c). The
subscript i (e.g., Mg, Si) indicates that only element i is taken into accounts in the calculations.

transition in simpler systems [30]. In our more complex sys-
tem, we found it essential that the CV contain information
from partial structure factors at multiple scattering vectors in
order to effectively differentiate bridgmanite, post-perovskite,
and liquid as summarized in Fig. 1.

The collective variable sx to drive the phase transition be-
tween bridgmanite and liquid is a linear combination of seven
descriptors as

sx = s3D
111Mg

+ s3D
111Si

+ sxy
110Mg

+ sxy
210Mg

+ sxz
002Mg

+ sxy
110Si

+ sxy
210Si

+ sxz
002Si

, (4)

in which the Debye form of structure factor is employed to
calculate each component, i.e., s3D

hkl , sxy
hkl , and sxz

hkl are defined
below. Due to the complexity of the system, the contribution
of Mg and Si atoms from the three-dimensional (3D) and
two-dimensional (2D) in the x-y and x-z planes are counted
separately (Fig. 1) following Ref. [31]. The CV to drive the
phase transition between post-perovskite and liquid is con-
structed following the same procedure. For simplicity, sx is

rescaled to the range of 0 to 1, in which 1 refers to perfect
solid state and 0 refers to disordered state with lowest structure
factor intensities.

The first two descriptors correspond to the first main peak
intensities of the structure factors of Mg and Si atoms, respec-
tively, and are calculated with the Debye scattering function:

s3D
hkl = 1

N

N∑
i=1

N∑
i=1

fi(q) f j (q)
sin(Q · Ri j )

Q · Ri j
w(Ri j ), (5)

in which q is the scattering vector, hkl refers to the Miller
index of bridgmanite, fi(q) and f j (q) are the atomic scattering
form factors and Ri j is the distance between atoms i and j. A
window function w(Ri j ) = sin(Q·Ri j/Rc )

Q·Ri j/Rc
is used to get a smooth

behavior of the structure factor; Rc (= 16 Å) refers to upper
limit distance.

The descriptors sxy
110Mg

, sxy
210Mg

, sxy
110Si

, sxy
210Si

correspond to the
intensities of the two main peaks of the structure factor of one
slice layer which is projected into the x-y plane, which are
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given by

sxy
hkl = 1

N

N∑
i=1

N∑
i=1

fi(q) f j (q)J0
(
Q · Rxy

i j

)
wxy

(
Rxy

i j

)
wz

(
Rz

i j

)
,

(6)

in which J0 is the 0th order of the first kind Bessel function,
Rxy

i j is the distance between atoms i and j in the x-y plane;

wxy(Rxy
i j ) = 1

1+e
σ (Rxy

i j −R
xy
c )

refers to a switching function; and Rxy
c

(= 10 Å) is the distance cutoff. In addition, only atoms within
a distance cutoff Rz

c (= 3.5 Å) along the z direction are taken
into account, and wz(Rz

i j ) = 1

1+e
σ (Rz

i j −Rz
c ) refers to a switching

function to make the descriptor smooth.
Similarly, descriptors sxz

Mg and sxz
Si are calculated as

sxz
hkl = 1

N

N∑
i=1

N∑
i=1

fi(q) f j (q)J0
(
Q · Rxz

i j

)
wxz

(
Rxz

i j

)
wy

(
Ry

i j

)
,

(7)

where Rxz
c and Ry

c are set to 10 and 5.2 Å, respectively.
In order to validate the sampling effectiveness of such

a CV [Eq. (4)], we have further analyzed the local atomic
environment of the configurations with a short-range order
parameter. Here we adopted an orientationally targeted order
parameters [32] building on the smooth overlap of atomic
positions (SOAP). The local environment around an atom is
denoted as χ , and the associated local density is written as

