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Thermodynamics and the pairon model for cuprates
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Two recent papers explore the idea of “pairons” (incoherent bound pairs above Tc) as a model for the
pseudogap in cuprate high-Tc superconductors. From this model the authors calculate the resultant electronic
specific heat and static magnetic susceptibility. At elevated temperature the pairons thermally unbind causing a
broad peak in the specific heat, additional to the second-order peak at Tc where the pairons coherently condense.
With this unbinding the electronic entropy recovers to its bare quasiparticle linear-in-T value. We show that this
is inconsistent with the measured specific heat which reveals an entropy which never recovers to the highest
temperature investigated (about 400 K). In the case of Bi2Sr2CaCu2O8 and La2−xSrxCuO4 there is a broad peak
above Tc in the specific heat coefficient, γ , but this arises from the nearby van Hove singularity (vHs) which is
more distant in the case of Y0.8Ca0.2Ba2Cu3Oy and therefore not discernible. We propose a number of further
critical tests. In the pairon model the BCS ratios are not satisfied until vanishingly near where superconductivity
disappears in the heavily overdoped region whereas, experimentally, these mean-field ratios are sustained across
the overdoped regime once the pseudogap has closed at critical doping.
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I. INTRODUCTION

Many aspects of the physics of cuprate high-temperature
superconductors (HTS) remain unresolved. This is especially
the case in relation to the so-called pseudogap [1–3], a par-
tial gap in the electronic density of states (DOS) observed
near the (π ,0) antinodal zone boundary. Researchers cannot
agree even on its basic phenomenology, its phase boundaries,
and its physical origins [4]. One compelling idea is that the
pseudogap arises from incoherent pairing above Tc [5]. In two
recent papers the idea of “pairons” (incoherent bound pairs
above Tc) is explored in relation to the specific heat [6] and
static magnetic susceptibility [7]. The claim is that “the model
explains the distinctive features of the entropy and specific
heat throughout the temperature-doping phase diagram” and
the susceptibility “is consistent with a pseudogap due to hole
pairs, or ‘pairons’ above Tc” extending across the entire su-
perconducting phase diagram. More recently, Harrison and
Chan also explore the idea of a pseudogap arising from un-
condensed pairs above Tc [8].

Here we identify what we have proposed as the truly dis-
tinctive features of the cuprate electronic entropy, S, and show
that they are inconsistent with the pseudogap pairon model in
a number of key respects. In particular, while the electronic
specific heat, γ T ≡ T ∂S

∂T , contains all the thermodynamic in-
formation it somewhat conceals the central subtle features that
are more evident in the entropy. From here on we drop the
“electronic” descriptor in γ and S with the understanding that
at no point do we consider the lattice or phonon thermody-
namic functions. The key features seen in the entropy are (i)
the evidence of permanently lost states reflecting a partial gap
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in the density of states near the Fermi level (the pseudogap)
that never closes at elevated temperature [9], and (ii) the
abrupt disappearance of this gap with increasing doping, oc-
curring at a critical doping, independent of temperature [4]. A
recent angle-resolved photon electron spectroscopy (ARPES)
study confirms this latter view [10].

II. THERMODYNAMICS IN THE PAIRON MODEL

The pairon model [6] proposes that bound hole pairs form
above Tc due to the local antiferromagnetic environment. This
pairing interaction has a binding energy, �p, the energy scale
of which is governed by J , the nearest-neighbor exchange
interaction. The binding energy in turn sets a characteristic
temperature scale, T ∗, around which the pairs unbind. At a
low enough temperature the pairs condense into a long-range
phase-coherent state and this defines the superconducting Tc.
Local pairing of course lowers the entropy, while coherent
condensation lowers the entropy further, beginning abruptly
at Tc. So, qualitatively, from T = 0 we expect S(T ) to rise
steadily as quasiparticles excite from the condensate, with
a more rapid mean-field-like rise close to Tc followed by a
slower rise above Tc, followed finally by a further rise near
T ∗ when the pairons unbind. Above T ∗ the entropy, S(T ),
should then follow the roughly linear behavior normally as-
sociated with weakly-interacting quasiparticles. Accordingly,
γ (T ) will show a jump at Tc characteristic of a second-order
phase transition and a hump in the neighborhood of T ∗ associ-
ated with this eventual unbinding. (Noat et al. use the symbol
Th for this temperature [6]). The jump in γ (T ) at Tc will be di-
minished due to the pairing correlations above Tc but with in-
creasing doping, as the pairing above Tc weakens and T ∗ falls,
so the jump �γc will be less suppressed—it will increase to-
ward the BCS value, reaching that asymptotically as T ∗ → 0.
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FIG. 1. (a) The electronic specific heat coefficient, γ , calculated
by Noat et al. [6] under the “pairon” model, and (b) the electronic en-
tropy calculated from γ in (a) by integration. The black short dashed
curves are the normal state values if superconductivity is suppressed
subject to the constraint of entropy conservation: Sn(Tc ) = Ss(Tc ),
where the subscript n refers to the normal state and subscript s refers
to the superconducting state. In (b), for the sake of visual clarity, only
the normal-state curves are shown for the most overdoped samples P4
and P5. The area between Sn(T ) and Ss(T ) is shown by the shaded
region and integrated to obtain the superconducting condensation
energy, U0.

