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We study the phase diagram of the one-dimensional Bose-Fermi-Hubbard model at unit filling for the scalar
bosons and half filling for the S = 1/2 fermions using quantum Monte Carlo simulations. The bare interaction
between the fermions is set to zero. A central question of our study is what type of interactions can be induced
between the fermions by the bosons, for both weak and strong interspecies coupling. We find that the induced
interactions can lead to competing instabilities favoring phase separation, superconducting phases, and density
wave structures, in many cases at work on length scales of more than 100 sites. Marginal bosonic superfluids
with a density matrix decaying faster than what is allowed for pure bosonic systems with on-site interactions,

are also found.

DOLI: 10.1103/PhysRevB.107.054502

I. INTRODUCTION

Due to their clean and fully controllable yet versatile setup,
quantum gases in optical lattices have proven to represent
an ideal candidate to realize a quantum simulator for classi-
cally incomputable many-body problems in condensed matter
theory [1,2]. For monatomic bosonic gases trapped in a three-
dimensional (3D) optical lattice the theoretically predicted
[3,4] quantum phase transition from a Mott insulator to a
superfluid was experimentally proven to exist [5].

The interplay between bosons and fermions is ubiquitous
in nature. In conventional superconductors phonons mediate
an attractive interaction between the electrons. Mixtures of
3He and “He caught attention already in the 1940s and showed
such effects as a very low solubility and the Pomeranchuk
effect [6-8]. Every Bose-Fermi system has, however, its own
types of interactions and characteristics, and requires a sepa-
rate study. In the field of ultracold atoms, several degenerate
Bose-Fermi mixtures have been cooled to degeneracy over
the past 20 years [9-17]. Induced interactions between the
fermions mediated by the bosons leading to a fermionic pair
superfluid attracted theoretical interest shortly after the first
condensates were experimentally realized [18-21]. In more
recent years, experimental efforts focused on the interactions
between a bosonic and fermionic pair superfluid [22-25].
Experimental loading of a fermionic “°K and bosonic %’Rb
mixture in an optical lattice [26] can lead to stronger localiza-
tion and interaction effects such as phase separation, spin- or
charge-density waves, and supersolids [27-43].
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In this work we examine the ground-state phase diagram
of the one-dimensional Bose-Fermi-Hubbard model at unit
filling for the scalar bosons and half filling for the S = 1/2
fermions. The bare fermions are taken to be free particles.
As the system size and inverse temperature increase, the in-
duced interactions grow stronger. Nevertheless, those induced
interactions leading to pair flow [44] are expected to be weak
for weak interspecies coupling [45]. In this Bardeen-Cooper-
Schrieffer regime the pair size is very large, and therefore
very large system sizes are required. For stronger interspecies
coupling, localization effects are stronger and a competition
between instabilities towards superfluids and density wave
structures is expected. It turns out that the renormalization
flow can still extend to hundreds of lattice sites, with mis-
leading behavior on intermediate length scales. The purpose
of this work is hence to map out the physics of induced in-
teractions and competing instabilities for the one-dimensional
Bose-Fermi-Hubbard model. It is one of the few sign-positive
models for mixtures where unbiased numerical simulations
can be carried out.

II. MODEL AND PHASE DIAGRAM

We study the one-dimensional Bose-Fermi-Hubbard model
with on-site interactions,

H=-tr Y (c,cjo+Hc)
(i.j).o=1.{

—1B Z(bjbj +Hc)+ % Zn?(nf3 — 1)
(i, ) i

+VZ”?(”E¢+”E¢)» (1)

where b:f creates a soft-core boson on site i and cjg a hard-
core boson on site i with spin o =1, |. Particles can hop

Published by the American Physical Society


https://orcid.org/0000-0002-7274-2842
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.107.054502&domain=pdf&date_stamp=2023-02-06
https://doi.org/10.1103/PhysRevB.107.054502
https://creativecommons.org/licenses/by/4.0/

JANTIK SCHONMEIER-KROMER AND LODE POLLET

PHYSICAL REVIEW B 107, 054502 (2023)

