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Effects of dispersion corrections on the theoretical description of bulk metals
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The addition of a London dispersion correction to standard Kohn-Sham density-functional theory is essential
for an accurate description of noncovalent interactions. While several dispersion-corrected density functionals
(DC-DFs) have shown excellent performance for hard solids at ambient conditions, their transferability to
metallic systems at ambient conditions or under isotropic compression has not been systematically examined.
In this study, we assess the ability of selected DC-DFs to describe the equations of state (EOSs) of selected
elemental metals and intermetallic compounds up to several gigapascals of pressure. EOS-derived properties,
such as the unit-cell volume, the bulk modulus, and its pressure derivative, were then evaluated with and without
thermal effects and the results compared with experimental reference data. We also assess the ability of the
DC-DFs to predict the phase-transition pressures for a set of intermetallic compounds. The results of this study
establish that London dispersion physics, and even dispersion contributions from the core electrons, is important
in the description of bulk metals.
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I. INTRODUCTION

The equation of state (EOS) is a thermodynamic rela-
tion from which many fundamental properties of condensed
phases of materials can be derived. The EOS is key to the
understanding of planetary interiors, as well as dynamical
study of high-energy processes and high-energy density ma-
terials [1,2]. Advancement in experimental methods and the
reduction of systematic uncertainty have led to improved
accuracy in the accretion of hydrostatic compression data
on metals up to a few hundreds of gigapascal (GPa) [3,4].
However, miniaturization of the sample increases as higher
pressures are approached, leaving many extreme-pressure re-
gions of the EOS unexplored and leading to the continual need
for accurate theoretical predictions. Thus, concerted efforts
are being made to improve the agreement between exper-
imental and theoretical EOSs through the development of
improved electronic-structure methods [5], particularly within
the framework of density-functional theory (DFT) [6,7].

Over the years, the field of DFT has witnessed the
development of a hierarchy of density functionals (DFs), in-
cluding generalized gradient approximations (GGAs) [8–12],
meta-GGAs [13–18], and hybrids [19–22]. DFs are widely
employed for materials simulations, involving the predic-
tion of structure and lattice energies, among other properties
[23–25]. However, due to approximations involved in the de-
velopment of these DFs, they generally provide an incomplete
representation of exchange-correlation interactions between
electrons. This drawback suggests that some important energy
terms may be missing, and accounting for them should im-
prove the performance of DFT predictions. One such term has
been identified as the London dispersion force [26–30], which
is a long-range, highly nonlocal form of electron correlation.
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London dispersion, the weakest van der Waals force, orig-
inates from instantaneous charge oscillations that induce the
formation of dipoles and higher-order multipoles. Dispersion
forces can influence phase changes [31,32], packing in molec-
ular crystals [33–35], and surface adsorption [36,37]. While
they are routinely applied to all types of solids, standard DFs
do not capture London dispersion. Thus, inclusion of dis-
persion physics within DF approximations is very important
for an accurate determination of the structural and energetic
properties of molecular systems [38,39], crystals [40,41], and
layered materials [42–44]. Inclusion of dispersion has also
been shown to improve the predicted properties of hard solids
[45,46], such as lattice parameters, bulk moduli, and lattice
energies. Unlike molecular and ionic solids, the importance
of dispersion has not yet been well established for metals.
This is likely because these three classes of materials are
characterized by different bonding types—namely metallic
bonds, electrostatics, and van der Waals interactions (includ-
ing hydrogen and halogen bonding), respectively.

Dispersion energies (Edisp) are commonly computed as a
correction term to the base DF energy (Ebase), such that the
total energy becomes

EDFT = Ebase + Edisp. (1)

Several dispersion correction models based on second-
order perturbation theory have been proposed, such as the
Tkatchenko-Scheffler (TS) [47], Grimme’s DFT-D2 [48],
DFT-D3 [49,50], DFT-D4 [51,52], and the exchange-hole
dipole moment (XDM) [53,54] methods. These are colloqui-
ally referred to as asymptotic dispersion corrections. Other
models in this category include the many-body dispersion
(MBD) method [55,56] and its modified forms—MBD-FI
[57] and uMBD [58]. Beyond evaluation of a separate Edisp

term, certain DFs contain a dispersion correction built into
the exchange-correlation functional, which is evaluated along
with the base energy during each self-consistent-field (SCF)
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cycle. These include the van der Waals DFs [59–61] and the
Vydrov–Van Voorhis [62,63] series.

Despite the widespread success of dispersion corrections
across molecular and solid-state systems, their application be-
yond ambient conditions remains scarce [64–66], particularly
for solids [43,67,68]. Perhaps systems under high compres-
sion are thought to be closely packed to the point where
dispersion forces are negligible—a conjecture that has yet to
be substantiated or disproved. While computational studies
of bulk metals (using standard, non-dispersion-corrected DFs)
up to several hundreds of GPa are ubiquitous in the literature
[3,4,69–72], none has systematically examined the perfor-
mance of dispersion models in accurately describing the EOS
of bulk metals. Against this backdrop, it is important to un-
derstand the effects of dispersion on the predicted properties
of homoatomic and heteroatomic metals. One way to achieve
this is through a benchmark study.

