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A one band Hubbard model with intermediate coupling is shown to describe the two most important unusual
features of a normal state: linear resistivity strange metal and the pseudogap. Both the spectroscopic and transport
properties of the cuprates are considered on the same footing by employing a relatively simple post-Gaussian
approximation valid for the intermediate couplings U/t = 1.5–4 in relevant temperatures T > 100 K. In the
doping range p = 0.1–0.3, the value of U is smaller than that in the parent material. For a smaller doping,
especially in the Mott insulator phase, the coupling is large compared to the effective tight binding scale and
a different method is required. This scenario provides an alternative to the paradigm that the coupling should
be strong, say U/t > 6, in order to describe the strange metal. We argue that, to obtain phenomenologically
acceptable underdoped normal state characteristics like T ∗, pseudogap values, and spectral weight distribution,
a large value of U is detrimental. Surprisingly the resistivity in the above temperature range is linear, ρ =
ρ0 + α m∗

e2nh̄
T , with the “Planckian” coefficient α of order 1.

DOI: 10.1103/PhysRevB.107.054508

I. INTRODUCTION

The physical nature of the d-wave pairing in high-Tc

cuprates remains a hotly debated topic in condensed matter
physics. However, it was noticed early on that the normal
state is as unusual as the superconducting one. The two main
unusual features, broadly referred to as the pseudogap [1] and
the strange metal [2], cannot be described in the customary
framework of the Landau liquid. A pseudogap appears near
the antinodal points below temperature T ∗ and increases in the
underdoped regime p < popt (popt = 0.16) towards the Mott
insulator phase, reaching values � = 100–200 meV [3,4]. A
natural explanation relies on the short range antiferromagnetic
(AF) order, since the pseudogap regime borders the Mott
insulator phase at very low doping. It was observed [5] that the
Fermi surface fractures into small “pockets” for doping below
the Lifshitz point p∗ precisely when the pseudogap vanishes.
This is described quite well by variants of the phenomenolog-
ical resonating valence bond (RVB) model [6] derived from a
Hubbard model with on site repulsion U (and various hopping
parameters t, t ′, . . . ) within a generalization of the mean field
theory largely preserving the quasiparticle picture [7].

The hallmark of the strange metal is linear resistivity in
the 100–450 K temperature range at intermediate and rela-
tively large doping, generally above T ∗. It is believed that
the quasiparticle picture should be properly modified in this
phase. Approaches like the marginal Fermi liquid [8], quan-
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tum criticality [9], and Planckian dissipation [10], explain part
of the experimental results, but typically start from Hamil-
tonians different from those used to describe the pseudogap
physics. Thus each particular aspect of the normal state can be
captured by a particular phenomenological model to provide a
consistent description of the whole normal state (not including
superconductivity) phase diagram (see Fig. 3), but a single
theory is still a challenge. The main problem seems to be the
conflict between two “paradigms.” It is widely accepted that
strong electron correlations (in our case on-site repulsion U
larger than the band width of ∼5t) play a central role in both
the spin fluctuation theory of the d-wave superconductivity
and in the normal state properties. It seems consistent with
the measured values of U ∼ 1–3 eV for the parent material
(x = 0) Mott gap in many cuprates. First-principles deriva-
tions (almost exclusively at zero doping) of the “mesoscopic”
one-band Hamiltonian support a strong coupling [11]. For
one-layer cuprates, one obtains U = 7.7t for La2CuO4 (Tc =
34 K at popt) and U = 7.2t for HgBa2CuO4 (Tc = 96 K).
The trend upon the inclusion of the long range Coulomb
interactions on the microscopic level, however, is towards
lower values [12]: U = 6.6t for La2CuO4 and U = 4.5t for
HgBa2CuO4. Electron doped and infinite layer cuprates have
significantly lower values U/t = 1.3–3, so that in some cases
the Mott insulator phase is missing [13], e.g., for Nd2CuO4

(Tc = 24 K) one obtains [12] U/t = 2.6.
Upon doping, the effective coupling strength U in the

mesoscopic level is expected to decrease. Recently a first-
principles study of doped cuprates La2−pSrpCuO4, p = 0.25,
was performed [14]. Although the values of U were not ex-
plicitly calculated, reduction of the gap at the crystallographic
X point by a factor of 2.5 compared to the parent material
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FIG. 1. The crossover temperature T ∗ in the Hubbard model with
(t ′ = 0) at half filling. The blue curve is the HF approximation at
small coupling and the nonlinear σ model at large coupling inter-
polation. The purple curve is the Gaussian perturbation theory at
intermediate coupling interpolated with the CDMFT diagrammatic
approach at strong coupling.

indicates a lower value. To graphically demonstrate the qual-
itative distinction between the strongly and intermediate
coupling regimes, let us look at the crossover temperature T ∗
in the simplest Hubbard model at half filling. Interpolating
between the early “simplistic” Hartree-Fock (HF) approxi-
mation at small coupling and the nonlinear σ model at large
coupling [15], one expects a maximum to appear at U = 5t ,
(blue curve in Fig. 1). The Gaussian perturbation theory at in-
termediate coupling (described below; see also [16]) interpo-
lated with the cluster dynamical mean-field theory (CDMFT)
diagrammatic approach [17] at strong coupling gives rise to a
correction (purple curve in Fig. 1). The U dependences of T ∗
obtained from these two calculations share the same feature:
rising monotonically at intermediate coupling and decreasing
at strong coupling. This separates the (Slater) weakly corre-
lated domain from the (Mott-Heisenberg) strongly correlated
domain. It is sometimes referred to [12,18] as the “Mott-Slater
transition.” The feature remains intact (with typically lower
values of T ∗) at nonzero doping.