101 bosonic Mott

phase separation

FIG. 1. Phase diagram of the model in Eq. (1) at unit bosonic
and fermionic half filling with all hopping amplitudes set to 1, as
obtained from quantum Monte Carlo simulations for V =1, 2, 3,
4,5, 6, and 8. Lines are a guide to the eye. Left (bosons): The red
area demarcates the area of bosonic superfluidity; the green area is
the uniform bosonic Mott insulator, and phase separation is shown
in light red. For comparison with the right-hand panel, we show the
dashed blue line which corresponds to ncpw = 1.0 [i.e., the exponent
controlling the (fermionic) charge-density wave (CDW) correlation
function] on a length scale L = 70, with lower values than 1 above
the line. Right (fermions): Dominant superconducting fluctuations
(SC) are found in the yellow area. The dotted green line is the
crossover on our length scales towards quasifree fermionic behavior
(purple area). In the white area Luttinger liquid behavior is seen with
dominant charge correlations above the dashed blue line. The dotted
and lower dashed black lines are estimates for phase separation; the
upper dashed line is a leading-order strong-coupling argument sepa-
rating uniform systems from ones with charge density waves. Those
lines are only informative, but are approached asymptotically for
larger values of V. The dotted cyan line is the numerically observed
boundary of phase separation. Further explanations are given in a
separate paragraph in Sec. Il in the text.

between nearest neighbors (i, j); the hopping amplitudes are
tr for the hard-core bosons and #g for the soft-core bosons.
Those amplitudes are chosen equal and set as the energy
unit, tg = fp =t = 1. We work at unit filling for the soft-core
bosons and half filling for the hard-core bosons. The on-site
density-density interactions are constant over the lattice. Its
amplitude for the intraspecies soft-core bosonic interaction is
U > 0, and the amplitude for the interspecies interactions is
V, whose sign is irrelevant at half filling. There is no bare
intraspecies interaction between the hard-core bosons. The
lattice spacing is set to one, a = 1, and the length of the chain
is L. The Jordan-Wigner transformation between hard-core
bosons and fermions requires an odd number of fermions if we
use periodic boundary conditions; we will use the language of
bosons and fermions in this sense below. The model is simu-
lated using a straightforward extension of the worm algorithm
[46] presented in Refs. [47,48].

The parameters are chosen such that there is no apparent
small parameter, i.e., in a regime where numerics are nec-
essary. Contemporary density matrix renormalization group
(DMRG) studies put a strong cutoff on the bosonic occupation
number in order to keep the local Hilbert space tractable and
focused on superfluid-insulator transitions [49—-51]. Our main
result is summarized in the phase diagram shown in Fig. 1,
valid in the thermodynamic limit. However, monitoring the
competing instabilities that develop on length scales consist-
ing of hundreds of sites cannot be read off in full from this
phase diagram. This competition is explained in the detailed

analysis in the sections below. As we will see, the simulations
are notoriously hard, and, in certain cases, autocorrelation
times that exceed one million Monte Carlo steps are observed,
indicative of strong metastabilities and competing phases, per-
haps in the vicinity of first-order transitions. This inevitably
leads to a few uncertainties in the phase diagram, which can
only be resolved if better algorithms are devised and better
computer hardware is available.

To set the ideas, we briefly explain the phase diagram
shown in Fig. 1. The phase diagram is dominated by two big
areas: for V > U the system separates into a bosonic and a
fermionic system, and for U >> V the bosons form a uniform
n = 1 Mott insulator above which the fermions are quasifree.
We focus on the channel-like region in between. The solid red
line demarcates the area of uniform bosonic superfluidity. It
extends to remarkably large values of U and V and probably
closes in a cuspy way for a value of V close to V = 6. Meso-
scopic superflow is found for V = 8 and U = 14 as well but,
extrapolating our results, it vanishes around L = 500. In the
tip of this region, the bosonic superfluid is marginal with a
density matrix decaying faster than what is allowed for the
pure bosonic system. We found no indications of bosonic
supersolid behavior (i.e., concomitant bosonic superfluidity
and density waves breaking the lattice symmetry). The dotted
black line is the weak-coupling argument for phase separation
(see Sec. III A), which is found to exist everywhere in the
lower parts of the phase diagram. The dashed black lines are
the leading-order strong-coupling predictions (see Sec. III B)
separating phase separation, a structure with density wave
character, and a uniform system. We suspect that phase sep-
aration extends up to the dotted black and cyan lines. In the
fermionic sector, the fermions are insulating below the solid
green line and show pair flow above and to the left of it, ar
least up to the system sizes that we can simulate. Above (below)
the dashed blue line the decay of the charge-density wave
(CDW) correlations is slower (faster) than for free fermions.
Whether the charge-density waves can spontaneously break
the lattice symmetry is impossible to say based on our system
sizes for V < 6, but for V. = 8 we see some strong indications
of that for U = 13. The dotted green line indicates a crossover
scale where, on our length scales, the up and down particles
are so weakly coupled on top of a uniform bosonic Mott insu-
lator that they can be considered quasifree. For exponentially
low temperatures, pair flow is expected everywhere in the
upper part of the phase diagram.