This work examines the influence of dispersion on the
EOS and EOS-derived properties—the unit-cell volume, the
bulk modulus, its pressure derivative, and the phase-transition
pressure—for an ensemble of elemental metals and inter-
metallic compounds. The results demonstrate the effects of
dispersion and core states on the theoretical prediction of the
EOS and EOS-derived properties of bulk metals. Overall, we
find that pairing selected DFs with the exchange-hole dipole
moment (XDM) or Grimme’s D3 dispersion methods gen-
erally leads to better agreement with experimental reference
data. Our results also reiterate the importance of thermal cor-
rections in improving agreement between experimental and
theoretical EOS.

II. COMPUTATIONAL METHODS

In this work, calculations were performed with and without
inclusion of thermal expansion to demonstrate the interplay
between dispersion and thermal corrections. We limit our-
selves to GGA functionals due to the significantly higher
mathematical complexity and nonavailability of geometry re-
laxation with meta-GGAs in open-source plane-wave DFT
codes. We further consider only post-SCF dispersion correc-
tions of the type given by Eq. (1). To rule out a dependence
on implementation, two sets of simulations were performed
using (i) plane-wave DFT with the projector augmented-wave
(PAW) method [73], and (ii) all-electron calculations with
numeric atom-centered orbitals (NAOs) [74].

PAW calculations were performed using QUANTUM

ESPRESSO (QE) version 6.7 [75], while the NAO calculations
used the Fritz Haber Institute ab initio materials simulations
(FHI-aims) package [74]. The GGA functionals considered
are PBEsol [12], PBE [8], and B86bPBE [8,9]. PBEsol was
not paired with any dispersion correction since it is accepted
to perform very well for predicting the ambient properties of
bulk solids [76]. PBE was paired with a selection of disper-
sion corrections—TS [47] (FHI-aims), Grimme’s D3 method
with [49] and without [50] Becke-Johnson (BJ) damping [77]
(QE), and XDM [53,54,78] (both QE and FHI-aims). Finally,
XDM was also paired with the B86bPBE functional (again
using both QE and FHI-aims), as this combination has proven
optimal for molecular dimers and crystals [30,40,78]. Compu-
tational settings, including cutoffs and k-point meshes, for all

the systems considered in this study are given in the Supple-
mental Material [79] and Refs. [78,80].

We prepared a benchmark set of elemental metals made up
of both nonmagnetic and magnetic materials: Al, FM-α-Fe,
FM-Ni, Cu, Zn, Mo Ag, Ta, W, Pt, and Au [3,4]. Here, FM
denotes a ferromagnetic configuration. We also prepared an-
other set of intermetallic compounds: FM-Fe3Sn, FM-Fe3Sn2

[81], α-AuAl2 [82], α-SrAl2, β-SrAl2 [83–85], PtIn2 [86], and
AuIn2 [87]. A third benchmark set was prepared comprised of
a collection of intermetallic compounds with experimentally
known phase-transition pressures: Na3Bi, ScGa2, LiCd [88],
AuAl2 [82], and SrAl2 [83–85]. These sets will be referred
to as the EM11, IM07, and PT05 sets for the elemental
metals, intermetallic compounds, and phase transitions, re-
spectively. All the metals in the EM11 benchmark set have
a cubic crystal lattice system (either body-centered-cubic or
face-centered-cubic structures), except for Zn, which has a
hexagonal-close-packed structure. For the IM07 benchmark,
four of the intermetallic compounds have face-centered-cubic
structures, while Fe3Sn is orthorhombic, PtIn2 is hexagonal,
and AuIn2 is tetragonal.

For all systems in this study, our experimental reference
corresponds to room-temperature compression data. There
are two computationally different, but theoretically equiv-
alent, methods of obtaining compression data: geometry
optimization to obtain pressure-volume data or fitting some
energy-volume points to an empirical EOS [89]. We have
employed both methods in this study, albeit for different anal-
yses. Computationally, we introduce isotropic pressure to the
elemental metals and intermetallic compounds adiabatically.
For each metal, the pressure range was chosen to bracket the
pressure covered by the experimental reference data. All of
the metals considered are stable under applied pressure and do
not undergo any spontaneous phase transition during geome-
try optimization, nor do they undergo any electronic (metal
to semiconductor) transitions, within the pressure range
reported.

Computed pressure-volume data for the EM11 and IM07
sets were fitted using either the Vinet [90] or the third-order
Birch-Murnaghan [91–93] forms for the EOS, respectively.
The different choice of EOS fitting model between the two
benchmark sets is driven by the desire for direct comparison
with the reference data. In the Vinet EOS, the pressure, P, is
given by

P = 3B0

(
V
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where V is the unit-cell volume. Conversely, the third-order
Birch-Murnaghan formulation of the EOS is expressed as
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In both EOSs, the three fitted parameters are the unit-cell
volume, V0, the isothermal bulk modulus,

B0 = −V
∂P

∂V

∣∣∣∣
V =V0

=
(

V
∂2E

∂V 2

)∣∣∣∣
V =V0

, (4)

and its pressure derivative,

B′
0 = ∂B0

∂P

∣∣∣∣
V =V0

, (5)

all at ambient pressure. This analysis yields data for cold
compression, without inclusion of thermal effects.