The high values of the coupling at optimal doping are
naturally favored in the Hubbard model description of both
the normal and superconducting states. Recently, however,
serious doubts were cast on this possibility. Employing the
tensor network [19], constrained path quantum Monte Carlo
(CPQMC), density matrix renormalization group (DMRG)
[20], and the strong coupling diagram technique (SCDT) [21]
methods, it was demonstrated that the d-wave superconduc-
tivity is superseded by other phases at least for U > 6t . In
the Slater regime the Hubbard model does exhibit d-wave
superconductivity within perturbation theory [22], but its Tc

is too low. Whether the Hubbard model supports sufficiently
strong d-wave superconductivity in the intermediate region
2 < U/t < 5 is still an open question considering recent op-
posite claims [23,24]. In addition the coupling strength is
poorly correlated with the observed values in cuprates, e.g.,
the highest Tc = 133 K (under ambient conditions) trilayer su-
perconductor [12] HgBa2Ca2Cu3O8 has a density-functional

theory (DFT) estimated (zero doping) value of U/t = 2.5
only. To quote the authors, “Our results suggest that the strong
correlation enough to induce Mott gap may not be a prereq-
uisite for the high- Tc superconductivity.” Recent alternatives
include the apical phonon [24] and polaron [25] mechanisms.

A general feature of the strong coupling scenario is that the
spectrum is expected to be greatly reconstructed and might not
contain well defined quasiparticles. However, quasiparticles
are observed in numerous experiments, perhaps excluding
the strange metal regions [26]. Angle-resolved photoemission
spectroscopy (ARPES) experiments and transport properties
are “phenomenologically” described by the quasiparticle pic-
ture, thus tacitly assuming a weak coupling. This includes
description of small Fermi “pockets” in the underdoped
regime, and the Landau liquid in highly overdoped samples
[6]. In addition the order of magnitude of the pseudogap (up
to 200 meV at p = 0.05) is smaller than U for strong coupling,
thus favoring an intermediate coupling option U/t ∼ 2–4. In
this case the quasiparticles are well defined and the sym-
metrized mean field approach [16] may be used to describe the
temperature range above 100 K and doping above p = 0.1.
This includes physics of the strange metal and pseudogap for
sufficiently large Fermi arcs (pockets).

In this paper the normal state properties of a generic (one
layer) hole cuprate (e.g. HgBa2CuO4+p) in the doping range
0.1 < p < 0.3 and temperature range 100 < T < 460 K are
described by the one-band intermediate coupling Hubbard
model. The symmetrization method [16] describing the short
range AF state T < T ∗ is applied to calculate both the spectral
weight and conductivity. Surprisingly, linear resistivity, ρ =
ρ0 + AT , is obtained with A comparing well with experiments
[10,27]. Quantitative comparison of the conductivity with ex-
periments therefore goes beyond scaling arguments [9]. The
transition at T ∗ is comparable to that observed in ARPES [28]
or transport. The transport versus spectroscopic T ∗ determi-
nation is discussed within a well defined framework.

II. METHOD AND ITS JUSTIFICATION

A. Model

The single-band Hubbard model is defined by the Hamil-
tonian

H =
∑

k,α=↑,↓
aα†

k (εk − μ)aα
k + U

∑
i

n�
i n↓

i ,

εk = −2t (cos kx + cos ky) − 4t ′ cos kx cos ky

− 2t ′′(cos 2kx + cos 2ky). (1)

The lattice spacing a is the unit of length. Hoppings up to the
third nearest neighbor are included with values t = 250 meV,
t ′ = −0.16t , t ′′ = 0.09t . The chemical potential μ varies in a
wide range, and the on-site U = 2.5t .

Due to strong fluctuations in two dimensions (2D), true
long-range order exists only for discrete symmetry breaking.
Since the model possesses a continuous SU (2) spin sym-
metry, AF correlations are always short range. Nevertheless,
a well-defined crossover temperature T ∗ exists that sepa-
rates the short range AF from the paramagnetic phase. At
least naively, the symmetry is “almost” broken in the sense
that the correlator typically decreases slowly. The Gaussian

054508-2



UNIFIED INTERMEDIATE COUPLING DESCRIPTION OF … PHYSICAL REVIEW B 107, 054508 (2023)

FIG. 2. The “setting sun” diagram for the self-energy that con-
tributes to the “post-Gaussian approximation.” The directed lines are
Gaussian correlators, while the vertices represent the (bare) Hubbard
coupling U .

covariant approximation is the simplest variational approach
which may account for the (spurious) dynamical symmetry
breaking. It is described in detail for bosonic and fermionic
systems in Ref. [29]. In a recent paper [16] we proposed a
“symmetrization” method to study strongly interacting elec-
tronic systems in the pseudogap phase. Symmetrization is
achieved by integration of a one- or two-body correlator over
the almost broken symmetry group. The method was tested
on the benchmark models, the 1D and 2D one-band Hubbard
models. Throughout the paper we use units of h̄ = 1, except
when phenomenology is discussed.