These expectations are fully borne out by the calculations
of Noat et al. [6] Fig. 1(a) shows γ (T ) calculated under
the pairon model for five different doping states spanning
the superconducting phase diagram. Figure 1(b) shows the
entropy calculated by integrating γ (T ) from T = 0. The key
observation is that when the temperature exceeds T ∗ the en-
tropy recovers to its noninteracting-quasiparticle value, linear
to the origin (see dashed line). This recovery of lost entropy
inevitably appears in γ ≡ ∂S/∂T as a prominent broad peak
above the second-order anomaly at Tc, as highlighted by the
arrows in Fig. 1(a). With increasing doping this peak migrates
to lower temperature as T ∗ falls with doping towards Tc. In
their model T ∗ → 0 as Tc → 0 as plotted later in Fig. 3(a)
by the olive triangles and thick grey line. This overall be-
havior is to be compared with the experimentally-observed
phenomenology which we now summarize.

III. ACTUAL CUPRATE THERMODYNAMICS

Different cuprates exhibit some overall generic thermody-
namic features but also some variation which arises from the

FIG. 2. (a) The measured electronic specific heat coefficient, γ ,
for Y0.8Ca0.2Ba2Cu3O7−δ reported by Loram et al. [12]; and (b) the
electronic entropy calculated from γ in (a) by integration. The dop-
ing states span from underdoped p ≈ 0.07 to overdoped p ≈ 0.23 in
small steps of approximately 0.01.

proximity, in some, of the van Hove singularity (vHs). We
start with the data for Y0.8Ca0.2Ba2Cu3O7−δ where the vHs
is too far below the Fermi level to be seen in the specific
heat [11]. The data is reported by Loram et al. [12,13] and is
shown in the corresponding γ (T ) and S(T ) plots in Figs. 2(a)
and 2(b).

Key differences from the calculated behavior are imme-
diately apparent. The entropy can be seen to never recover
at higher temperature. There is no evident T ∗ location in-
dicating such a recovery. Instead the underdoped entropy
curves are displaced downwards in parallel fashion to the
highest temperatures studied, in the case of YBa2Cu4O8, to
400 K [9]. (A similar conclusion has been drawn from the
parallel downward displacement of NMR 1/T1(T ) relaxation
rates by the group of Haase [14]). As a consequence, γ (T )
does not exhibit the anticipated broad peak above Tc. As
noted elsewhere [9], the convergence of γ (T ) curves to a
single value at high temperature for many different doping
levels, combined with a downward parallel displacement of
S(T ) curves is indicative of a normal-state gap above Tc (the
pseudogap) which remains open to the highest temperatures.
This is incompatible with the pairon model as the pairs are
expected to dissociate at elevated temperature leading to the
above-noted entropy recovery. Also evident in Fig. 2 is the
fact that the downward displacement of S(T ) occurs only in
the underdoped and optimally-doped regions. The curves all
come together at a critical doping of p ≈ 0.19 as extensively
discussed previously [4]. This indicates the abrupt closure
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FIG. 3. Comparing (a) pairon and (b) actual experimental sce-
narios. The respective pseudogap regimes are denoted by orange
shading. (a) Red squares: U0/γcT 2

c from integration of the calcu-
lated entropy of Noat et al. [6]. Blue diamonds: the normalized
jump, �γ/γc, at Tc. Open blue diamonds: as reported. Full blue
diamonds: allowing for abrupt jump in γ subject to entropy con-
servation. Both ratios fall well below their BCS values 0.24 and
1.43, respectively, due to pairing above Tc. Olive triangles and
gray curve show T ∗ values for the hump in γ (T ). At p = 0.27
the limiting ratios reach the BCS values which are plotted at the
highest doping. (b) Red open squares: U0/γcT 2

c [12] and filled red
squares: U0/γcT mf 2

c [15] for Y0.8Ca0.2Ba2Cu3O7−δ . Blue symbols
show �γ/γc for Bi2Sr2CaCu2O8+δ; diamonds: pure Bi2212; stars
0.2 Pb doped Bi2212; squares: 0.15 Ca doped Bi2212. Experimen-
tally there is no T ∗ but values of the pseudogap energy, E∗, are shown
as E∗/2.5kB which vanishes at p ≈ 0.19.