For room-temperature compression, the pressure-volume
data were switched to energy-volume data, and the corre-
sponding transformations of the Vinet [94,95] and Birch-
Murnaghan [92] EOSs were used. The temperature-dependent
properties were computed using Gibbs free energies,

G(V, T ) = E (V ) + Fvib(V, T ), (6)

where E (V ) is the static DFT electronic energy at a given
volume and zero temperature, and Fvib is the vibrational free
energy at a finite temperature. The G(V, T ) data spanning the
compression volumes are then fitted to the appropriate EOS
model [92,94,95] for the computation of Vth, Bth, and B′

th. In
addition to these properties, the total pressure experienced by
the system becomes the sum of the static (0 K) and the thermal
(293 K) pressures, which is expressed as

Ptotal = −∂G(V, T )

∂Vth
. (7)

The phase-transition pressure in the PT05 benchmark set was
assessed using the computed Ptotal.

Finally, we estimated the Fvib contribution using the empir-
ical Debye model [96] according to

Fvib(V, T ) = 9

8
kB�D + kBT

{
3 ln

[
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(
−�D

T

)]

−D

(
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T

)}
, (8)

where D( �D
T ) is the Debye function defined as

D(χ ) = 3

χ3

∫ χ

0

t3

et − 1
dt . (9)

The Debye temperature, �D, is obtained via the Debye-Wang
model [97] according to

�D = α
(6π2)

1
3 h̄
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V

1
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3
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In this equation, P = − dE
dV , B = (V ∂2E

∂V 2 ), M is the atomic
mass per unit cell, h̄ is the reduced Planck constant, and kB

is Boltzmann’s constant. Since the thermal contribution is
evaluated at a room temperature of T = 293 K, the adjustable
Debye-Wang parameter is set to λ = 1. For the nonmagnetic
metals in our sets, we chose a scaling factor of α = 0.617 [98],
while α = 0.764 [99] was used for the magnetic systems.

FIG. 1. Illustration of the effects of temperature correction (top)
and dispersion correction (bottom) on the computed EOS of tan-
talum (Ta). The theoretical EOSs were calculated using the PAW
method and are compared with experimental compression data from
Refs. [3,4].

III. RESULTS

A. Effects of thermal expansion on the EOS

Changing temperature alters the volume of a material and
has a direct effect on other physical properties. Thus, applying
temperature correction to static DF calculations can improve
the agreement between theoretical prediction of volume and
bulk modulus (or incompressibility) and the corresponding
experimentally measured values. The effect of thermal correc-
tion on the EOS of metals is exemplified using tantalum (Ta)
in a body-centered-cubic cell (Fig. 1), which is a member of
our EM11 benchmark set. As shown in Fig. 1(a), accounting
for temperature effects generally leads to volume expansion,
since increasing the temperature increases the kinetic energy
through the lattice vibrations. The resulting effect is a slight
(harmonic) or large (anharmonic) increase in the distance
between neighboring atoms or molecules, proportional to the
temperature, which leads to an expanded unit cell. Inclusion of
thermal expansion also results in lowering of the bulk modulus
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TABLE I. Mean errors (MEs) and mean absolute errors (MAEs) in unit-cell volumes, in Å3, computed with selected density functionals
and dispersion corrections. The results correspond to the thermally corrected volumes (Vth) in the absence of applied pressure, while the static
volumes (V0) are given in parentheses. Errors are shown for the EM11 and IM07 benchmarks separately, as well as for the combined data set.

EM11 IM07 Combined

Method ME MAE ME MAE ME MAE

QE PBEsol −0.11 (−0.38) 0.31 (0.44) 0.17 (−0.22) 1.20 (1.08) 0.00 (−0.31) 0.65 (0.69)
PBE 0.60 (0.32) 0.65 (0.41) 1.08 (0.66) 1.66 (1.36) 0.79 (0.45) 1.04 (0.78)
B86bPBE 0.74 (0.45) 0.77 (0.51) 1.27 (0.81) 1.80 (1.47) 0.95 (0.59) 1.17 (0.88)
PBE-D3 0.02 (−0.23) 0.26 (0.34) 0.33 (0.06) 1.34 (1.22) 0.14 (−0.17) 0.68 (0.68)
PBE-D3BJ 0.00 (−0.30) 0.28 (0.42) 0.23 (−0.15) 1.29 (1.16) 0.09 (−0.24) 0.67 (0.71)
PBE-XDM 0.40 (0.08) 0.50 (0.42) −0.35 (−0.79) 1.00 (1.04) 0.11 (−0.26) 0.70 (0.66)
B86bPBE-XDM 0.38 (0.04) 0.54 (0.49) 0.03 (−0.49) 1.26 (1.14) 0.24 (−0.16) 0.82 (0.74)

FHI-aims PBEsol −0.15 (−0.44) 0.31 (0.45) 0.31 (−0.03) 1.17 (1.09) 0.03 (−0.28) 0.64 (0.70)
PBE 0.54 (0.22) 0.59 (0.42) 1.39 (0.84) 1.39 (1.40) 0.87 (0.46) 0.90 (0.80)
B86bPBE 0.67 (0.35) 0.67 (0.47) 1.44 (1.02) 1.75 (1.48) 0.97 (0.61) 1.09 (0.86)
PBE-TS −0.36 (−0.62) 0.68 (0.73) −0.43 (−0.78) 1.34 (1.33) −0.39 (−0.68) 0.94 (0.96)
PBE-XDM 0.10 (−0.27) 0.41 (0.47) −0.03 (−0.51) 1.05 (1.05) 0.05 (−0.36) 0.66 (0.69)
B86bPBE-XDM −0.01 (−0.31) 0.43 (0.50) 0.08 (−0.42) 1.14 (1.04) 0.03 (−0.36) 0.70 (0.71)

through relaxing the curvature of E (V ), which translates to a
softening of the P(V ) relation. As V (P) plots are shown in
Fig. 1(a), the lower bulk modulus can be seen as a higher slope
at P = 0.