ρχ (r) =
∑
i∈χ

e
−|ri−r|2

2σ2 , (8)

in which i runs over the neighbors in the environment χ , ri are
the coordinates of the neighboring atoms relative to the central
atom, and σ 2 is the variance of the Gaussian functions. Here
we set σ to 0.5. In order to measure the difference between the
environment χ and χ0 of the reference structure that contains
n reference positions, here the perfect crystal phase is used as
the refence structure. Importantly, the three element Mg, Si,
and O all have unique local environments. The similarity of
two environments are compared by

kχ0 (χ ) =
∫

drρχ (r)ρχ0 (r). (9)

A spherical average over all the possible orientations of
the refence χ0 is then performed to get the SOAP kernel. As
the orientation of the refence χ0 is fixed, the similarity can be
trivially performed and normalized to

k̃χ0 (χ ) = kχ0 (χ )

kχ0 (χ0)
= 1

N

∑
i∈χ

∑
j∈χ0

e
−|ri−r0

j |
2

4σ2 , (10)

where N is the atom number in the configuration. Such a
CV is a per atom crystallinity metric of the specific phase
considered.

C. Iterative learning scheme

Due to the vast pressure and temperature range targeted
and the complex nature of MgSiO3 system, we use an iter-
ative training scheme to train and gradually refine the MLP
(Fig. 2). Here, one iteration means training a new MLP with

Initial dataset for liquid phase only

Train a MLP

MPMT simulation at  certain P/T interval

Selet a subset of size N with PCA analysis

DFT calculation of subset selected

Select a subset of size M 
by comparing MLP and 

DFT results

if M>0

M=0

All target P/T covered?
No

Yes

Final MLP

Selet a subset of size N with PCA analysis

DFT calculation of subset selected

FIG. 2. Flowchart of the iterative training scheme. (1) We first
build an initial dataset for liquid phase only and train a preliminary
MLP as reported in our recent study [33]. Liquid, as a disordered
phase, may encompass some of the local environments of the solid
phases, and thus may serve as a good starting point for generating
a unified MLP for both solid and liquid phases. (2) Multithermal-
multibaric (MTMP) simulations are performed with the MLP using
LAMMPS interfaced with PLUMED 2. Here, PLUMED 2 is used to
calculate the CVs and implement the enhanced sampling method.
The target pressure and temperature ranges are very large in this
study, making it difficult to cover in one MTMP simulation. We find
that MTMP simulations with ∼20 GPa and ∼2000 K intervals yield
good convergence and can sample the phase transition sufficiently.
As a result, the target P/T ranges are divided into 20 GPa and 2000
K bins along the melting curves of bridgmanite and post-perovskite
[4,34]. We gradually update the P/T intervals with the iteration. (3)
The resulting trajectories are saved every 500 time steps. The saved
frames are converted to design matrices based on the smooth overlap
of atomic positions descriptor [35]. We then perform principal com-
ponent analysis on these design matrices and select the candidate
configurations using the farthest point sampling technique [36,37].
The size of candidate configurations N is large at first for a few
iterations and gradually decreases at later iterations. Specifically,
N = 1000–2000 for the first two iterations, N = 50–100 for the
rest of iterations. (4) The selected frames were recalculated with
DFT. The resulting energies and forces, are compared with the MLP
predicted ones. For the first three iterations, the configurations with
both energy difference >15 meV/atom and atomic forces difference
>0.5 eV/Å are selected. For the rest of iterations, we relax the se-
lection criteria to energy difference >5 meV/atom and atomic forces
difference >0.25 eV/Å. The size of the selected configurations in
this step is M. We emphasize the selection criteria here is unlikely
to be universal for all other systems but the principle that relaxing
the selection criteria with iterations should apply. (5) The selected
configurations will be combined with the initial dataset to train a
new MLP. We re-iterate above steps until we cannot select frames
in step (4) (i.e., M = 0) and all the target pressures and temperatures
are covered by MTMP simulations in step 2).
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(a) (b)