of the pseudogap at this critical doping and its complete
absence in the overdoped region beyond—as recently con-
firmed by ARPES measurements [10]. Even if the gap lies
asymmetrically below the Fermi level (as in the AF or YSZ
reconstruction models near critical doping [16]) it will still
be seen in a suppressed linear entropy at high temperature.
All these important details, we suggest, are incompatible with
the association of the pseudogap with pairons, or any other
manifestation of real-space pairs above Tc.

IV. BCS RATIOS

We summarize in Fig. 3 the key differences between the
phase behavior and thermodynamic BCS parameters for (a)
the pairon scenario, as compared with (b) the experimen-
tal data. In (a) the orange shaded area shows the region of

uncondensed pairons, effectively the pseudogap domain under
the pairon model. The olive triangles and thick gray line show
the values of T ∗ descending to zero as Tc → 0, as presumed
by Noat et al. [6]. In (b) the orange-shaded region shows the
experimental pseudogap domain which terminates abruptly
at p∗ = 0.19 independent of temperature [4,10,13]. While
experimentally there is no observable T ∗ value at which the
pseudogap closes, the pseudogap energy E∗ falls with increas-
ing doping and this is plotted in Fig. 3(b) as E∗/2.5kB by the
olive triangles and thick gray curve. This falls abruptly to zero
at p ≈ 0.19.

We proceed now to compare BCS ratios. While the pairon
authors do not explicitly state that their calculations are for
s wave, the low-temperature exponential behavior of γ (T )
indicates the s-wave assumption. For d wave, the low-T be-
havior would be linear. In Fig. 1(a) the black short dashed
curves are the expected normal-state values of γ (T ) if super-
conductivity is suppressed subject to the constraint of entropy
conservation: Sn(Tc) = Ss(Tc), where the subscript “n” refers
to the normal state and subscript “s” refers to the supercon-
ducting state. Two of these dashed curves are omitted for the
sake of clarity. In addition, the course graining of calculated
data leads to a broadened anomaly at Tc so we have addi-
tionally enforced an abrupt entropy-conserving second-order
jump, shown for the two highest doping levels by the thin
red and black curves, respectively. By integrating γn(T ) we
obtain Sn(T ) shown by the short dashed curves in Fig. 1(b).
And then by integrating �S(T ) = Sn(T ) − Ss(T ) we obtain
the condensation energy U0 = U (T = 0). This is the pink or
green shaded area under the short dashed curves in Fig. 1(b).
Within the Bardeen, Cooper, and Schrieffer (BCS) theory, the
ratio U0/γcT 2

c should be a constant with the value 0.24 for
the s-wave superconductivity assumed by Noat et al. [6]. This
ratio is plotted as a function of doping by the red squares in
Fig. 3(a) and we multiply by 6× to scale conveniently with
�γ/γc. The open blue diamonds show values of �γ/γc taken
directly from the curves of Noat et al., while the solid blue
diamonds show values of �γc/γ when an abrupt transition is
enforced at Tc.

All ratios are seen to fall well below the canonical BCS
values and this is due to the parapairing that occurs above
Tc. Enforcing an abrupt jump at Tc (filled diamonds) leads
to higher values of �γc/γ but they still remain far short of
the BCS value of 1.43. Under the assumptions of Noat et al.
this parapairing vanishes at p = 0.27 where T ∗ → 0 (and
superconductivity disappears) and so the limiting values of
U0/γcT 2

c and �γc/γ must reach the BCS values there. We
therefore plot these limiting BCS values at p = 0.27, shown
by the terminal squares and diamonds. The overall trend is
obvious—that of steadily increasing ratios as T ∗ falls with
doping. Moreover, the model has no discontinuity that would
cause any abrupt departure from a smooth and steady rise
toward those BCS values. These curves are expected to be
featureless across the superconducting phase diagram.