Some DFT studies directly compare computed static prop-
erties with experimental data, which assumes that the thermal
corrections are negligible, or relies on error cancellation be-
tween the DF and the thermal correction. Figure 1(a) shows
that thermal correction improves agreement with the experi-
mental EOS for PBEsol, but it leads to larger errors for the
other GGAs. From Fig. 1(b), pairing GGAs with various dis-
persion models has the opposite effect to thermal correction,
resulting in more compressed cell volumes and increased bulk
modulus through increasing the curvature of E (V ), reflected
in a more gradual slope at P = 0. It is the opposing signs of the
thermal and dispersion corrections to physical properties, such
as the volume and bulk modulus, that has led to the omission
of both in many DFT studies of materials.

For the Ta example, we note that the XDM-corrected func-
tionals provide the best agreement with the experimental EOS
at low pressures, while PBEsol, PBE-D3, and PBE-D3(BJ)
perform best at high pressures. The EOSs of the other metals
considered are collected in the Supplemental Material [79].
Generally, there is a larger spread in the computed volumes
at low pressure than at high pressure between the various
(DC-)DFs, and no one method can provide consistently good
EOS predictions for all metals. For Ag, Pt, and Au, all the
computed curves are shifted to larger volumes than the ex-
perimental EOS, while the computed curves for Al, Cu, and
W also reflect larger volumes than the experimental EOS,
but only at very high pressures. This suggests that we are
potentially underestimating the effects of dispersion and/or
overestimating the effects of thermal expansion.

B. Equilibrium volumes

Table I shows the error statistics for the computed unit-
cell volumes obtained for the EM11 and IM07 benchmarks
using selected (DC-)DF methods. Results are given for cal-

culations performed with, and without, thermal corrections.
As expected based on the discussion of thermal expansion
above, the mean errors (MEs) are uniformly shifted toward
more positive values for the thermally corrected, compared to
static, volumes. Notably, the mean absolute errors (MAEs) are
roughly two to three times higher for the IM07 set, relative
to the EM11, across all methods considered. This suggests
that errors in the cell volumes may be constituent additive,
perhaps due to the introduction of some errors from charge
transfer [45,100] between the elemental metals that form the
intermetallic compounds.

The volume errors observed for bcc-Fe (on the order of
1 Å3) are very much larger than those obtained for the other
metals in the EM11 set. Significantly better agreement with
the experimental reference data can be achieved by adding a
Hubbard U correction [101] to Fe, and we performed addi-
tional GGA+U calculations using QUANTUM ESPRESSO for all
species containing Fe and Ni, with their Coulomb interaction
potential (U ) values set to 2.5 and 2.4 eV, respectively [102].
While the U values should properly change with pressure,
using a constant U has been shown to have a minimal ef-
fect on EOS-derived properties [103]. The GGA+U results
are shown in the Supplemental Material [79]; overall, this
correction expands the cell volume, but also increases the
magnetization from ∼2 to 3μB/atom. However, since geom-
etry optimizations with GGA+U are not currently possible
with FHI-aims, this correction is not included in the remainder
of this work to allow for a direct comparison between the
pseudopotential and all-electron results.

Without a dispersion correction, the MEs in Table I follow
a general trend of PBEsol � PBE < B86bPBE for both
benchmark sets and with both electronic-structure codes. This
trend follows the known exchange enhancement behavior of
these functionals [30,104–107]. In the limit of large reduced
density gradients, B86bPBE has the highest enhancement fac-
tor, and the best agreement with exact exchange, while PBE
and PBEsol have similar enhancement factors [30]. However,
this regime is not sampled by the density distributions in
bulk metals, so we focus on behavior for small to moderate
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gradients. Here, PBEsol has an enhancement factor that is
significantly lower than either B86b or PBE, which leads to
increased binding and smaller lattice constants. The PBEsol
static volumes tend to underestimate the experimental cell
volumes, while the static volumes from PBE and B86bPBE
are systematically too large. Inclusion of thermal expansion
therefore improves agreement between the PBEsol Vth values
and experiment, while further worsening agreement for PBE
and B86bPBE. Consistent with literature findings, PBEsol
with thermal correction performs quite well for prediction of
unit-cell volumes of simple metals [108].

The good performance of PBEsol, without any dispersion
correction, is not surprising as it was designed specifically for
solids. PBEsol does not account for the long-range electron
correlation responsible for dispersion interactions. However, it
does capture some intermediate-range dispersionlike binding
through the behavior of its exchange functional, which can be
viewed as an error cancellation between the exchange and cor-
relation terms [30]. This dispersionlike behavior contributes to
its improved performance relative to PBE.

Table I also shows that the addition of dispersion to the
PBE or B86bPBE functionals leads (in most cases) to volume
contraction, causing the static cell volumes to become smaller
than the experimental volumes. Inclusion of thermal expan-
sion now improves the agreement with the room-temperature
reference data, as would be expected for an accurate DF
method. Overall, pairing PBE and B86bPBE with any of the
D3, D3(BJ), and XDM dispersion models results in good
agreement between the computed Vth data and the experimen-
tal unit-cell volumes. The MEs and MAEs are comparable
to those obtained with PBEsol in the absence of a dispersion
correction, similar to what was seen in previous work for ionic
solids [45].