The remainder of the paper is structured as follows. In
Sec. IIT we present analytical arguments in the limiting cases
of the phase diagram such as weak and strong interspecies
coupling, arguments based on bosonization, and the type of
induced interactions in the random phase approximation for
various parameter regimes. This is followed by Sec. IV where
we highlight some specifics of our quantum Monte Carlo
algorithm, and we list in Sec. V all relevant quantities that
are computed in the simulations and used for analyzing the
phases. In Sec. VI we systematically go through the phase
diagram for various values of V and discuss the obtained
Monte Carlo results. In particular, renormalization flows as a
function of the system size allow one to monitor the compet-
ing instabilities, and infer the structure of the phase diagram.
Note that in this paper we refer to a renormalization flow
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always as a flow in the system size, unlike in the setting of
the renormalization group. We conclude in Sec. VIL

III. SIMPLE ANALYTICAL CONSIDERATIONS IN
LIMITING CASES

A. Weak interspecies coupling, V < 2¢

For weak values of U the bosons are well described by a
Luttinger liquid with a linear spectrum. To set the ideas, we
can for U < 2.5 use the Bogoliubov approximation, which
is very accurate for this range of U values [52]. Integrating
out the Bogoliubov quasiparticles results in a total action
consisting of the one for the bare fermions (including a shift
to up by ngV which we do not mention because we stay at
fermionic half filling) and an induced part exp(—S) with S
given by

V2
g="

B
[ andn ¥ wr@na- i - wng (e
0

i,j,o,0’
2
Here, ng is the quasicondensate and the kernel D(x, 7) is
given by

%eikx bt + eEr(B=1) G_k
2w ePE — 1 E; '

Here, E; is the Bogoliubov dispersion, and ¢, > 0 is the bare
bosonic dispersion shifted by 2¢. This kernel is peaked at T =
0 (and T = B) in imaginary time. The instantaneous limit can
be taken when the bosons are fast compared with the fermions.
The velocity of the bare fermions at half filling (kr = 7 /2)
is vp = 2t sin(kr) = 2t. The instantaneous approximation is
hence reasonable for low values of V when U is not too small;
in particular, close to the bosonic Mott transition it is valid. In
the static approximation we have

dk .
Dglalic(x) = / 2_ezkx

26k
T 1/El% + 2¢xngU

This induced interaction is spin agnostic, attractive on site
(x = 0), but repulsive for x > 0 and scaling as ~1 /xz, which
is short range in one dimension but can be rather large
for next- and next-next-nearest-neighbor interactions. If we
nevertheless only keep the local part, then we arrive at an
attractive Hubbard model whose phase diagram is known
[53]. In particular, we expect dominant superconducting pair
fluctuations, especially for weak V in this BCS-like regime,
but the pairing gap is exponentially weak in the induced
interaction and scales exponentially in \/V2/U. Note that
this approach neglects the back-coupling of the fermions on
the bosons, i.e., it underestimates CDW structures, which,
given the nonlocal form of the static interaction, could still
be important. Furthermore, the induced pair superfluidity is
in competition with a tendency to phase separate, which at
the mean-field level is found when V2 > U [20,28,36]. At
U = 0 the bosons occupy a number of sites scaling as L'/3;
the fermions occupy the rest. In the thermodynamic limit,
coupling free bosons with spinless fermions via V' is hence
always unstable, with a separation line given by U = V?/x.
However, in the case of induced interactions, the previous
arguments do not immediately apply and the criterion for

D(x, 1) = 3)

“

phase separation can be written as du,/0n, < 0 [20], which
is numerically hard to use, however. Since the gain in energy
due to quasicondensation is rather small in practice, we expect
that the criterion found above is a very good upper bound and
it is indicated by the dotted black line in Fig. 1. Simulations in
close proximity to phase separation are difficult, and we saw
no indications of being able to significantly improve on the
behavior U = V?/z (which is also close to the bosonization
prediction; see Sec. III D).