In contrast, the experimental data shown in Fig. 3(b)
reveal an abrupt change occurring near p = 0.19 where
the pseudogap closes. Values for U0/γcT 2

c are shown for
Y0.8Ca0.2Ba2Cu3O7−δ reported by Loram et al. [13] (open
red squares). On the overdoped side (p > 0.19) the data is
more or less constant around 0.21, then fall abruptly when
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p drops below 0.19 and the pseudogap opens. The mean-field
BCS ratio for d-wave superconductivity is 0.174. However,
strong fluctuations in the cuprates result in a substantial de-
pression of Tc below the mean-field value, T mf

c , which can be
deduced from an entropy-conserving fluctuation analysis [17].
The solid red squares show the resultant values of U0/γcT mf 2

c
and these indeed sit close to the weak-coupling d-wave BCS
ratio shown by the horizontal dashed line. We conclude that,
in the overdoped region (p > 0.19), the pseudogap is absent
and that the superconductivity is conventional in the sense that
the BCS condensation energy ratio is conserved. Then, rather
abruptly at p ≈ 0.19, this ratio falls with the opening of the
pseudogap, unlike the pairon model where the “pseudogap”
remains open to the very end of the superconducting phase
diagram.

Turning to the ratio �γ/γc, a similar result is found for
Y0.8Ca0.2Ba2Cu3O7−δ [12] and also for Bi2Sr2CaCu2O8+δ .
Figure 3(b) shows �γ/γc for the latter compound (blue data
points). There are three different samples represented here:
blue diamonds are for the pure compound, blue stars for
0.2 Pb doped Bi2212 (which allows a higher doping range)
and blue squares for 0.15 Y doped on the calcium site (which
allows a lower doping range). The three data sets are all
consistent showing a plateau down to p ≈ 0.19 followed by
a rapid collapse for p < 0.19, again reflecting the opening of
the pseudogap. The values on this plateau are around 1.25
while the weak-coupling BCS ratio is �γ/γc = 0.955. But
again, the presence of strong superconducting fluctuations
in the neighborhood of Tc result in an additional fluctuation
contribution to �γ (as well as the marked reduction in Tc).
This has been analyzed in detail using the above-noted fluc-
tuation analysis [17]. For Bi2212 the mean-field jump, �CP,
in specific heat at p = 0.19 is 120.2 ± 10 mJ/(g at K), T mf

c is
124.6 K, while the background normal-state γ is 1.05 mJ/(g
at K2), giving a mean-field ratio, �γ mf/γc, of 0.92 ± 0.07,
rather close to the weak-coupling BCS value. We note finally
that the raw jump in specific heat coefficient is the most
accurately determined feature of these differential specific
heat measurements and it provides rather clear evidence that
the pseudogap is absent for p > 0.19 and opens abruptly as
doping falls below this threshold.

As a consequence, the pseudogap T ∗(p) line cannot extend
across the entire superconducting phase curve as shown by the
green diamonds and gray curve in Fig. 3(a). Though widely
embraced, this idea is largely referenced to Vishik et al. [18],
and this group no longer subscribes to this view [10]. In the
original source data (Fig. 4(f) of Ref. [18]) the T ∗ values are
not temperatures at all but antinodal energy gaps converted
to a temperature scale merely by dividing by Boltzmann’s
constant, kB. As such they reflect the (larger) pseudogap in the
underdoped region and the superconducting gap in the over-
doped region where the pseudogap is absent [10]. Naturally,
the superconducting gap vanishes along with Tc, but this has
no bearing on the pseudogap or its crossover boundary at T ∗.
This issue is discussed in detail elsewhere [4].

V. SUPERFLUID DENSITY

The above arguments do not of course discount the
presence of pairons above Tc, they simply question the

identification of pairons with the pseudogap. We have already
noted the strong superconducting fluctuations present above
Tc and extending up to around T mf

c which, in the case of
Y0.8Ca0.2Ba2Cu3O7−δ , lies up to 30 K above Tc and up to
45 K above Tc in the case of Bi2212 [17] near optimal doping.
This persistent parapairing is equivalent to the presence of
pairons in a somewhat narrow crescent band above Tc extend-
ing across the phase diagram. We have previously mapped this
in detail [17] and more recently the phase extent of these fluc-
tuations and the associated pairing gap have been confirmed
in ARPES measurements [10,19].