The TS dispersion correction results in significantly greater
cell contraction than obtained with D3, D3(BJ), or XDM. This
is expected since TS gives atomic C6 dispersion coefficients
for metals that are typically greater than or equal to their
neutral free-atom reference values [109]. Consequently, the
TS dispersion coefficients are much larger than those obtained
using D3 or XDM [109]. Overestimation of the dispersion
coefficients results in excessive cell contraction and system-
atic underestimation of Vth. Thus, PBE-TS exhibits the largest
MAEs and most negative MEs obtained with any of the DC-
DFs considered.

Lastly, we compare the performance of the PAW and
NAO implementations of the uncorrected and XDM-corrected
DFs. Ideally, both implementations should yield identical
results. However, in practice the NAO results may be ad-
versely affected by basis-set incompleteness, while the PAW
results may show significant errors, particularly at high com-
pression, due to the replacement of core electrons with
pseudopotentials. For the dispersion-uncorrected functionals,
the agreement between the two codes is excellent. For the
XDM-corrected functionals, the agreement between QE and
FHI-aims is again excellent for the IM07 set. However, for
the EM11 set (with the exceptions of Mo, Ta, and W), the
FHI-aims XDM implementation tends to give significantly
smaller cell volumes, and hence larger dispersion-induced
contraction, than obtained with QE. The consistency of the un-
corrected GGA results rules out any basis-set incompleteness.

FIG. 2. Change in homoatomic XDM C6 dispersion coefficient
(in atomic units) for Ta as a function of applied pressure. Results
were obtained using B86bPBE-XDM with either the all-electron
code FHI-aims or the plane-wave/pseudopotential code QUANTUM

ESPRESSO.

We therefore conjecture that this difference arises from contri-
butions of the core electrons to the dispersion coefficients that
will be captured in the all-electron FHI-aims implementation,
but not in the QE pseudopotential implementation of XDM.
Indeed, the QE calculations tend to provide somewhat smaller
C6 dispersion coefficients than the FHI-aims results, by 26%
on average for the 11 elemental metals. As exemplified in
Fig. 2, the difference in dispersion coefficients increases with
applied pressure, as the spatial extent of the valence region
decreases and the atomic cores represent a proportionally
larger amount of the cell volume.

C. Bulk moduli

Table II displays error statistics for the computed bulk
moduli (Bth at 293 K) obtained for the EM11 and IM07
benchmarks; results using the static bulk moduli (B0) are
also displayed in parentheses. The bulk moduli obtained with
the dispersion-uncorrected GGA functionals follow a general
trend of B86bPBE < PBE � PBEsol. This is the reverse of the
cell-volume trend, since smaller cells typically have stronger
bonding and a higher bulk modulus, while larger cells tend to
have weaker bonding and a lower bulk modulus.

The bulk modulus is known to have a significant depen-
dence on temperature [110–112]. With an accurate DF model,
static 0 K predictions are expected to overestimate the bulk
modulus, while thermal correction lowers the computed val-
ues and improves agreement with experiment. This is the case
with PBEsol, although the bulk moduli remain slightly overes-
timated, even with inclusion of thermal effects. Similarly, with
the dispersion-corrected functionals, the computed static bulk
moduli are significantly higher than the room-temperature
experimental values. This leads to a consistent reduction in
the MEs after correcting for temperature effects.

Of the dispersion-corrected DFs, PBE-TS shows the poor-
est performance, consistently overestimating the bulk moduli,
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TABLE II. Mean errors (MEs) and mean absolute errors (MAEs) in bulk moduli, in GPa, computed with selected density functionals and
dispersion corrections. The results correspond to the thermally corrected values (Bth), while the static values (B0) are given in parentheses.
Errors are shown for the EM11 and IM07 benchmarks separately, as well as for the combined data set.

EM11 IM07 Combined

Method ME MAE ME MAE ME MAE

QE PBEsol 5.3 (18.6) 15.6 (23.9) 5.7 (18.1) 14.1 (23.8) 5.5 (18.4) 15.0 (23.9)
PBE −15.8 (−2.4) 18.9 (13.4) −5.0 (5.1) 19.3 (20.7) −11.6 (0.5) 19.0 (16.2)
B86bPBE −22.5 (−1.3) 25.2 (10.8) −5.9 (2.7) 20.3 (20.4) −16.1 (0.3) 23.3 (14.5)
PBE-D3 −0.2 (13.4) 13.0 (16.8) 4.7 (12.8) 19.4 (20.8) 1.7 (13.2) 15.5 (18.4)
PBE-D3BJ −1.8 (16.2) 11.0 (17.6) 6.8 (15.5) 19.2 (22.8) 1.6 (16.0) 14.1 (19.6)
PBE-XDM −9.0 (27.8) 20.1 (29.1) 4.6 (29.0) 25.7 (32.6) −3.8 (28.3) 22.3 (30.5)
B86bPBE-XDM −8.2 (25.1) 22.2 (28.5) −2.1 (23.8) 24.9 (28.8) −5.8 (24.6) 23.2 (28.6)