FIG. 3. Convergence tests of total energy (a) and pressure (b) with varying energy cutoff (ENCUT flag in VASP) for 32 MgSiO3

bridgmanite at static condition. An energy cutoff of 800 eV is sufficient to obtain converged results for both energy and pressure.

an updated training set. After seven iterations, we find a suf-
ficiently robust and unified MLP for MgSiO3 bridgmanite,
post-perovskite, and liquid at 0–220 GPa and 2000–8000 K.
We emphasize that the feature selection with principal com-
ponent analysis (PCA) and the iterative training is crucial to
building a balanced and succinct training set. Indeed, the final
training set only consists of 4324 configurations while cover-
ing three phases over 6000 K and 220 GPa, compared with
typically tens of thousands of frames for monoatomic species
at very narrow pressure and temperature conditions [23,25].
Compared with other active learning algorithm like DP-GEN,
the iterative learning scheme presents two improvements:
(1) efficient enhanced sampling is embedded in the workflow;
(2) we use PCA analysis and comparison between the MLP
prediction and VASP results (ground truth) to select the can-
didate frames, while DP-GEN relies on the model deviation of
the candidate frames only. We found that the model deviation,
although being computationally more efficient, is prone to
selecting frames that are already predicted very well by the
MLP, especially when the threshold of the model deviation is
not well set.

D. DeePMD approach

The DeePMD approach adopts an end-to-end strategy
[22,29] and does not make a priori assumptions about the
form of the descriptor but rather uses a deep neural network
to determine its form based only on the spatial location,
in a suitably defined coordinate frame, of the neighboring
atoms. Neural networks are widely used in the development
of machine learning potentials because they are, in principle,
capable of approximating any continuous function to arbitrary
accuracy [33,38,39]. With DeePMD, one uses a neural net-
work to find the functional form of the descriptor and a second
neural network (fitting network) to determine the form of the
potential energy surface. The fitting network is composed of
three layers with 240 nodes in each layer. A cutoff of 6 Å is
employed to describe the atomic local environments. The loss
function is defined as

L(pε, p f , pξ ) = pε�ε2 + p f

3N

∑
i

|�F i| + pξ

9
�ξ 2, (11)

where pε, p f , pξ are tunable prefactors for difference be-
tween the MLP prediction and training data. ε is the energy
per atom; F i atomic force of atom i; ξ the virial tensor
divided by N; N the numbrer of atoms. We adopt the con-
ventional setting of increasing both pε and pξ from 0.02 to
1 while decreasing p f from 1000 to 1 over the course of
training.

E. Ab initio calculations

All ab initio calculations were performed on MgSiO3

consisting of 160 atoms based on DFT in the PBESOL ap-
proximation [40] using VASP [41]. We used the projector
augmented wave method [42] as implemented in VASP [41].
We use the PBESOL approximation as it has been found to yield
good agreement with experimental measurements of physical
properties of silicates and oxides [43–45] and melting temper-
atures of MgO [46]. The core radii are O: 0.820 Å (2s2 2p4),
Si: 1.312 Å (3s2 3p2), Mg: 1.058 Å (2p6 3s2). To construct
the initial dataset, we perform ab initio molecular dynamics
(AIMD) simulations with relatively low precision settings: an
energy cutoff of 500 eV, energy tolerance of 10−4 eV, and
�-point only k mesh. AIMD simulations are performed in
the NV T ensemble (constant number of atoms, volume, and
temperature) using the Noseé-Hoover thermostat [47] and run
for 5–20 ps with 1 fs time step. We assume thermal equilib-
rium between ions and electrons via the Mermin functional
[48].