The bosons undergo a transition from a Luttinger lig-
uid to a Mott insulator, which, for V =0, is found at U =
3.25(5) [54]. Turning on V, and having established that
the bosons are fast with respect to the fermions, the renor-
malization flow of the bosons is understood to be already
strong on the system sizes that we can simulate, whereas the
fermions remain nearly free. Neglecting the back-action of
the bosons on the free fermions, the bosonic Mott transition
shifts upwards quadratically with V2 and proportionality fac-
tor D(¢) = /1 — (¢/2t)?/(t) at € = 0. This prediction for
the location of the bosonic to superfluid Mott insulator is a
reasonable approximation for low values of V < 1. As can
be seen in Fig. 1, it is even not too bad at V = 2 but slightly
overestimates the critical point because not all fermions can
be considered noninteracting at the length scales of strong
bosonic renormalization. When the bosons are deep in the
uniform Mott insulator, we can approximate their dispersion

by E(k) = A+ 2’2; - where A is the gap (of order U in the
pure bosonic system) and m* the effective mass for parti-
cle and hole excitations. The kernel is now DM°U(x, 1) =
[ & efkxe=AT to leading order in the ground state. For A > 2t
we hence cannot expect to see any induced interaction; i.e.,
the bosonic and fermionic systems decouple and the bosons
remain in a uniform n = 1 Mott insulator and the fermions are
quasifree (this is the upper part of the phase diagram in Fig. 1).
For A « 2¢ induced interactions remain possible. However,
in the weak-V limit and recalling the exponential weakness
of the pairing gap, we can only see such pairing fluctuations
when A is very close to zero, which in turn requires very
big system sizes to distinguish pair flow from two correlated
superfluids.

B. Strong interspecies coupling, V > 4¢

Since the system phase separates when U < V, we focus
on the regime where both couplings are strong, U,V > 4t.
We can map the system onto an effective model as follows.
First, turning off the hopping amplitudes, we consider product
states that minimize the potential energy subject to our filling
constraints. We can fill M sites with two bosons, N sites with
one fermion and one boson, and L — M — N sites with up and
down fermions. Sites that contain more than two particles per
site are higher in energy and are discarded. The energy of this
configuration is E, = MU + NV, subject to the constraint of
particle number conservation, 2M + N = L. Eliminating N,
we minimize E, = M(U — 2V'). Hence, for V < U/2 (this is
the upper dashed black line in Fig. 1) we expect that every
site contains one boson (i.e., we have a homogeneous bosonic
Mott insulator with unit density) and one fermion on average.
As there is no interaction between the fermions and the po-
tential energy between bosons and fermions is constant (this
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case is equivalent to the Hartree approximation), the fermions
delocalize on top of the Mott insulator and behave as (nearly)
free fermions. From the arguments in the previous paragraph
we expect this behavior when the bosonic gap is large, while
pair flow is expected for a small bosonic gap. For V > U/2
we must have that M = L/2, i.e., half of the system is doubly
occupied with bosons and the other half with fermionic dou-
blons (molecules). Even though all configurations are equally
likely, we expect that the kinetic terms will select either the
fully phase-separated regime or a phase with charge-density
wave order.

Second, we analyze the effect of the hopping terms on
those ground states to see which phase can lower its energy
the most, and is hence preferred when we lower U away
from U = 2V. In second-order perturbation theory there is
only a diagonal virtual exchange term (no flips are possible)
described by a J, term:

J=-B__B _ZF )

This predicts a transition to the phase-separated regime

at V/U = %ﬁ ~ (.717 (this linear behavior is the lower
dashed black line in Fig. 1).