FHI-aims PBEsol 9.4 (26.5) 13.0 (26.5) 7.4 (12.9) 18.6 (20.4) 8.6 (21.2) 15.2 (24.1)
PBE −14.3 (0.4) 19.5 (14.7) −5.0 (1.8) 20.4 (19.4) −10.7 (0.9) 19.8 (16.6)
B86bPBE −19.4 (−3.9) 22.1 (14.8) −7.9 (0.3) 19.3 (20.2) −14.9 (−2.2) 21.0 (16.9)
PBE-TS 25.8 (39.7) 38.9 (42.8) 15.3 (24.4) 22.7 (30.2) 21.7 (33.8) 32.6 (37.9)
PBE-XDM 3.9 (31.4) 23.5 (31.7) 1.2 (17.4) 14.8 (22.2) 2.9 (25.9) 20.1 (28.0)
B86bPBE-XDM −4.8 (25.6) 18.1 (27.4) −0.7 (14.8) 14.8 (20.2) −3.2 (21.4) 16.8 (24.6)

as expected from its underestimation of the cell volumes.
We suggest that it should not be used in the description of
elemental metals. Also consistent with the volume results,
PBE-D3 and PBE-D3(BJ) give the lowest MAEs for the bulk
moduli with the PAW implementation, while PBE-XDM and
B86bPBE-XDM give the lowest MAEs with the NAO im-
plementation. As noted previously, the discrepancies in the
performance of the XDM-corrected functionals when switch-
ing between the PAW and NAO methods may be due to the
difference in the treatment of the core electrons.

The performance of various (DC-)DFs is illustrated in
terms of the correlation of errors in Vth and Bth in Fig. 3
for the combined benchmark of 18 metals. As one would
expect, there is an almost linear correlation between the MEs
in Vth and in Bth. The figure shows the strong underbinding of
uncorrected PBE and B86bPBE and the strong overbinding of
PBE-TS. Overall, PBEsol, PBE-D3, PBE-D3BJ, PBE-XDM,
and B86bPBE-XDM show minimal systematic errors, with
MEs near zero for both quantities. PBEsol, PBE-D3, PBE-
D3BJ, and the FHI-aims implementation of B86bPBE-XDM
also give the lowest MAEs.

D. Pressure derivatives of the bulk moduli

The pressure derivative of the bulk modulus (B′) is an
integral part of the EOS and has great significance in high-
pressure physics. In geoscience it is used as a parameter
required for the accurate inversion of seismic data into texture,
composition, and structure, as well as for determining the
thermal profile of the Earth’s interior. B′ also has a global cor-
relation with the bonding and interstitial electron density of a
material [113]. In practice, B′ can be extracted from the P(V )
isotherm, a direct measurement of the pressure evolution of
the sonic velocity, or by taking the slope of the shock velocity
versus particle velocity curve [113]. Due to the significance of
B′ in the description of some thermophysical properties, such
as the thermal expansivity and the heat capacity of a material
[114], it is desirable to benchmark the performance of various
DFs and DC-DFs for its prediction.

Error statistics for the computed B′
0 and B′

th values are col-
lected in Table III. In contrast to the volume and bulk modulus
results, there is minimal change in the MAEs with the choice
of functional and/or dispersion correction. Additionally, the
application of thermal corrections to the cold compression
EOS tends to increase the pressure derivative of the bulk mod-
ulus, consequently increasing the MEs and MAEs obtained
with all methods. This leads to the unfortunate conclusion
that the computed B′

0 is a better approximation to the room-
temperature experimental data than is B′

th. This may be due
to a breakdown in the simple and computationally expedient
Debye approximation used here for the thermal correction, or
some other systematic error in the DF results.

E. Phase transitions

Pressure-induced phase transition is a common phe-
nomenon in materials physics. At ambient conditions, the
relative stability between two phases is determined by the
relative static energy. The phase with lower static energy is
considered more energetically stable. For materials subjected
to external pressure, the relative stability metric is modified to
include the work done on the system through volume contrac-
tion, known as the PV work. At finite temperature, the system
is described in terms of its free energy,

G = E + PV + Fvib = E − V

(
dE

dV

)
+ Fvib. (11)

For competing phases of the same material, the phase with
the lowest enthalpy at a given pressure is considered the most
stable at 0 K. At finite temperatures, the Fvib is added and the
phase with the lowest free energy is most stable.

In this section, we consider a new benchmark set (PT05)
composed of five intermetallic compounds with known exper-
imental phase-transition pressures. The two competing phases
of each of these compounds were compressed within the
NAO formalism using FHI-aims and the free energies of each
evaluated at finite temperature to determine the transition
pressure (Pc). Figure 4 shows the phase-transition EOS of
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TABLE III. Mean errors (MEs) and mean absolute errors (MAEs) in the pressure derivatives of the bulk moduli, computed with selected
density functionals and dispersion corrections. The results correspond to the thermally corrected values (B′

th), while the static values (B′
0) are

given in parentheses. Errors are shown for the EM11 and IM07 benchmarks separately, as well as for the combined data set.