The configurations generated by these AIMD simulations
as well as the multithermal and/or multibaric MD simulations
were then selected to construct the MLP. The energy, force,
and stress of these selected configurations were recalculated
at much higher precision with: the energy cutoff that sets
the size of the basis set increased from 500 to 800 eV, the
precision to which the self-consistent solution to the Kohn-
Sham equations is found increased from 10−4 to 10−6 eV, and
sampling of the Brillouin zone increased from the �-point
only to a 2 × 2 × 2 Monkhorst-Pack mesh. We found this
high precision recalculation to be essential for optimizing the
accuracy and scope of the MLP [33] (Fig. 3).
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FIG. 4. Configurations explored by multithermal multibaric simulations at 40–60 GPa and 3000–5000 K. The energy of the system
(160 atoms) is plotted against volume and color-coded by the value of collective variable (CV) defined in Eq. (4). Large and small CVs
indicate a perovskitelike or liquidlike state, respectively. Snapshots of configurations are shown in the circles with atoms color-coded based
on the orientationally targeted order parameters [32] building on the smooth overlap of atomic positions (SOAP) [35], with red indicating
perovskitelike and blue indicating liquidlike local atomic environments. The yellow and green ellipses show the regions sampled by standard
molecular dynamics simulations at the same P/T range for liquid and solid states, respectively.

F. Simulations

For two-phase simulations, we use LAMMPS to build a 2-
phase model of coexisting solid and liquid with the ratio of
approximately 1:1. Supercells of 900 atoms are constructed
(3 × 3 × 5 for Pbnm bridgmanite and 3 × 5 × 3 for Cmcm
post-perovskite) and then relaxed for 1000 steps at the desired
pressure and temperature conditions in the NPT ensemble.
The relaxed cell is then used to perform NVT simulations
at high temperatures far exceeding the melting temperatures
with the atoms of half the cell fixed and the force applied to
these atoms set to be 0. The resulting structure is half-molten
and half-crystalline. We relaxed this structure again at the
desired pressure and temperature conditions for 1000 steps
to obtain the initial configuration for two-phase simulations.
We also tested the size effect on the melting temperature by
exploring larger system sizes of 1800 atoms and 3000 atoms,
and found that systems of 900 atoms are sufficient to yield
identical melting points as those larger systems.

Simulations on the two-phase cell were performed at the
desired pressure and temperature conditions (NPT). If the
whole cell is molten (crystallized) in the end, the simulation
temperature is above (below) the melting point. The state
of the system can be determined by interrogating the radial
distribution functions. In this way, we can obtain the upper
and lower bounds of the melting curve.

Phonon dispersions and zero-point energy were performed
using the PHONOPY program [49]. Real-space force constants
were calculated with density functional perturbation theory
[50], with 2 × 2 × 2 and 4 × 1 × 2 supercells for bridgmanite
and post-perovskite, respectively.

III. RESULTS

A. Sampling of configuration space

Our approach yields a broad sampling of configuration
space and an efficient selection of representative configu-
rations (Fig. 4). From a single MTMP run (40–60 GPa,
3000–5000 K), we generate liquid and bridgmanite configura-
tions as well as configurations containing an interface between
the two phases, and configurations containing distorted and
defective crystalline structures. Post-processing with PCA se-
lection and an iterative learning scheme yield balanced and
succinct sampling over this range (Fig. 4). Indeed, the final
training set is very small, consisting of only 4324 config-
urations, while covering a wide temperature and pressure
(2000–8000 K and 0 GPa–220 GPa), compared with typically
tens of thousands of frames for mono-atomic species over
much narrower ranges of pressure and temperature conditions
[23,25].

B. Benchmarks of the machine learning potential

We compare the energies, atomic forces, and stresses
from the machine learning potential with those from DFT
simulations for 35 585 configurations that are not included
in the training set (Fig. 5). The root-mean-square errors of
the energies, atomic forces, and stresses are 4.9 meV/atom,
0.24 eV/Å, and 0.37 GPa, respectively. These uncertainties
are comparable to the typical precision of ab initio MD sim-
ulations [45]. As all the testing structures are supercells, the
robustness of the MLP in predicting properties larger systems
is unclear. We performed another verification test with data
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FIG. 5. Comparisons of energies (a), atomic forces (b), and stresses (c) between DFT and the machine learning potential (MLP) for all the
test data at 2000 to 8000 K and pressures from ∼0 to 220 GPa. 35 585 energies, 17 080 800 force components, and 21 3510 stress components
are included in these comparisons. The red dashed lines are guides for perfect matches.

obtained using a larger supercell with 320 atoms. This struc-
ture is not included in the training set. The root-mean-square
error of energy prediction is similar to the error in the testing
sets (Fig. 6). This verification test further proved the accuracy
of energy prediction and also demonstrated the transferability
of the MLP to larger structures.