B. Method

One starts with a solution of the Gaussian equations,
paramagnetic or AF [30], ignoring the spiral ones [31], and
corrects it perturbatively by adding the leading self energy
correction. The method was originally proposed [32,33] in the
context of bosonic theories. The paramagnetic solution of the
HF equations (see Ref. [16]) for given chemical potential μ,
temperature T , and couplings U, t , etc. is characterized by the
density n. The inverse Green’s function is

G−1
HF = −(ω + iη0 + ek ), (2)

where

ek = εk − μr, (3)

with the “renormalized chemical potential”

μr = μ − Un/2. (4)

The self-energy is graphically represented in Fig. 2
Its explicit form, after summation over the two loop fre-

quencies, is

	(ω, k) = U 2

4N2

∑
l,m

{
tanh

( em
2T

) − tanh
( ek−l−m

2T

)}{
tanh

( el
2T

) − coth
( ek−l−m−em

2T

)}
ω + iη0 + el + em − ek−l−m

, (5)

where N is the number of the lattice points. Consequently,
the post-Gaussian approximation for the (retarded) Green’s
function is

G(ω, k) = − 1

ω + iη0 + ek + 	(ω, k)
. (6)

In the antiferromagnetic (AF) phase expressions are much
more cumbersome, and it is relegated to Appendix A.

C. Phase diagram and spectral weight at intermediate coupling

The two main distinctive features, referred to as the pseu-
dogap and the strange metal, are given in Fig. 3. A pseudogap
shows up near the antinodal points below temperature T ∗.
It increases in the underdoped regime p < popt towards the
Mott insulator phase and reaches values in the range � =
100–200 meV. Here, popt = 0.16 is the doping where the
transition temperature to superconductor is the highest. One
natural explanation for this is the short range AF order, as
the pseudogap regime borders the AF Mott insulator phase
at very low doping. It was observed in Ref. [5] that the Fermi
surface fractures into small “pockets” for dopings below the
Lifshitz point p∗ exactly when the pseudogap vanishes. This
is well described by variants of the phenomenological RVB
model (see Ref. [6]) that is derived from a Hubbard model
with on site repulsion U = 2.5t and hopping parameters t =
250 meV, t ′ = −0.16t, t ′′ = 0.09t .

The main feature of pseudogap is observed using ARPES.
The spectral weight, A(ω, k) = −1/π Im[G(ω, k)], near the
antinode measured [34] in Bi2Sr2CaCu2O8+p (BSCCO) re-
sembles that calculated using the post-Gaussian method. To

characterize the pseudogap phase and the crossover line T ∗,
spectral weight, measured in numerous ARPES experiments
[34,35], is calculated. In Fig. 4(a), we plot spectral weight
at the Fermi level as a function of quasimomentum, with
p = 0.16 and temperature from 100 to 280 K. One notes that
the spectral weight in the antinodal region is larger than that
in the nodal region by a factor of about 2.

The signature of the strange metal is linear resistivity in the
temperature range 100–400 K at intermediate and relatively

FIG. 3. Phase diagram of cuprates. The T ∗ line (blue) separates
the pseudogap phase from the strange metal. At very low (hole) dop-
ing Mott insulator (MI) appears, while the d-wave superconductivity
is observed below the dashed line.
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FIG. 4. (a) The zero frequency spectral weight in the first quarter of the Brillouin zone (BZ). (b) Closing the pseudogap at a point close to
the Fermi surface of (a) (the pink blob) and near the antinode. Spectral weight is shown as a function of frequency. The paramagnetic phase (a
single peak) is represented by T = 280 K. The rest are antiferromagnetic (a double peak). (c) The experiment for Bi2Sr2CaCu2O8+p is taken
from Ref. [34].

large dopings, generically above T ∗. It is generally believed
that the quasiparticle picture should be properly modified in
this phase. Approaches such as the marginal Fermi liquid
[8], quantum criticality [9], and Planckian dissipation [10],
explain part of the experimental results, but typically start
from Hamiltonians that are different from those used to de-
scribe the pseudogap physics. Thus each specific aspect of the
normal state may be captured by a particular phenomenolog-
ical model that provides a consistent description of the whole
normal state (not including superconductivity) phase diagram;
see Fig. 3. However, a unified theory remains evasive. Low
temperature pseudogap physics may also be depicted quite
well by various variational approaches.