The reliability of these arguments was checked with ex-
act diagonalization using a Lanczos method. We computed
a naive measure for phase separation, O"S, as the overlap of
(one of) the ground states with fully phase-separated product
states. This is an underestimation of the phase-separated states
but for large V and U it is believed to be very accurate,
consistent with the strong-coupling argument. In the phase-
separated regime we also expect the ground state to be L-fold
degenerate. CDW order was probed by the staggered structure
factor of the CDW correlation functions, as introduced in
Sec. V, but divided by the number of sites. The ground state
of a system with CDW order should be twofold degenerate
in the thermodynamic limit. For V = 20, we see in Fig. 2
that the strong-coupling prediction is quantitatively accurate.
Furthermore, the CDW order parameters for L = 6 and L = 8
lie on top of each other. Hence, finite-size effects are tiny.
For V = 8, however (this is the largest value of V for which
we have obtained quantum Monte Carlo results), the Lanc-
zos results are far off from the thermodynamic limit, as can
be seen in Fig. 3: the peak position of the CDW correlator
shifts to larger values of U, and the signal diminishes with
L. We also observe a tiny energy difference between the
ground-state energy and the energy of the first excited state
in this parameter regime. Based on the Lanczos results, we
can envisage two scenarios: (i) the CDW correlations survive
in the thermodynamic limit (as for V = 20) but with a very
tiny amplitude, or (ii) there is no lattice symmetry breaking
and we instead find a Luttinger liquid with dominant CDW
power-law correlations. Also a combination is possible, where
scenario (ii) is found close to the phase-separation regime and
scenario (i) for larger values of U. Also the location of the
phase-separation boundary could shift to larger values of U
as we increase L. As we will see below, the quantum Monte
Carlo results for substantially bigger L are likewise unable to
differentiate between these scenarios. Especially for U = 14
we will see strong competing instabilities at work for up to

107 ey T —e— L=4
+ L=6
0.8 1 . —— L=8
% 0.6
O
o
2 o4
S °
0.2 A
0.0 1 h
2'0 2|5 3|0 3|5 4|0 4|5

u

FIG. 2. Results for the phase separation (OFS, dashed lines in
the left-hand part of the figure) and charge-density wave [OPY =
SOV (k = 7)/L; solid lines in the right-hand part of the figure] from
exact diagonalization (Lanczos calculations) for V = 20. The dotted
black lines are the strong-coupling predictions separating a regime
of phase separation (left) from a CDW phase (middle) and a uniform
phase (right). Note that the calculations did not converge for L = 8
in the range 26 < U < 29.

hundreds of lattice sites. The quantum Monte Carlo simula-
tions for V = 8 show the strongest tendency for CDW order
atU = 13.

Finally, For V = 12 (see Fig. 4), the Lanczos results sug-
gest that true CDW order is stable for U 2 19, but probably
not for smaller values of U where we would again expect
dominant CDW power-law behavior.

C. Intermediate coupling, V ~ 3¢—4¢

In this regime, we expect no simple analytical arguments
to hold and give only a few comments on the phase diagram
and/or the most surprising results here. Unlike for weak in-
terspecies coupling, we can in this regime often monitor the

1.0

0.8 A

0.2 A

0.0 A

FIG. 3. Same as in Fig. 2 but for V = 8.

054502-4



COMPETING INSTABILITIES AT LONG LENGTH SCALES ...

PHYSICAL REVIEW B 107, 054502 (2023)

1.01

I_IFI_
o0 o H

0.8 \;‘&

0.2

0.0 A

FIG. 4. Same as in Fig. 2 but for V = 12.

renormalization flow till the order is complete. In Fig. 5 we
see how a full pair superflow has developed for V =3 and
U = 4.5 on a system size L ~ 200.

The extension of the bosonic superfluid to these large val-
ues V = 4 is remarkable. For V =4 and U = 6 the bosonic
winding numbers (indicative of their superfluid density) re-
main constant as a function of system size, hinting at a
superfluid. Fitting the equal-time bosonic density matrix with

a power law dﬁ(x|L) we extract that ng = 1.60(2) as is
shown in Fig. 6. Recalling that we have commensurate bosons
at unit filling, the fact that this Luttinger parameter is less than
2 and does not flow to zero with system size is paradoxical
(see, however, the next section).