C. Two-phase simulations

Two-phase simulations yield precise determinations of the
melting temperature. Starting with a two-phase simulation cell
of bridgmanite at 140 GPa, a simulation at 6100 K melts
completely after 260 ps, whereas a simulation at 6000 K
crystallizes after 730 ps (Fig. 7). Post-perovskite melts at
6000 K and crystalizes at 5900 K (Fig. 8). These simulations,
performed at constant pressure and temperature show that the
system expands upon melting, and contracts upon crystalliza-
tion, yielding the volume of melting, the Clapeyron slope
(� = dP/dTm ), and the entropy of melting (�Sm = ��Vm )
(Table I).

Our results agree well with a number of experimental stud-
ies at the low-pressure end of the bridgmanite stability field

FIG. 6. Comparisons of the total energy changes along molecular
dynamics trajectories between the DFT (thick colored lines) and
MLP potential (thin black lines) for MgSiO3 bridgmanite (blue),
post-perovskite (red), and liquid (green) at 140 GPa and 5000 K.
The models used in this simulation contain 320 atoms, and none of
the structures in the trajectories were included in the training set.
The root-mean-square error of MLP is 4.2, 2.4, 7.1 meV/atom for
perovskite, post-perovskite, and liquid, respectively.

(Fig. 9). In order to better constrain the slope of the bridgman-
ite melting curve, we have performed a simulation at 20 GPa,
below the stability field of bridgmanite, but accessible to our
simulations because of kinetic hindrances to crystal-crystal
transitions. At 20 GPa, we obtained a melting temperature of
2875 ± 50 K, slightly higher than the result (i.e., 2700 ± 50
K) of the multianvil experiments [51], suggesting that PBEsol
may overestimate the melting temperature consistent with the
previous study on MgO melting [46]. Our melting curve of
MgSiO3 bridgmanite may be expressed by the Simon equa-

tion, Tm = 2875 ± 50( P−20
8.11±0.37 + 1)

1
3.73±0.06 , where Tm is in K

and P in GPa. This fitted melting curve agrees very well with
the results of some laser-heated diamond anvil cell experi-
ments [8,52] up to 50 GPa. The resulting melting slope at
25 GPa is around 69 K/GPa, broadly consistent with exper-
imental result of ∼80 K/GPa by Ref. [8], but deviate from the
results of Refs. [9,54] (∼0 K/GPa), and those of Ref. [51] (30
K/GPa), implying a vanishing small volume of melting, con-
trary to our findings and that of previous ab initio determina-
tion of the volume of melting [34]. Our results agree well with
the only determination of the melting temperature at pressure
greater than 100 GPa from shock wave experiments [53].

The melting temperature of post-perovskite increases more
rapidly with increasing pressure than that of bridgmanite
[Fig. 9(b)]; our results can be represented by Tm = 5600 ±
50( P−120

113.60±16.13 + 1)
1

2.85±0.32 . Our melting curve is consistent
with a shock wave measurement of melting at 500 GPa
[10], but is significantly higher than that determined in an-
other study at 210 GPa [11]. We note that extrapolating the
melting curve beyond ∼200 GPa is subject to uncertainty:
for example, our best-fit melting curve of post-perovskite
predicts a melting point of 9376 ± 656 K at 500 GPa.
More experiments at these extreme conditions are clearly
warranted.