In Fig. 4(b) the spectral weight dependence on frequency
across the T ∗ crossover line for p = 0.16 is given. We choose
the quasimomentum k =π (1, 1

8 ) close to the Fermi surface,
which is indicated by the magenta blob in Fig. 4(a). Several
curves for the spectral weight with temperature in the range
T = 100–280 K are shown. The crossover T ∗ therefore lies
in the temperature range between T = 260 and 280 K. The
pseudogap value corresponds to the energy spacing between
the two maxima. It widens as the temperature decreases. Si-
multaneously the peak values become higher and in the valley
between them the spectral weight vanishes. These features
are qualitatively consistent with ARPES [34,35] observations
shown in Fig. 4(c). Spectral weight from 30 to 210 K for a
slightly underdoped BSCCO sample, Tc = 92 K, are shown.
One clearly observes, shown in Fig. 4(b), that below T ∗ =
190K a two-peak structure appears. The post-Gaussian cor-
rection modifies the HF picture by shifting T ∗ to a lower
value and reducing the pseudogap value at low temperature.
For other quasimomenta (e.g., near the nodal position given in
Fig. 5) the dependence is similar and in accord with available
experiments. Now, we turn to the calculation of the transport
properties.

D. Scattering due to strong repulsion

The correction to the scattering rate due to interaction
gives the main contribution to the resistivity in relatively clean
cuprates, while the impurity scattering plays a minor role. The
interaction contribution to conductivity is given by the Kubo
formula (assuming the fourfold symmetry),

σ (ω) = − Im
�(iωn)

ω

∣∣∣∣
iωn=ω+i0

, (7)

with the current-current (Matsubara) correlator [36]

�(iωn) = e2T
∫

d2k

(2π )2

∑
m

v(k) · �(k; iωm, iωm + iωn)

× G(k, iωm)G(k, iωm + iωn). (8)

Here the (unrenormalized) Fermi velocity is vi(k) = ∂εk
∂ki

and
�(k; iωm, iωm + iωn) is the current-fermion-fermion vertex
function �(k, k + q; iωm, iωm + iωn) with the bosonic mo-
mentum q = 0. Without the “vertex corrections” it is just the
velocity,

�0(k; iν, iν + iωn) = v(k). (9)

As will be demonstrated below, even though such a drastic
simplification has been made, the strange metal behavior can
still be captured correctly. The second important simplifi-
cation is that we do not attempt to calculate the one-body
correlator G self-consistently as in, for example, the RPA
approach. In this approach, collective excitations such as para-
magnon and plasmon are not included. They are not expected
to participate in the explanation of the strange metal phe-
nomenon.
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FIG. 5. The self-energy due to the Hubbard repulsion for doping p = 0.26. (a), (b), (c), and (d) show the imaginary part of the self-energy
divided by temperature, Im[	(0, k)/T ], in the first quarter of the BZ for 220, 280, 340, and 400 K, respectively.

Within this approximation the current-current correlator
simplifies:

�(iωn) = e2T
∫

d2k

(2π )2

∑
m

v2(k)G(k, iωm)G(k, iωm + iωn).

(10)
Using the Lehmann representation via spectral weight A,

G(k, iωm) =
∫

dν
A(k, ν)

iωm − ν
,

G(k, iωm + iωn) =
∫

dν
A(k, ν)

iωm + iωn − ν
, (11)

one may write the function as

�(iωn) = e2T
∫

d2k

(2π )2

∑
m

∫
dν1dν2v

2

× (k)
A(k, ν1)

iωm − ν1

A(k, ν2)

iωm + iωn − ν2

= e2T
∫

d2k

(2π )2

∫
dν1dν2v

2(k)A(k, ν1)A(k, ν2)

× fF (ν1) − fF (ν2)

iωn + ν1 − ν2
. (12)

Here fF [ε] = (1 + exp[ε/T ])−1 is the Fermi distribution.
This approximation (for the full Green’s function G) has been
used to analyze the neutron scattering data with G determined
by ARPES [37] and is called the generalized Lindhard func-
tion.

Performing analytic continuation for �(iωn)iωn=ω+i0, one
obtains the imaginary part of �(iωn)iωn=ω+i0 [using the iden-
tity Im 1

ω+i0+ν1−ν2
= −πδ(ω + ν1 − ν2)]:

Im �(iωn)iωn=ω+i0 = − πe2T
∫

d2k

(2π )2

∫
dν1dν2v

2(k)

× A(k, ν1)A(k, ν2)
{ fF (ν1) − fF (ν2)}

ν1 − ν2

× δ(ω + ν1 − ν2). (13)

Integrating over ν2, and taking the DC limit ω → 0, one
finally obtains

σ = −πe2

h̄N

∫ ∞

ν=−∞
f ′
F (ν)

∑
k

v(k)2A(ν, k)2. (14)

All the frequency summations are performed exactly, so
that no problematic analytic continuation is needed. Of course
the range of validity of the expansion is limited by the require-
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FIG. 6. The square of the Fermi velocity in the first quarter of the
square lattice BZ for the parameters in the text.

ment that a higher order correction (the order is rigorously
defined in Ref. [33]) around the Gaussian approximation
should be smaller than the preceding ones. It is important to
note that the factor

v(k)2 = 4{(t + 2t ′ cos ky + 4t ′′ cos kx )2 sin2 kx + (kx ↔ ky)}
(15)

vanishes quadratically at the van Hove singularities � and M;
see Fig. 6. As a consequence the antinode region and the �

and M regions practically do not contribute to the conductiv-
ity. It turns out that the often made simplification of replacing
the f ′

F [ω] factor in Eq. (14) by a delta function gives erroneous
results; see the next section.