1.0

A

> 0.81

=

+

" 0.6

=

V0.4

A 2

N + <WT>

302 e o<Wy W) >
0 —— <(W,-W, 2>
020 022 024 026 0.8

1/InL

FIG. 5. Winding number squared for the up fermions (blue),
the pair flow channel (green), and the counterflow channel (red)
as a function of inverse system size L= for V. =3,U =4.5. In
the counterflow channel one clearly sees the renormalization flow
towards zero while in the pair-flow channel the signal stays constant.
When the counterflow is zero, the winding numbers squared of the
individual components should be 1/4 of the value seen for the pair
flow.

— fit.ny=1.60(2)
Np =2

—0.4
PY —_————

In ¢P(x)

-1.2 1

~1.4

Inx

FIG. 6. The equal-time bosonic density matrix G’(x) =
(b"(x)b(0) + H.c.) and corresponding fit with the cord function
~d(x|L)~"/®m) showing a power-law decay with exponent 1, < 2
forV=4,U =6, L = = 150. The dashed line shows the power
law with n, = 2. This power law was seen for all smaller system
sizes as well. For U = 6.5 we found 1, = 1.55(2).

D. Considerations based on bosonization

In this section we review the results of Ref. [31], in which
Abelian bosonization for each component separately was ap-
plied. The fermion degrees of freedom were subsequently cast
in the standard spin and charge channels. If we assume that the
spin sector is always massive thanks to the induced attractive
interactions, which is supported by the Monte Carlo data ex-
cept for the free fermion case (which we found when U > V),
then the bosonization analysis bears a strong resemblance to
the spinless case. In Ref. [31] it was assumed that the bosons
are fast compared to the fermions. Lattice commensurabili-
ties, which would lead to a nonlinear and hence nontractable
problem, were analyzed to lowest order by looking at their
scaling dimension only.

The predictions of the theory of Ref. [31] are that the
single-particle bosonic density matrix decays as a power law,

Gh(x) ~ x 0, ©6)

where 7, (K. in the notation of Ref. [31]) differs from the
bare bosonic Luttinger parameter K, and is also different
from the exponent governing the decay of the density-density
correlation function, whose 2k; component decays as

CP(x) ~ cos(2kpx)x™2mb, (7

In the notation of Ref. [31], Ks = npp. The momentum k, = 7
is set by the bosonic filling factor. The transition to the bosonic
Mott insulator is found for K5 = 2. Note that K5 > K, > K,
(which allows the behavior seen in Fig. 6 with n, < 2). In
the massive spin sector, the fermionic single-particle density
matrix and the spin-density wave (SDW) correlator are expo-
nential, but the CDW correlator has a power-law behavior as

CPY (x) ~ cos(2kyx)x OV, 8)
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In the notation of Ref. [31], ncpw = K + K, — Kpg. If the
full form of the SDW correlator is needed, it is nspw = Kz +
K, !. The 2k; component of the singlet correlation function
has a power law K + K !, but the signal-to-noise ratio on this
quantity in the Monte Carlo simulations is too low for this to
be useful to us. The polaron operators mentioned in Ref. [31]
are not implemented. We will take the pragmatic view that
the generic form of the correlation functions above holds in
the nonmassive phases in order to analyze our simulations.
However, Ref. [31] has only limited power in predicting the
phase diagram. It gives a good account of the phase separation
(also quantitatively for low values of V'), and a criterion for the
bosonic Mott transition (through K5 = 2), but it systematically
predicts singlet pairing for the fermions for our microscopic
parameters. For our parameters the commensurabilities are
such that lattice symmetry breaking is possible, and that insu-
lating CDW structures in the bosonic sector are also possible,
which is incompatible with their assumptions.