From our simulations, we also determine the volume of
melting, and from the Clausius-Clapeyron relation, the en-
tropy of melting (Table I, Fig. 10). The volume of melting
diminishes rapidly with increasing pressure because the liquid
is more compressible than the solid. The entropy of melting
initially increases with increasing pressure and then decreases
with increasing pressure at pressure greater than 100 GPa. The
volume and entropy of melting increase at the triple point as
the volume and entropy of the post-perovskite are less than
those of the bridgmanite phase.
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FIG. 7. Machine learning molecular dynamics simulations of the coexistence of MgSiO3 bridgmanite and liquid at 140 GPa and 6100 K
(upper panel) and 6000 K (lower panel). The simulation cell contains 600 MgSiO3 formula units (3000 atoms). The simulation time step and
the corresponding cell shape are also shown.

D. Bridgmanite to post-perovskite transition

The intersection of the melting curves of bridgmanite and
post-perovskite yields the bridgmanite/post-perovskite/liquid
triple point at 180 GPa and 6420 K (Fig. 9). We combine
this result with our computed values for the phase transition
pressure at 0 K (96 GPa), the volume contrast between the two
phases (0.467 Å3/formulaunit) and the Einstein temperatures

of the two phases (773 K for bridgmanite and 791 K for
post-perovskite) to determine the solid-solid phase boundary
following the formalism of Jeanloz [54] which accounts for
the vanishing Clapeyron slope in the limit of zero temperature
[Fig. 9(c)]. The resulting Clapeyron slope at 2000 K is 13.9
MPa/K, very close to the experimental result of 13.3 ± 1.0
MPa/K [55], although we note that the experimental value

FIG. 8. Machine learning molecular dynamics simulations of the coexistence of MgSiO3 post-perovksite and liquid at 140 GPa and 5900 K
(upper panel) and 6000 K (lower panel). The simulation cell contains 600 MgSiO3 formula units (3000 atoms). The simulation time step and
the corresponding cell shape are also shown.
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TABLE I. Calculated melting properties of MgSiO3: pressure P, melting temperatures Tm, slope of the melting curve dT/dP, volume
(�Vm ) and entropy (�Sm ) of melting at the melting point. Entropy is shown in NkB unit where N is the number of atoms per formula unit and
kB is the Boltzmann constant.

Phase P (GPa) Tm (K) dT/dP (K/GPa) �Vm(Å3/atom) �Sm(NkB)

Bridgmanite 20 2875(50) 95.1(4.7) 1.26(0.02) 0.95(0.04)
40 4000(50) 38.3(1.2) 0.71(0.01) 1.33(0.04)
75 5000(50) 21.2(0.6) 0.43(0.02) 1.46(0.04)

120 5750(50) 14.3(0.5) 0.27(0.02) 1.38(0.04)
140 6050(50) 12.6(0.4) 0.21(0.02) 1.20(0.04)
160 6250(50) 11.4(0.4) 017(0.01) 1.11(0.04)

Post-perovskite 120 5600(50) 17.2(3.1) 0.35(0.01) 1.49(0.27)
140 5950(50) 15.5(2.7) 0.31(0.01) 1.45(0.25)
160 6200(50) 14.2(2.5) 0.27(0.02) 1.41(0.24)
180 6450(50) 13.1(2.2) 0.25(0.02) 1.37(0.23)
200 6750(50) 12.2(2.1) 0.23(0.02) 1.33(0.23)

may have considerable systematic uncertainty due to the
nonunique choice of pressure scale [14].

IV. DISCUSSION

A. Melting curve and crystal buoyancy

The Lindemann law has been widely used to predict the
melting curve of materials including at high pressure [60,61].
We find that for both bridgmanite and post-perovskite, the
Lindemann law tends to predict much larger melting slopes
(dTm/dP), thus leading to extremely high melting tempera-
tures at high pressure (Fig. 9). The difference between our
results and the Lindeman law reveals the importance of liquid
structure. Whereas the Lindemann law can be derived by

assuming that scaled liquid structure is constant along the
melting curve. We find, in agreement with previous studies,
that liquid structure changes substantially with increasing
pressure [34]. Moreover, the change in the liquid structure,
including increases in the Si-O coordination number, are such
as to cause the liquid to become denser with increasing pres-
sure, thus decreasing the volume of melting and the Clapeyron
slope.