III. APPLICABILITY RANGE OF THE POST-GAUSSIAN
METHOD

A. General justification argument

There is no widely accepted criterion to determine the
range of applicability of a nonperturbative and nonvariational
approximation. The post-Gaussian method presented in the
previous section uses a variational HF two-point Green’s
function to calculate the leading perturbative contribution to
a four-point function that vanishes within the HF approxi-
mation. In particular, the Coulomb repulsion contribution to
scattering rate (dissipation) is a quantity of this type. The va-
lidity of the approximation is limited by the requirement that a
yet higher order correction around the Gaussian (HF) approx-
imation (the order is rigorously defined in Ref. [32]) is smaller
than the leading one. A rough criterion is that the difference
between the symmetrized HF and the post-Gaussian densities
is much smaller than the half-filling density. Another criterion
is formulated in terms of inverse compressibility below. For
a relatively small coupling U = 2.5t used in this paper, the
temperature applicability range is expected to extend down to
the range depicted in Fig. 3 or even beyond it.

Similar views have been expressed in several inves-
tigations. In particular, the lowest order Maki-Thompson
approximation was shown to be small [38]. It was shown
also that the Aslamasov-Larkin terms vanish under certain
conditions [39]. In addition, approximate expressions for var-
ious four-point correlators via the “exact” two-point function
and (renormalized) coupling strength similar to Eq. (10) were
widely used to phenomenologically relate different experi-
mental data. The ARPES information is commonly used to
determine Green’s function G. In particular, the spin-spin
(charge-charge) correlators measured in inelastic neutron scat-
tering (INS) was related to Green’s function in Refs. [37,40].
Electrical transport (including the Hall conductivity) was
related to ARPES in Ref. [41], while the thermoelectric trans-
port (like the Nernst effect) was studied in Ref. [42].

As mentioned above, it is difficult, however, to rely on
the diagrammatic analysis (even the one based on the Bethe-
Salpeter equations and Ward identities), so we would prefer to
compare our calculations of the self-energy and conductivity
with available Monte Carlo (MC) simulation below.

B. Comparison of compressibility with MC calculation

To establish the range of validity of the post-Gaussian
approximation, we extend the high temperature comparison
with MC simulation. In this subsection we compare the results
of the post-Gaussian approximation for the extended Hub-
bard model with MC simulation in Ref. [43]. The coupling
was relatively large: U = 6t . The dispersion relation includes
up to the second nearest neighbors hopping amplitudes with
t = 250 meV, t ′ = −0.25t , and t ′′ = 0. The chemical poten-
tial μ determines the hole doping in the range p = 0.1–0.3.
The inverse compressibility in the high temperature range
0.2t < T < 8t is given in Fig. 7. The agreement is very good
including the high temperature results (dashed lines) calcu-
lated analytically [44].

C. Comparison of resistivity

The DC resistivity is compared in Fig. 8. The values of
resistivity and temperatures were translated to the physical
units with hopping parameter t = 250 meV. The resistivity
curves are slightly shifted (see Fig. 8) compared to the MC
simulation. The case is not realistic for cuprates since the
values of T ∗ (of order 600 at p = 0.2) determined from non-
linearity of ρ(T ) are thousands of Kelvin for low doping,
much higher than the experimental observed values. Analyti-
cally demonstrated [44] linearity in the large T limit (T 
 t)
is quite common and is not directly related to the strange metal
that appears at temperatures 100–450, K which is obviously
much lower than the hopping energy t . Also the resistivity
is much lower than the experimental ones. However even
for this coupling, the post-Gaussian approximation results are
still in quantitative agreement with the MC results at high
temperature T > 1.1t � 3200 K. It may be seen that the
post-Gaussian approximation is much better than the HF ap-
proximation. Even at the low temperature, the post-Gaussian
approximation gives a qualitatively good description of the
pseudogap phase.
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FIG. 7. The inverse compressibility of the Hubbard model at strong coupling, U = 6t , for various dopings. Dots are the results of the
post-Gaussian approximation, while lines are the results of MC simulations. (a) The high temperature range, T = 1.2t–8t . (b) The lower
temperature range, T = 0.2t–1.2t . Vertical red lines mark the intermediate range in which the post-Gaussian approximation breaks down.

IV. STRANGE METAL RESISTIVITY

A. Transport

Now let us turn to transport for the case that U is of inter-
mediate strength. The DC resistivity (per CuO layer) is given
in Fig. 9. It clearly demonstrates the linear dependence, ρ =
ρ0 + AT , in the strange metal region of the phase diagram.
This is the main result of the present paper. The value of A �
25 �/K (resistance per layer) at doping p = 0.16 are a bit
higher than those found by interpolating the La2−pSrpCuO4

data of [10] to p = 0.16. However, as was discussed in the
Introduction, the intermediate value of U = 2.5t is smaller
than that of La2−pSrpCuO4. We found that for higher value
of U , the slope decreases. Since disorder is always present
in cuprates, doping-dependent value of disorder strength η0 =
h̄/2τ0 must be taken into account. We have chosen a small

value of η0 = 3 meV. Using a different value of η0 (see
Fig. B12) would increase the residual resistivity ρ0. At higher
doping the crossover to Landau liquid appears; see Fig. 9(b).