IV. ALGORITHM

We employ the worm algorithm [46] based on the up-
date scheme of Ref. [48] to perform quantum Monte Carlo
simulations. The three species are implemented as three dif-
ferent layers. The interspecies coupling then corresponds to a
density-density coupling between the layers. For the fermions,
we employ two types of worms: the standard algorithm, which
samples the single-particle Green function for each compo-
nent separately, and a two-worm algorithm necessary to be
ergodic in the superconducting phases. The latter is imple-
mented in the particle-particle or the particle-hole channel in
such a way that the worm creation operator of the spin-up
particles moves around in space-time synchronously as the
worm creation operator for the spin-down particles, but not
necessarily on the same site. In the particle-hole channel, it
is the worm annihilation operator for one of the species that
moves together with the worm creation operator of the other
species. With these updates the algorithm is ergodic for su-
perconducting phases made up of two fermions. Simulations
would face an exponential barrier, however, in the case of a
molecular superfluid phase consisting of the pairing between
a hard-core boson and a soft-core boson because we do not
allow configurations with the simultaneous presence of their
respective worm operators. Such phases would certainly be
important for other parameter choices than the ones we con-
sidered. Nevertheless, the simulations are often hard for large
system sizes and inverse temperatures. We also employed
simulated annealing strategies, in which we gradually lower
the temperature, and also quench strategies, in which we take
a stable and converged configuration in the, say, supercon-
ducting phase and then quench the parameters to a nearby
point in parameter space where the simulations are harder. We
typically scale system size and inverse temperature as L = 8,
as is justified for Luttinger liquids. Test simulations done for
V < 4 with a larger aspect ratio did not change the physics.

V. THE VARIOUS ORDER PARAMETERS

The Monte Carlo simulations provide us with a plethora of
thermodynamic quantities. We examined in total 20 different

quantities, which must behave consistently before we can be
sure of the phase that we observe.
(i) The superfluid density of the individual bosons is
2
Osb = L(:Zb >, and that of “fermions” (simulated as hard-core

2
bosons) is ps, = L%"). Here, W, and W, are the winding

numbers of the bosons and the fermions, respectively [55]. We
2
also looked at the paired superfluid density ppsg = %}Wm

and the counter-rotating superfluid density pscp = L<(W¢t—;W¢>>

in order to probe the system for pairing correlations between
the fermions [44].

(i) The equal-time density matrices are G’(x) =
(b*(x)b(0) +Hec) and G°(x) = (c:g (x)cs(0) + Hec.)  of
the bosons and the fermions, respectively. For the fermions,
the Jordan-Wigner string between sites 0 and x must be
inserted in the Monte Carlo measurements since the fermions
are simulated as hard-core bosons [56]. Its Fourier transform
yields the momentum distribution n°(k) = > €**G°(x).
Sign-positive statistics remain possible with periodic
boundary conditions when the number of up spins and
the number of odd spins are both odd.

(iii)) The equal-time four-point correlation functions
are G (x) = (¢} (¥)c] ()ey (0)cy.(0) + Hee) and G(x) =

(¢} (¥)c; (x)et (0)c] (0) + Hec.). These probe the Green func-
tions of molecules seen as a local Cooper pair of two fermions
with opposite spin. Due to the attractive induced interactions,
GP'(x) should always decay exponentially in the thermody-
namic limit.

(iv) For grand-canonical simulations we computed the
compressibility of the bosons, «, = ,3((Nb2) — (Nb)z)/L,
where N, is the total number of bosons in the configuration.

(v) For canonical simulations, we fine-tune the chemical
potential u;, such that (N,) = L. The fermionic chemical po-
tentials are always w, = V to ensure that (n,) = 1/2.

(vi) In canonical simulations we also compute the bosonic
Green function at zero momentum as a function of imaginary
time, G° (p =0, 1), in order to measure the bosonic single-
particle gap in the insulating phases. The Green function
Gb(x = 0, T) was also computed for very low values of V in
order to extract the speed of sound [46].

(vii) We compute the connected static density-
density correlation functions C®°(x) = (n,(x)n,(0)) — 1,
COPV(x) = (4 + 1))y +n,)(0)) — 1, and CSP¥ (x) =
i((m —n)(x)(ny —ny)(0)) for bosons and fermions
in the CDW and SDW channels. We also compute
the correlator CMPW(x) = (M(x)M(0)), where M(x) =
2np(x) —ny(x) —ny)(x) is the molecular-density wave
correlator.