EM11 IM07 Combined

Method ME MAE ME MAE ME MAE

QE PBEsol 0.32 (0.27) 0.72 (0.37) 0.35 (−0.33) 0.97 (0.81) 0.34 (0.04) 0.82 (0.54)
PBE 0.50 (0.32) 0.59 (0.42) −0.04 (−0.26) 0.72 (0.80) 0.29 (0.09) 0.64 (0.57)
B86bPBE 0.44 (0.36) 0.52 (0.43) 0.12 (−0.24) 0.74 (0.83) 0.32 (0.13) 0.60 (0.59)
PBE-D3 0.53 (0.36) 0.61 (0.45) 0.02 (−0.20) 0.85 (0.83) 0.33 (0.14) 0.70 (0.60)
PBE-D3BJ 0.47 (0.26) 0.53 (0.36) −0.18 (−0.32) 0.89 (0.85) 0.22 (0.03) 0.67 (0.55)
PBE-XDM 0.49 (0.23) 0.53 (0.27) 0.39 (−0.38) 0.67 (0.86) 0.45 (−0.01) 0.59 (0.50)
B86bPBE-XDM 0.41 (0.22) 0.53 (0.30) 0.22 (−0.35) 0.89 (0.84) 0.34 (−0.00) 0.67 (0.51)

FHI-aims PBEsol 0.35 (0.15) 0.36 (0.34) 0.21 (−0.12) 1.07 (0.98) 0.30 (0.04) 0.64 (0.59)
PBE 0.55 (0.34) 0.55 (0.36) −0.07 (−0.23) 0.82 (0.89) 0.31 (0.12) 0.66 (0.57)
B86bPBE 0.46 (0.28) 0.46 (0.34) −0.24 (−0.26) 1.00 (0.87) 0.19 (0.07) 0.67 (0.55)
PBE-TS 0.20 (0.15) 0.35 (0.39) 0.42 (0.22) 1.24 (1.18) 0.29 (0.18) 0.70 (0.70)
PBE-XDM 0.18 (0.04) 0.63 (0.40) −0.07 (−0.40) 0.78 (0.78) 0.08 (−0.13) 0.69 (0.55)
B86bPBE-XDM 0.40 (0.19) 0.57 (0.30) −0.03 (−0.37) 0.70 (0.82) 0.23 (−0.03) 0.62 (0.50)

SrAl2 as an illustrative example, while Table IV shows the
computed phase-transition pressures of all five compounds
across the various levels of theory used.

As shown in Table IV, the MAE of the dispersion-
uncorrected GGAs in predicting Pc follows the trend of
PBEsol < PBE < B86bPBE, which is consistent with the
MAE trend in Vth (see Table I). This is not surprising since
the quality of the predicted transition pressure is expected to
improve with more accurate cell volumes. Pairing the PBE
and B86bPBE DFs with dispersion corrections yields the
trend PBE-XDM < B86bPBE-XDM < PBE-TS for the Pc

MAEs. PBE-TS is again not recommended and is the only
method that obtains negative transition pressures (see Fig. 4),
indicating an incorrect stability ranking of the two phases in
the absence of applied pressure.

Across all methods considered, PBE-XDM and B86bPBE-
XDM provide the best performance in predicting the phase-
transition pressure within the PT05 benchmark set. However,
the MAEs remain very large relative to the transition pressures
themselves, and individual errors can be in excess of 10 GPa
with even the best-performing functionals. This may be due to
a combination of limitations of the computational treatment
and uncertainties in the experimental data, since the phase
change can span a range of applied pressures during compres-

sion. The range of applied pressures for which phase transition
is observed depends on the method used for the experimental
compression of the materials and the phase-transition rate
[115].

IV. DISCUSSION

Dispersion arises from interaction of instantaneous dipole
(and higher-order multipole) moments of atoms due to fluc-
tuations in their electron densities. At both equilibrium and
expanded geometries, dispersion plays an important role in
the accurate description of molecular crystals and other solid-
state systems. From second-order perturbation theory [116],
the dispersion energy takes the form of an asymptotic series
expansion in the interatomic distance, R:

Edisp = −C6

R6
− C8

R8
− C10

R10
− · · · , (12)

with higher-order terms having increasingly minor contribu-
tions. The number of terms included in this expansion depends
on the particular dispersion correction, with TS including only
the leading-order C6 term, D3 including the C6 and C8 terms,
and XDM including C6, C8, and C10. In practice, the dispersion

TABLE IV. Room-temperature phase-transition pressures (Pc), in GPa, computed for the PT05 benchmark set using FHI-aims. Experimen-
tal reference data [82–85,88] at 293 K are also shown.

GGA GGA+Dispersion

Material PBEsol PBE B86bPBE PBE-TS PBE-XDM B86bPBE-XDM Expt.

Na3Bi 4.85 6.45 7.00 3.90 0.82 0.80 1.00
SrAl2 0.20 1.95 2.84 −3.26 1.00 0.88 1.80
ScGa2 21.62 21.82 21.50 −1.06 19.62 19.56 7.70
LiCd 3.00 4.50 5.50 −0.82 5.00 2.57 11.00
AuAl2 14.50 16.00 17.40 11.00 10.80 11.00 12.50

ME 2.03 3.34 4.05 −4.85 0.65 0.16
MAE 5.87 5.94 6.25 6.01 4.12 4.58
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FIG. 3. Correlation of MEs (top) and MAEs (bottom) in Vth and
Bth for the combined EM11 and IM07 benchmark sets. Solid points
are from QUANTUM ESPRESSO and open points are from FHI-aims.
Due to the high degree of similarity in the PBE-D3 and PBE-D3(BJ)
results, only the latter are shown.

energy is damped (to zero or a small, constant value [30]) for
short internuclear separations.