Consistent with these ARPES measurements, the pairon
temperature scale will follow a roughly dome-shaped curve
lying above the Tc(p) phase curve defining a crescent of
pairing fluctuations above Tc. It is most likely defined by
the temperature scales for phase, Tθ , and amplitude, Tamp,
fluctuations. Elsewhere [17] it was shown that, for cuprates,
these two temperature scales are essentially equal, given by

kBTamp ≈ kBTθ = 0.9dh̄2

4μ0e2
× λ−2

ab , (1)

where d is the mean interlayer spacing, λab is the in-plane
London penetration depth, and λ−2

ab is often referred to loosely
as the superfluid density, ρs. Its doping dependence indeed
follows a dome, collapsing on both the underdoped and over-
doped sides [20,21].

This relatively narrow crescent of fluctuations above Tc

must be distinguished from the pseudogap which exists to
very high temperature and which, according to thermody-
namic [12,13,17] and optical measurements [22], coexists
with superconductivity down to the groundstate at T = 0,
as depicted by the orange shaded area in Fig. 3(b). For a
brief discussion on whether the pseudogap competes with
superconductivity, or merely coexists, see Supplemental Ma-
terial (SM) [23] (see also, Refs. [24–28] therein). In view
of this coexistence we make the following prediction. If the
ground-state superfluid density is calculated within the pairon
model it will be featureless across the superconducting phase
diagram. This is because all pairons have condensed at T = 0.
Stated another way, the supposed pseudogap arising from
parapairing above Tc should be absent at T = 0, as empha-
sized by the orange shaded area in Fig. 3(a). Contrasting this,
the experimentally-observed ground-state superfluid density
exhibits an abrupt discontinuity at p ≈ 0.19, falling away
sharply below this doping due to the abrupt opening of the
pseudogap [21]. The pseudogap is present in the ground state
at T = 0 and this is the foremost objection to those models
[6,8] which identify the pseudogap with pairing above Tc.

There are thus at least four central features of the ther-
modynamic parameters of cuprates which argue against
the pairon model. First, the “lost entropy” associated
with the pseudogap never recovers at high temperature. Sec-
ond, the relative jump in γ at Tc begins to collapse abruptly
when p falls below 0.19 due to the abrupt opening of the pseu-
dogap. This is a signature of the abrupt depletion of condensed
pairs and is seen in Y0.8Ca0.2Ba2Cu3O7−δ , Bi2Sr2CaCu2O8+δ ,
and La2−xSrxCuO4 and is presumed to be universal. Third,
there is a collapse in the BCS-scaled condensation energy
when p falls below 0.19. This also appears to be more or less
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universal. Fourth, the ground-state superfluid density likewise
shows a universal abrupt collapse at the same doping point,
whereas it is expected to be featureless in the pairon model.

VI. VAN HOVE SINGULARITY

The “lost entropy” phenomenology and its abrupt ter-
mination at critical doping is clear in the case of
Y0.8Ca0.2Ba2Cu3O7−δ but is perhaps more subtle for
Bi2Sr2CaCu2O8+δ and La2−xSrxCuO4. This is due to
the proximity of the van Hove singularity (vHs) in
the latter compounds [29–31], unlike YBa2Cu3O7−δ and
Y0.8Ca0.2Ba2Cu3O7−δ where the vHs lies beyond the super-
conducting dome [11]. The approach to the vHs causes an
upward displacement of the linear high-temperature entropy
curves which could be confused with that found as the pseu-
dogap closes, if the two features lie close to each other.
This may not be all that unlikely. The vHs probably defines
the upper limit for p∗ because the pseudogap is located on
the zone-boundary antinodal states which are absent on the
electron-like Fermi surface beyond the vHs. There is some
experimental [32] and theoretical [33] evidence that p∗ may
lie at the vHs, or just below it [34]. However, the thermo-
dynamic data does not support this and we will see that p∗
lies safely below pvHs for La2−xSrxCuO4 (La214) and for
Bi2Sr2CaCu2O8+δ (Bi2212).

As discussed in Ref. [9] the entropy for weakly-interacting
electrons is given by an integral of the density of states
weighted by a Fermi window which is peaked at the Fermi
level—see Eq. (2) below. Increasing temperature broadens
the window but it remains peaked at EF . Thus, if there ex-
ists a normal-state gap near EF , which does not close with
increasing temperature, then this Fermi window will always
see the gap even at the highest temperature and the entropy
is accordingly displaced downwards (with a linear intercept
directly proportional to the gap magnitude).

In contrast, γ (T ) is the T derivative of S(T ) and so its
Fermi window is a double peaked function with peaks either
side of the Fermi level. At high enough temperature these
peaks will shift outside the gap, the gap will not be seen in
the integral, and so γ (T ) recovers to its background weakly-
interacting-Fermion value. This is precisely what is seen in
Figs. 2(b) and 2(a), respectively, for Y0.8Ca0.2Ba2Cu3O7−δ .