The entropy of melting determined here (Table I, Fig. 10)
is much larger than that of many monatomic systems at high
pressure (Rln2 where R is the gas constant) [62]. We attribute
the larger entropy of melting to the range of different Si-O
coordination environments in the liquid present at all pres-
sures, producing a liquid structure that is much richer than the

FIG. 9. Melting of MgSiO3 bridgmanite (a), post-perovskite (b), and the phase boundary between bridgmanite and post-perovskite (c).
Results from this study are shown solid blue circles for bridgmanite, red circles for post-perovskite, green circles for triple point and zero-K
transition point. The uncertainties for melting temperatures are 50 K. The solid colored lines in (a) and (b) represent the Simon fit. The green
dashed line in (a), (b), and (c) is the bridgmanite-post-perovskite phase transition boundary. Blue, green, and red shadings cover the stability
fields of liquid, bridgmanite, and post-perovskite, respectively. (a) Previous experimental results on melting of MgSiO3 bridgmanite are denoted
by upward triangles [8], squares [51], leftward triangles [52], rightward triangles [53]. Experimental results of bridgmanite containing ∼10
mol. % Fe are shown in solid dark upward triangles [8], downward triangles [9], and stars [54]. Prediction based on Lindemann law is
shown dotted line [8]. Estimates based on atomistic modeling includes two-phase simulations based on classical potential with corrections
[15] (dashed line), molecular dynamics simulations with empirical overheating correction [16] (loosely dashed line), and [17] (thin diamond),
the integration of Clausius-Clapeyron equation by [34] (dashed-dotted line). (b) Previous results for the melting of post-perovskite include
two shock compression experiments [11] (upward triangle) and [10] (downward triangle), the inferred melting curve using the Lindemann
law [4] (dotted line), and two-phase simulations based on classical potential with corrections [15] (dashed line). (c) The results of subsolidus
experiments of MgSiO3 [55,56] are shown with upward triangles, downward triangles, and squares denoting bridgmanite-only, post-perovskite-
only, and bridgmanite-post-perovskite coexistence, respectively.
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FIG. 10. The volume (top) and the entropy (bottom) of melting
from the bridgmanite (blue) and the post-perovskite (red) phases. For
comparison we also show experimental values for melting from the
low-pressure enstatite structure [57,58], and theoretical results for
the melting of monatomic systems interacting with inverse-power
repulsion with the value of the power indicated ranging from 1
(one-component plasma) to infinite (hard-spheres) [59].

nearly close-packed structures of monatomic liquids. At the
highest pressures of our simulations, the entropy of melting
decreases with increasing pressure, but is still much larger
than Rln2, and larger than that of simple monatomic liquids
interacting with inverse-power repulsion.

The volume of the liquid closely approaches, but does not
fall below that of the solid phases (Table I, Fig. 10). The
volume of melting at the highest pressure of our study (4%) is
much less than that at ambient pressure (18%), reflecting the
greater compressibility of the liquid as compared with solid
phases. The very small volume of melting that we find means
that crystals freezing out of deep molten portions of rocky
planets, are likely to be buoyant. With similar volumes, the
liquid is likely to be denser than coexisting crystals because
major heavy elements, like Fe, tend to partition favorably into
the liquid. Deep crystal buoyancy in cooling rocky planets has
important implications for understanding their thermal and
chemical evolution [7,63].