Given that dispersion interactions are inherently long-
range, it is perhaps counterintuitive to readers that they should
also matter for bulk metals. For compressed metals, bonded
atoms become closer than their equilibrium separations,
where the dispersion energy is almost completely damped.
However, long-range dispersion forces are still present be-
tween atoms and their more distant neighbors within the
periodic lattice. While screening by surrounding atoms or
molecules can reduce the magnitude of the dispersion energy,
these interactions can still be felt between pairs of atoms
separated by up to a few tens of angstroms.

To illustrate why dispersion is important across the whole
EOS, we consider the two-dimensional crystal lattice shown
in Fig. 5 as a model system. This model has a square unit cell
of length a that is replicated in both the x and y directions. The
blue lines indicate the approximate x-distance from a point at

FIG. 4. Room-temperature EOS for SrAl2 computed using dif-
ferent (DC-)DFs within the NAO formalism. The experimental data
are from Ref. [83].

the center of the image at which dispersion interactions would
become significantly damped. Let us first consider the left
panel, corresponding to ambient conditions. Since atoms A
and B are nearest neighbors, the dispersion energy between
them is highly damped and their interactions are well de-
scribed by the base density functional. Conversely, dispersion
interactions between atoms A and B′ (and between atoms A′
and B) would be undamped, and these energy contributions
must be included via the dispersion correction.

To quantify the length scales under discussion, we consider
the sum of van der Waals radii that appear in the XDM
damping function [54] using the B86bPBE-XDM results at
ambient pressure. For the 3d transition metals, this sum of
radii decreases from 3.86 to 3.70 Å across the row from Fe
to Zn. As expected, the sums of vdW radii are larger for the

FIG. 5. Illustration of the geometric changes in a simple solid
at ambient conditions (left) and upon compression (right). The dark
blue balls represent atomic nuclei and the light blue balls represent
the electron clouds around each atom.
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4d and 5d metals; they are 3.9–4.0 Å for Ag, Pt, and Au
and 4.1–4.2 Å for W, Mo, and Ta. The variations between
early- and late-group transition metals are due to the increased
effective nuclear charge. Overall, the sums of vdW radii are
roughly 4 Å for all metals considered. This means that the
dispersion energy will be damped to half its value when a pair
of metal atoms are separated by this distance. We can then use
4 Å as an approximate length scale at which the dispersion
interactions become highly damped in Fig. 5. This can be
contrasted with the metal-metal bond lengths in these systems,
which range from 2.4 to 2.9 Å at ambient pressure.

Now we consider the right panel of Fig. 5, which illus-
trates the situation when pressure is applied to the system, for
example using a diamond anvil cell. This reduces the lattice
constant such that a becomes much less than the equilibrium
bond length (R in the figure). This causes the A-B′ and A′-B
interactions to move into the short-range region where they
are damped. However, we must still account for long-range
dispersion interactions for A′′-B and A′-B′. At high pressure,
there are more neighbors within a given radius of a reference
atom that can contribute to the dispersion energy, and its mag-
nitude therefore increases with pressure. Thus, dispersion can
be important in the description of metals at ambient conditions
and under compression, as it is in the description of molecular
solids.

V. CONCLUSION

In this article, we studied the performance of selected den-
sity functionals and post-SCF dispersion corrections for the
description of compressed elemental metals and intermetallic
compounds relative to high-pressure experimental data. Four
properties were considered: the unit-cell volume, the bulk
modulus, the pressure derivative of the bulk modulus, and
phase-transition pressures.

Thermal expansion is important when comparing with ex-
periment as DF calculations give by default the static (0 K)
energy and volume, while experiments are performed at finite
temperature (of 293 K or higher). Correcting for thermal ef-
fects leads to a reduction in the errors for computed volumes
and bulk moduli with most functionals considered. The simple
Debye model used here is a very appealing alternative to

computationally expensive thermal-correction methods such
as the harmonic or quasiharmonic approximations. However,
the Debye method may not be as accurate and is perhaps one
source of error contributing to the poor predictions of B′

th and
some phase-transition pressures.

The dispersion models that we recommend through this
study are D3, D3(BJ), and XDM. We suggest that the TS
dispersion model should not be used for the study of el-
emental metals and intermetallic compounds as the model
overestimates dispersion effects in these systems. Addition-
ally, PBEsol without any dispersion correction generally gives
low errors for prediction of volumes and bulk moduli due to
the behavior of its enhancement factor and systematic error
cancellation between exchange and the lack of dispersion cor-
relation. Overall, PBE-D3 and PBE-D3(BJ) with QUANTUM

ESPRESSO, PBE-XDM and B86bPBE-XDM with FHI-aims,
and PBEsol (with both codes) give the best performance of
the methods considered.

There is excellent agreement between the plane wave and
NAO implementations of PBEsol and other GGA functionals.
For XDM, the NAO implementation gives larger dispersion
coefficients than obtained with the PAW method, leading to
greater volume contraction for many of the elemental metals
and improved agreement with experiment. This implies that
dispersion contributions from the core electrons are not negli-
gible in metals.

Past studies have demonstrated that dispersion is important
in the description of both molecular and ionic solids under
ambient conditions. However, whether dispersion matters or
not is a question that is routinely asked by scientists study-
ing materials under extreme conditions. The present work
establishes that we should include long-range dispersion in-
teractions when describing metals both at ambient conditions
and under compression, and it is important to carefully choose
an appropriate dispersion model.
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