But importantly, the same argument applies if there is a
peak near EF in the electronic DOS—such as that arising
from a vHs. In this case S(T ) at high T will be displaced
upwards in parallel fashion while γ (T ) merely returns to
its background value after passing through a hump located
at T ≈ �EvHs/4kB, where �EvHs is the location of the vHs
relative to EF. Clearly then, the proximity of the vHs in the
lightly overdoped region confuses the interpretation of the
high temperature-entropy because S(T ) no longer saturates
at critical doping but continues to shift upwards beyond p∗.
On approaching the vHs S(T ) will continue shifting upwards
reaching a maximum when the vHs crosses EF before shifting
down again on the other side of the vHs. While there is a
pseudogap present, the effect of the vHs will be somewhat
concealed in the antinodal gap. It will only emerge, if suffi-
ciently close to the Fermi surface, when the pseudogap closes,
or is about to close.

FIG. 4. Normal-state experimental values of γ (40 K), read off
from Fig. S.1, plotted as a function of doping for La2−xSrxCuO4

(green squares). These are compared with γ (2 K) calculated by
Zhong et al. [36] from the ARPES 3D dispersion (red squares)
and assuming a zero interlayer hopping parameter, tz, i.e., 2D (blue
curve). Apart from the location of the vHs there is excellent agree-
ment between the experimental and calculated data. The orange
shaded area shows the extent of the pseudogap. The black dash dot
curve shows the doping evolution of TvHs(p) obtained by calculating
χs(T ) from the tight-binding dispersion fits by Zhong et al. [36] using
Eq. (3).

All these features are seen in the experimental data for
La214 and Bi2212 as originally reported by Loram et al. [12].
The relevant figures are reproduced in the SM in Figs. S.1 and
S.2, respectively. For the sake of clarity, in the case of Bi2212
we do not show the original data points, just the normal-
state fits to the data [35]. These fits are calculated using a
rigid ARPES-derived anti-bonding-band dispersion reported
by Kaminski et al. [29] using the standard noninteracting
model for calculating the entropy [see Eq. (2) below] with
the additional requirement of entropy conservation relative to
the experimental data. The legend shows the doping states for
each curve and the corresponding values of �EvHs obtained
from the fits [35].

While, for both La214 and Bi2212, the opening of the
pseudogap is apparent from the sudden collapse of �γ/γ , it
is much harder to pin down from the parallel shift of S(T )
curves. This shift is now associated with both the pseudogap
and the approach to the nearby vHs. In the entropy it is really
only indicated by the observation that S(T ) is linear to the
origin at p ≈ 0.19. The local peak in γ (T ) arising from the
vHs [see arrows in Figs. S.1(a) and S.2(a)] is seen to migrate
towards T = 0 as �EvHs → 0 then shift up in temperature
again once the Fermi surface becomes electronlike. It is this
vHs-derived peak in γ (T ) which Noat et al. possibly con-
fuse with their anticipated peak in γ (T ) arising from the
depairing of pairons and shown in Fig. 1(a)—especially at
higher dopings where the vHs peak is more prominent. But
the phenomenology is quite different. At the same doping
both the γ (T ) and S(T ) curves rise to a maximum height
then fall again on crossing the vHs. The experimental values
of γ (40 K) for La214 taken from Fig. S.1 are plotted in
Fig. 4 as a function of doping (green squares). They rise
to a peak at x ≈ 0.23. This is essentially consistent with
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recent ARPES measurements by Zhong et al. of the doping-
dependent 3D dispersion, from which γ (T ) was calculated
[36]. Values of γ (2 K) from these calculations are plotted in
Fig. 4 (red squares). In addition, the figure shows the specific
heat coefficient, γ (2 K), calculated by these authors when the
interlayer hopping parameter tz is zero i.e., the 2D case (blue
curve). These ARPES measurements and calculation of γ (T )
by Zhong et al. resolved an earlier reported discrepancy in
calculated γ (T ) [37] by adopting doping-dependent hopping
parameters t2 and t3 and by carrying out the full calculation of
γ (T ) = ∂S/∂T using Eq. (2) below.