B. Scattering time

To understand qualitatively the results, we plot the in-
tegrand of the imaginary part of the self-energy (due to
on-site repulsion), Im(	k ) = h̄/2τk at ω = 0 as a function
of quasimomentum in Figs. 10(a) and 10(b) for two different
temperatures. For this purpose a higher doping p = 0.26 is
considered and thus there would be no “intercept” ρ0 in Fig. 9.
Plots of the ratio A(k)/T over the whole BZ for T = 200
and 400K are shown in Fig. 10 and the curves are hardly
distinguishable. This demonstrate that 1/2τk ∝ T . Due to the
maximum of the factor v(k)2 in Eq. (14) the most important

FIG. 8. Resistivity as a function of temperature of the Hubbard model at strong coupling U = 6t . (a) The very high temperature range,
T = 1.2t–8t . (b) The lower temperature range, T = 0.2t–1.4t . Vertical red lines mark the range in which the post-Gaussian approximation
breaks down.
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FIG. 9. Resistivity in the strange metal phase. (a) The post-Gaussian results are very accurate beyond 100 K (dashed-brown line). Dashed
straight lines are interpolation. The transport determined crossover temperature is marked by T ∗. (b) A larger temperature and doping range
demonstrate crossover to the Landau liquid.

contribution to conductivity comes from a broad region near
the nodal point. To demonstrate this, we plot the spectral
weight dependence along the �-M line [see the pink line
in Fig. 10(a)] in Fig. 10(c). The dependence on location is

different for temperatures 200, 300, and 400 K. However,
the three curves almost coincide when the spectral weight
is divided by T , as shown in Fig. 10(d). One observes from
Fig. 4(a) that the Fermi surface in this case is nearly circular.

FIG. 10. (a) The self-energy due to Hubbard repulsion for doping p = 0.26. The imaginary part of the self-energy divided by temperature,
Im[	(0, k)/T ], in the first quarter of the BZ for 200 K. (b) Same for 400 K. Note the maximum on the Fermi surface [shown in Fig. 2(a)].
(c) The imaginary part of the self-energy for temperatures 200, 300, and 400 K on the � to M line [marked by a pink line in (a)]. (d) The
imaginary part of the self-energy divided by temperature for the same temperature.
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FIG. 11. (a) The imaginary part of the self-energy along the �-M line for various temperatures. (b) The same quantities after being scaled
by temperature.

Thus the effective mass approximation can be applied to es-
timate the conductivity via the Drude formula σ = e2nτ/m∗
with h̄/2τ = Im[	node] � 0.25T . This is close to the result
in Fig. 9. Using the phenomenological (Planck) formula A =
αm∗/e2nh̄ [10], one estimates α = 0.5.

The A2 factor in the conductivity, Eq. (14) depends cru-
cially on the imaginary part of the self-energy 	(ω, k) at
very low frequencies [due to a strong peak of f ′

F (ω)]. The
self-energy at zero frequency as a function of quasimomentum
is given in Fig. 5. The doping p = 0.21 is smaller than the one
(p = 0.26) presented in Fig. 10 of the main text, so that one
can still observe the strange metal behavior of resistivity. A
cut of this distribution along the �-M line (see Ref. [4]) is
given for four temperatures in Fig. 11.

V. CONCLUSIONS

To summarize, an intermediate-coupling one-band Hub-
bard model can be used to describe the two most important
unusual normal state features of cuprates: the pseudogap and
strange metal. Both the spectroscopic and transport properties
of the cuprates in the whole doping range were considered
on the same footing within a relatively simple (symmetrized)
post-Gaussian approximation. It is valid for intermediate cou-
plings U/t = 1 − 4 in the temperature range T = 100–500 K.
We have assumed a relatively small coupling that is indepen-
dent of doping in the range 0.1–0.3. For a smaller doping,
especially in the Mott insulator phase, the coupling on the
effective tight binding scale increases and a different method
would be required. This provides an alternative to the com-
monly accepted paradigm that the coupling at a significant
doping should be strong enough, say U/t > 6, for the sys-
tem to describe the strange metal. We argued (see also the
description of the Lifshitz transition and fractionalization of
the Fermi surface in a similar framework [24]) that to ob-
tain phenomenologically acceptable underdoped normal state
characteristics like T ∗, pseudogap values, and spectral weight
distribution, a large value of U is detrimental. Of course this
applies only to the short range AF order interpretation of the
pseudogap. Surprisingly the resistivity in the above tempera-
ture range is linear, ρ = ρ0 + α m∗

e2nh̄ T , with the “Planckian”
coefficient α ∼ 0.5. Interestingly the spectroscopy estimate

of T ∗ [from the vanishing of the pseudogap, Fig. 4(b), as
observed in ARPES] is typically lower than that determined
from resistivity (Fig. 9).