B. Thermal structure of Earth’s lowermost mantle

To examine whether the bridgmanite to post-perovskite
transition may be encountered in the deep Earth, we assume
that the geotherm consists of an adiabat and a lower thermal

boundary layer, following previous studies [13]

T (r) = TCMB − (r − rCMB)T
′

S − �T erf

(
r − rCMB

δ

)
, (12)

where T (r) is the temperature as a function of radius, sub-
script CMB indicates values at the core-mantle boundary, �T
and δ are the temperature contrast and thickness of the thermal
boundary layer, respectively, and T

′
S is the adiabatic gradient

at the base of the mantle. The pressure of the CMB is 136
GPa and temperature (TCMB) is assumed to be 4000 K. We
compute the adiabat TS (r) for a given potential temperature
from HeFESTo [64–66], yielding the adiabatic gradient T

′
S and

the temperature contrast �T = TCMB − TS (rCMB). The heat
flux at the core-mantle boundary is then

FCMB = k

(
T

′
S + 2√

π

�T

δ

)
(13)

with the thermal conductivity k = 8.1 W/m/K [67].
Our results for the bridgmanite to post-perovskite phase

transition suggests that post-perovskite may exist as a lens
in the cooler parts of the deep lower mantle (Fig. 9). Along
an average mantle geotherm with the potential temperature
TP = 1600 K and a bottom thermal boundary layer of greater
than δ = 120 km thickness, only bridgmanite is stable and
post-perovskite is absent, consistent with the absence of ob-
servations of seismic reflections from the lowermost mantle in
most regions [68]. If we examine a geotherm representative of
a cooler portion of the mantle (TP = 1300 K, d = 170 km),
we find two crossings of the bridgmanite to post-perovskite
transition, at 100 and 300 km above the core-mantle boundary.
The depths to these reflections are consistent with paired
reflections of opposite polarity seen in cooler parts of the
mantle [13,69]. The presence of a post-perovskite lens there-
fore places important constraints on the thermal structure of
the lower-most mantle and on the heat flow emanating from
the core. For our cool model geotherm, we find a heat flux
into the base of the mantle of 100 mW/m2, or 15 TW. This
heat flux is more than sufficient to drive dynamo action in the
underlying outer core [70]. In detail, the pressure-temperature
conditions of the bridgmanite to post-perovskite transition
may depend on the concentration of Fe, Al, and other sec-
ondary oxides [71]. Moreover, the heat flux into the mantle
is likely to vary greatly laterally, and may approach zero in
some regions of the mantle [67]. Our result for the cool mantle
geotherm is therefore consistent with a global average heat
flux of 80 mW/m2 or 12 TW, which agrees with estimates
of the minimum heat flux required to drive magnetic field
generation in the underlying core.

V. CONCLUSION

It is now possible to develop machine learning potentials
that accurately capture the physics of multiple phases in mul-
tiatom systems over a wide range of pressure and temperature.
We have overcome the challenges posed by planetary-scale
applications with an iterative training scheme that entails
multithermal-multibaric enhanced sampling driven by struc-
ture factors as collective variables, feature selection, deep
learning, and DFT calculations. This scheme allows us to
build a MLP of MgSiO3 liquid, bridgmanite, and post-
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perovskite up to 220 GPa and 8000 K using only 4324 training
frames. The phase stability relations that we have determined
using this machine learning potential place important con-
straints on processes in the deep Earth and in super-Earth
exoplanets. Liquids are likely to be denser than coexisting
solids within the bridgmanite and post-perovskite pressure-
ranges of stability. The Clapeyron slope of the bridgmanite
to post-perovskite transition indicates the presence of double-
crossings of the phase transition in colder portions of the
mantle, consistent with seismic observations and heat flux
from the core-mantle boundary compatible with magnetic
field generation in Earth’s outer core.

The main data supporting the findings of this study are
available within the paper. The data set used in this study has
been deposited at the Open Science Framework [72]. The soft-
ware packages used in this study are standard codes: VASP
(version 5.4) is a commercial code (see Ref. [73]), whereas
DeePMD-kit (Ref. [74]), PHONOPY ([75]), LAMMPS

([76]), PLUMED 2 ([77]), HeFESTo ([78]), and ASAP ([79])
are open source.
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