The measurements of Zhong et al. locate the crossing point,
and the associated peak in γ (T ), at 0.21 [36], but otherwise
are in excellent quantitative agreement with our experimental
data. (We are restricted to 40 K for this data because of the
intervention of superconductivity at lower temperatures. The
peak in γ (p, T ) will be sharper at lower temperature.) It is
clear from a comparison of the ARPES-derived γ (T ) with
the experimental data that the peak in γ (T ) is attributable
solely to the vHs and the only disparity is in the location of
the crossing point, x = 0.21, in the ARPES experiments and
x = 0.23 in the bulk specific heat measurements. We note that
the ARPES measurements were on thin films and perhaps the
slightly lower doping state for the vHs crossing, compared
with bulk samples, is attributable to epitaxial stress in the
former.

For Bi2212 (see Fig. S.2) the vHs is projected to cross the
Fermi surface at p = 0.225, consistent with Kaminski et al.
[29]. [Though this is much the same crossing point as was
found for La214 we consider this coincidental. Indeed, two
recent studies [38,39] show that at p ≈ 0.23 the vHs still lies
below the Fermi level. For our purpose the precise location
is not too important but we do note that the specific heat
studies are more consistent with Kaminski.] For each doping
level the peaks in γ (T ), arising from the vHs, are again
annotated by arrows and their progression toward T = 0 at
the vHs is clearly evident. They occur at T ≈ �EvHs/4kB,

and on crossing the vHs these peaks move up in temperature
again. (Such a band-structure-derived peak in γ (T ) can be
seen e.g., in Sr3Ru2O7 [40]). Notice once more how all the
γ (T ) curves converge to a single value at high temperature,
while the S(T ) curves spread out in parallel fashion to the
highest temperature without converging. Curves are linear to
the origin only when 0.18 < p < 0.19, the location of crit-
ical doping where the pseudogap vanishes, and the point at
which �γ/γ suddenly collapses. We stress the very different
behavior seen in Figs. S.1 and S.2 from that shown in Fig. 1
for the pairon model. This dominating presence of the vHs in
Bi2212 and La214 is relevant also to the interpretation of the
spin susceptibility, to which we now turn.

VII. SPIN SUSCEPTIBILITY

In their second paper Noat et al. [7] turn their attention to
interpreting the static magnetic susceptibility within their pa-
iron model. The spin susceptibility and electronic entropy are
closely related, both representing similar weighted integrals
of the electronic density of states. As a consequence each of
the points raised above is also relevant to the spin susceptibil-
ity. To see this consider the entropy for a weakly-interacting

Fermi liquid [41]:

Sn = −2kB

∫ ∞

−∞
[ f ln( f ) + (1 − f ) ln(1 − f )] N (E ) dE , (2)

where f (E ) is the Fermi function and N (E ) is the electronic
DOS for one spin direction. This is just a weighted integral
of the DOS with the “Fermi window” [ f ln( f ) + (1 − f )
ln(1 − f )].

On the other hand, the spin susceptibility for a weakly-
interacting Fermion system is

χs = −2μ2
B

∫ ∞

−∞

∂ f (E )

∂E
N (E ) dE . (3)

The susceptibility is an integral of the DOS where the Fermi
window is now the function ∂ f /∂E . It turns out that T ∂ f /∂E
is essentially identical to [ f ln( f ) + (1 − f ) ln(1 − f )] if χs

in the former is stretched in temperature by a factor 1.187 [42].
Therefore, S/T and χs are closely related. This relationship is
often expressed by the Wilson ratio, aW, such that S(T )/T =
aWχs(T ), where

aW = 1

3μ0

(
πk2

B

μB

)2

. (4)

A number of studies have shown that this relationship is
sustained in the cuprates across a broad range of temperatures
and doping [9,13,42,43]. Noat et al. [7] fit the experimental
static susceptibility data for La214, Bi2212, and Y123 using a
four-term model comprising a constant term (representing the
atomic core and Van Vleck terms), an antiferromagnetic term,
χAF, a Pauli term (arising from the delocalized electrons), and
a diamagnetic term (arising from circulating supercurrents
near Tc). The third, Pauli, term is essentially the spin sus-
ceptibility given by Eq. (3) which we have shown is entirely
consistent with the presence of a temperature-independent
normal-state gap which does not close at elevated tempera-
ture. Accordingly, it is incompatible with a pairon gap which
evaporates around T ∗. The second term, χAF, is modeled as

χAF(T ) = Amag

(
T + T 2

max

T
+ C

)−1

. (5)