First-principles calculations for parent materials of the
electron doped cuprates generally result in intermediate or
even small values of the effective U [12]. The present study
demonstrates that for hole doped cuprates the intermediate
coupling option is viable despite the fact that most first-
principles determinations for parent materials favor a large
coupling [11]. Materials like La2CuO4 and Bi2Sr2CuO6 per-
haps are really strongly coupled even when doped, but higher
Tc superconductors like HgBa2CuO4 and Tl2Ba2CuO6 might
belong to the intermediate coupling class when doped. The
situation with two or three layered cuprates should be similar
to the model adapted to include interlayer hopping.

We used a very simple approximation method [see
Eq. (10)] in which the current-current correlator is given in
terms of the one-body Green’s function G calculated within
the post-Gaussian approximation, and no vertex corrections
are included. The second important simplification is that we
do not attempt to calculate G self-consistently. Effectively, the
Hartree-Fock correlator G0 is just corrected by the the leading
order self-energy diagram (two loop “setting-sun” diagram).

FIG. 12. Dependence of the strange metal resistivity on the dis-
order parameter.
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This allows us to avoid doing numerical analytic continuation,
which is problematic. As demonstrated above, the strange
metal behavior can still be captured correctly even though
such simplifications are made.
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APPENDIX A: THE POST-GAUSSIAN CORRECTION TO THE (SYMMETRIZED) HARTREE-FOCK APPROXIMATION

1. Self-energy in the AF phase

The AF solution of the HF equations, see Ref. [16], for given chemical potential μ, temperature T and couplings U, t , etc. is
characterized by the density n and pseudogap �. The inverse Green’s function is a matrix in the sublattice space,

G−1
s,HF =

(
ω + iη0 + e′

k + (−1)s� hk

h∗
k ω + iη0 + e′

k + (−1)s�

)
, (A1)

where

e′
k = −4t ′ cos(2πk1/Nx ) cos[2π (k1 − ky)/Nx] − 2t ′′{cos(4πk1/Nx ) + cos[4π (k1 − ky)/Nx]} − μr,

x2
k = �2 + {2t[cos(2πk1/Nx ) + cos(2π (k1 − ky)/Nx )]}2,

hk = t (1 + ei2π (2k1/Nx ) + ei2π (ky/Nx ) + ei2π (2k1−ky )/Nx ). (A2)

The self-energy is also a spin dependent matrix in the sub-lattice space. G−1 = G−1
HF − 	, with the diagonal components

	AA
s (ω, k) = 	BB

s (ω, k) = 4U 2

N2

∑
p,q

Sdiag(ω, xp, xq, xp+q−k,−e′
p,−e′

q,−e′
p+q−k, (−1)s+1�) (A3)

and of-diagonal ones

	AB
s (ω, k) = 4U 2t3

N2

∑
p,q

φpφqφ
∗
p+q−kSoff (ω, xp, xq, xp+q−k,−e′

p,−e′
q,−e′

p+q−k ), (A4)

	BA
s (ω, k) = 4U 2t3

N2

∑
p,q

φ∗
pφ∗

qφp+q−kSoff (ω, xp, xq, xp+q−k,−e′
p,−e′

q,−e′
p+q−k ).

The corresponding functions are

Soff (ω, a, b, c, α, β, γ ) = 1

16abc

[
c tanh

[−b + β

2T

]{
− tanh

[−a+α
2T

]
(a + b + ω − α − β + γ )2 − c2

+ tanh
[

a+α
2T

]
(a − b − ω + α + β − γ )2 − c2

}

+c tanh

[
b + β

2T

]{
tanh

[−a+α
2T

]
(a − b + ω − α − β + γ )2 − c2

− tanh
[

a+α
2T

]
(a + b − ω + α + β − γ )2 − c2

}

+b tanh

[−c + γ

2T

]{
− tanh

[−a+α
2T

]
(a − c + ω − α − β + γ )2 − b2

+ tanh
[

a+α
2T

]
(−a − c + ω − α − β + γ )2 − b2

}

+b tanh

[
c + γ

2T

]{
tanh

[−a+α
2T

]
(a + c + ω − α − β + γ )2 − b2

− tanh
[

a+α
2T

]
(−a + c + ω − α − β + γ )2 − b2

}

+a coth

[−b + c + β − γ

2T

]
tanh

[−c+γ

2T

] − tanh
[−b+β

2T

]
(−b + c − ω + α + β − γ )2 − a2

+a coth

[
b + c − β + γ

2T

]
tanh

[−c+γ

2T

] − tanh
[ c+γ

2T

]
(b + c + ω − α − β + γ )2 − a2
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+a coth

[
b + c + β − γ

2T

]
tanh

[−b+β

2T

] − tanh
[ b+β

2T

]
(b + c − ω + α + β − γ )2 − a2

+a coth

[−b + c − β + γ

2T

]
tanh

[ c+γ

2T

] − tanh
[ b+β

2T

]
(b − c − ω + α + β − γ )2 − a2

]
. (A5)

In the last four terms, l’Hopital’s rule must be used when the argument of hyperbolic cotangent is vanishing.
The diagonal self-energy function has the following form:

Sdiag(ω, a, b, c, α, β, γ ,�) = 1

16abc

8∑
i=1

si, (A6)

where

s1 = c(a + �) tanh

[−a + α

2T

]{
− tanh

[−b + β

2T

]
(−b + �)(a + b + ω − α − β + γ − �)