This has a peak at Tmax reflecting a characteristic underlying
energy scale associated with antiferromagnetic correlations.
By omitting the vHs in the Pauli term, the fits naturally at-
tempt to vest the vHs peak in χs with the χAF term. Whereas
Tmax, associated with χAF, should decrease monotonically as
the AF correlations weaken, the vHs-derived peak in χs(T )
(located at TvHs) moves down to T = 0 at the vHs crossing
and then rises again to increasingly elevated temperatures
as the Fermi level moves beyond the vHs [36,44]. We have
calculated χs(T ) from the tight binding fits of Zhong et al.
[36] using Eq. (3) and measured the position, TvHs, of the local
peak in χs(T ). The doping dependence of TvHs(p) is shown
in Fig. 4 by the dash dot curve. Its nonmonotonic V-shaped
character, centered on the vHs, is evident. Neglecting the vHs
will thus result in an inferred Tmax(p) which falls to zero at the
vHs then rises again. This can possibly be seen in the data fits
of Noat et al. [7] where Tmax falls linearly with p extrapolating
to zero at p ≈ 0.23 (precisely the location of the vHs in our
data) but then saturating. The authors have just one data point
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beyond p = 0.23 thus giving the appearance of a saturation in
Tmax(p), but our interpretation would suggest that pushing out
to higher doping will reveal a V-shaped p dependence of the
deduced Tmax(p) arising from the vHs, rather than an ongoing
monotonic decrease due to weakening of AF correlations.

Finally, we note that within the pairon model χs(T ) near a
vHs will posses a broad peak analogous to that in γ (T ). And if
we construct T χs(T ), the analog of S(T ), this should recover
to the background quasiparticle value at high temperature. It
does not. Rather, T χs(T ), like S(T ), exhibits a set of parallel
lines at high temperature displaced downwards by the pseu-
dogap and showing no sign of recovery to at least 400 K—see
Fig. 13(a) of Ref. [13] or to at least 550 K in the measurements
of Nakano et al. [45].

VIII. CONCLUSIONS

In summary, we have made six key points:
(i) while the pairon model requires the entropy to recover at

some elevated temperature (T ∗) where the pairons dissociate,
no such recovery is observed in the experimental data to the
highest investigated temperature, at least to 400 K [4,9]. The
pseudogap remains open to a very high temperature scale,
provided that p < 0.19.

(ii) The experimental data fails to show any peak in γ (T )
associated with such an entropy recovery. However, there is
for some overdoped cuprates an increasingly prominent peak
associated with traversing the proximate van Hove singularity.

(iii) In the pairon model the BCS ratios �γ/γc and
U0/γcT 2

c are suppressed well below the canonical BCS val-
ues across the entire superconducting phase diagram due to
the presence of pairons above Tc throughout. In contrast, the
experimental data shows that these ratios remain more or less
constant for p > 0.19 but collapse rapidly for p < 0.19 as
the pseudogap opens. When scaled with mean-field values (as
they should) the ratios are close to the canonical BCS values
when p > 0.19.

(iv) The idea that the pseudogap persists across the en-
tire superconducting phase curve, including the overdoped

region, finds no support in the thermodynamic data shown in
Fig. 3(b), nor in recent ARPES data [10]. The pseudogap is
present for all p < 0.19, even in the T = 0 ground state, and
is absent for all p > 0.19, independent of temperature. The
boundary is abrupt [4,10].

(v) We predict that, within the pairon model, the T = 0
superfluid density will be featureless as a function of doping,
contrasting the experimental observation that λ−2(p, 0) col-
lapses abruptly due to opening of the pseudogap as p falls
below p∗ = 0.19.

(vi) The spin susceptibility, χs(T ), for La2−xSrxCuO4 and
Bi2Sr2CaCu2O8+δ exhibits a peak arising from the nearby
van Hove singularity which moves down in temperature as
the vHs is approached then is projected to rise again. In all
likelihood this is the peak observed by Noat et al. [7] and
attributed by them to AF correlations. The high-temperature
product T χs(T ), like the entropy S(T ), exhibits a downward
progression of parallel lines with decreasing doping as the
pseudogap opens and grows. Contrary to the pairon model,
T χs(T ) never recovers its lost weight at high temperature up
to at least 550 K, even for dopings close to p∗ where E∗ is
small.

We conclude that the pseudogap does not originate in
pairon formation but is a distinct state that competes with
pairing down to T = 0. Pairing occurs on the Fermi arcs (or
pockets) lying between the pseudogapped antinodes and leads
to a downshift in spectral weight below the pairing gap [46].
The pseudogap, confined to the antinodes, results in transfer
of spectral weight above the gap [22]. Beyond critical doping,
p∗ = 0.19, the pairing d-wave gap extends over the full Fermi
surface.
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