(a + b + ω − α − β + γ )2 − c2

+ tanh

[
b + β

2T

]
(b + �)(a − b + ω − α − β + γ − �)

(a − b + ω − α − β + γ )2 − c2

}
, (A7)

s2 = c(a − �) tanh

[
a + α

2T

]{
tanh

[−b + β

2T

]
(−b + �)(a − b − ω + α + β − γ + �)

(a − b − ω + α + β − γ )2 − c2

− tanh

[
b + β

2T

]
(b + �)(a + b − ω + α + β − γ + �)

(a + b − ω + α + β − γ )2 − c2

}
,

s3 = b(a + �) tanh

[−a + α

2T

]{
tanh

[−c + γ

2T

]
(−c + �)(a − c + ω − α − β + γ + �)

(a − c + ω − α − β + γ )2 − b2

− tanh

[
c + γ

2T

]
(c + �)(a + c + ω − α − β + γ + �)

(a + c + ω − α − β + γ )2 − b2

}
,

s4 = b(a − �) tanh

[
a + α

2T

]{
tanh

[−c + γ

2T

]
(−c + �)(−a − c + ω − α − β + γ + �)

(−a − c + ω − α − β + γ )2 − b2

− tanh

[
c + γ

2T

]
(c + �)(−a + c + ω − α − β + γ + �)

(−a + c + ω − α − β + γ )2 − b2

}
, (A8)

s5 = −a(c − �)(−b + �) coth

[
b − c − β + γ

2T

](
tanh

[−c + γ

2T

]
− tanh

[−b + β

2T

]) −b + c − ω + α + β − γ + �

(−b + c − ω + α + β − γ )2 − a2
,

s6 = a(b − �)(c + �) coth

[
b + c − β + γ

2T

](
tanh

[
c + γ

2T

]
− tanh

[−b + β

2T

])
b + c + ω − α − β + γ − �

(b + c + ω − α − β + γ )2 − a2
,

s7 = a(c − �)(b + �) coth

[
b + c + β − γ

2T

](
tanh

[−c + γ

2T

]
− tanh

[
b + β

2T

])
b + c − ω + α + β − γ + �

(b + c − ω + α + β − γ )2 − a2
,

s8 = a(c + �)(b + �) coth

[−b + c − β + γ

2T

](
tanh

[
b + β

2T

]
− tanh

[
c + γ

2T

])
b − c − ω + α + β − γ + �

(b − c − ω + α + β − γ )2 − a2
.

Mathematica and C + + expressions for the self-energy (including the functions) are available online [45].

2. Symmetrization in the short range AF phase

The simplest variational approach in which the (spurious) dynamical symmetry breaking may be described is the Gaussian
covariant approximation. It is explained in detail for bosonic and fermionic systems in Ref. [29] . In a recent paper, Ref. [16], we
proposed a “symmetrization” method to study strongly interacting electronic systems in the pseudogap phase. Here we outline
the main features. For the “almost broken” SU (2) spin rotations of the electron field, ψα

i → U αβψ
β

i , the one body Green’s
function takes the form

Gαβ

i−j = 〈
ψ∗α

i ψ
β

j

〉 →
∫

U
U ∗ασU βρ

〈
ψ∗σ

i ψ
ρ

j

〉
. (A9)
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The (Ter Haar) integration over the group can be simplified in the SU (2t ) case tond

[Gαβ]sym = 1

2
δαβ (G↑↑ + G↓↓). (A10)

The method was tested on the benchmark models, the 1D and 2D one band Hubbard models for which exact diagonalization or
MC simulations have been performed.

3. Comparative contributions of the singlet (“charge”), the triplet (“spin”), and the particle-particle channels

First let us separate the diagram contributions to the self-energy into the particle-hole and the particle-particle channels,
	ph + 	pp:

	(ω, k) = 1

T N

∑
ν,q

{G(ω − ν, k − q)V ph(ν, q) + G(−ω + ν,−k + q)V pp(ν, q)}. (A11)

The susceptibility part for the particle-particle channel is

V pp(ν, q) = −U 2

3
χpp(ν, q) = − U 2

3NT

∑
σ,p

G(σ, p)G(ν − σ, q − p). (A12)

Meanwhile, the particle-hole part can be further divided into the singlet (“charge”) and the triplet (“spin”), V ch + V spin:

V ch(ν, q) = 1

6
U 2χph(ν, q), (A13)

V spin(ν, q) = 1

2
U 2χph(ν, q).

Here the susceptibility is

χph(ν, q) = − 1

T N

∑
σ,p

G(σ, p)G(ν + σ, q + p). (A14)

The “fish” integrals, involving two Green’s functions, for the particle-particle and the particle-hole contributions in the param-
agnetic phase, are the same. The three contributions are therefore proportional to on another, with the dominant one being the
spin channel.

APPENDIX B: CONDUCTIVITY DEPENDENCE ON DISORDER

Disorder on the microscopic level is represented by the parameter η0 = h̄/2τ0. In Fig. 12 two values of this parameter are
compared. As expected, the resistivities for a larger value η0 = 3 meV and a very small value η0 = 1 meV differ by a shift.
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