(viii) We  compute the
factors  SP°(k) = > e*ich(j)  and
Zj €k CCPW/SDW ( )

As our bare fermions are noninteracting, their n, (k) shows
a Fermi surface with a jump of 1 at k = £kr = 7. For
finite V and increasing L, this jump decreases. In the ther-
modynamic limit, the jump must be zero as there are no
quasiparticles in one dimension, only collective excitations.
The jump is hence a good diagnostic for how strongly the
renormalization flow from the noninteracting fermions into
the Luttinger liquid (or a massive phase) has developed.

corresponding  structure
SCDW/SDW (k) —
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We always expect a spin gap because of the attractive
induced interactions in the thermodynamic limit. The limit
lim,_.o 7S%PV(¢)/q should hence approach zero. In practice,
any value below 1 for finite L is seen as evidence for a spin gap
that will fully develop as L — oo. For a system with rotational
spin invariance, one must have that lim,_,o 7SV (g)/q = 1.
This is what we hence see for free fermions. Likewise, the
limit lim,.o 7S®V(g)/q of the CDW structure factor cap-
tures the nonoscillating part of the CDW correlation function.

Since it is possible to break a discrete symmetry in one
dimension, true CDW order is possible. It is seen as CPWV (x)
oscillating with C cos(wx) for large x and a constant C > 0.
This implies that SSPV (k = ) grows linearly with L. True
CDW order for the fermions must imply true CDW order
for the bosons, and vice versa, due to the nature of the
boson-fermion coupling. Strong CDW correlations are also
possible in the form of quasi-long-range order, when the os-
cillating 2ky part of the C°PW (x) correlation function decays
as ~|x| 2%, For a > 0 this implies a diverging susceptibility.
The density remains uniform in this case, just as the bosonic
density remains uniform. In order to treat the periodic bound-
ary conditions adequately, we must use the cord function
d(x|L) = sin(x/L) in the argument of the correlation func-
tions (cf. Ref. [33]). Near half the system size, a power-law
decay of the cord function is hard to discern from asymp-
totic (near-)constant behavior. Given our system sizes of the
order L = 100 we are therefore often unable to discriminate
between lattice symmetry breaking with a low value of C and
a slowly decaying power law. In practice we attempted both
fits, which are often equally good, and used a cutoff value of
C= % for true long-range order for at least L > 70. We will
refer to algebraic CDW order when the decay of the CDW
correlations is described by a power law but slower than for
free fermions, i.e., ncpw < 1.

VI. PARAMETER SCANS

In the sections below we systematically plot for different
values of U and L = f in the canonical ensemble the Z factors
and winding numbers squared in the bosonic, counterflow, and
pair-flow channels for L = 30, 50, and 70. This is done for the
values V =1, 2, 3, 4, 5, 6, and 8. Additional plots and addi-
tional system sizes are provided in case interesting physics
happens. The bosonic superfluid density, single-particle den-
sity matrix, and the properties of the fermionic single-particle
matrices converge typically the fastest. Counterflow and
especially pair-flow properties converge slower, and the large-
distance charge-density wave properties are usually hard to
determine precisely because of the low values involved. Our
resolution on the V parameter is 1, as already mentioned, and
it is 0.5 on the U parameter in the weak- and moderately
strong-coupling regimes. For V = 6 and V = § the resolution
on U is 1. This means that the error bars in the phase diagram
must be of the order U/2. We do not attempt to discuss the
nature of the phase transitions or determine their precise loca-
tion for two reasons. First, although the data for the (bosonic)
superfluid properties are suggestive of a Kosterlitz-Thouless
renormalization flow, we do not know the value of the jump
in 7, at the transition. We take a pragmatic view and when
we observe a typical scaling of the superfluid densities as

2.00
1.75
1.50
125

T100

Tos
0.50
0.25

0 1.0 1.5 2.0 25 3.0 3.5 40 45 5.0 1.0 1.5 2.0 25 3.0 3.5 4.0 45 50
18 U
FIG. 7. Left: Bosonic winding number squared for V =1 as a
function of U for different L = B; the bosonic Mott transition is
expected at U = 3.57(5). Right: The jumps in fermionic occupation
number at k = kr (i.e., the Z factor) for the same system, showing
that the fermions remain almost free on these system sizes.

~1/1n(L/Ly) with Ly comparable to the lattice spacing, then
we know that we are close to the critical point. Second, com-
puting quantities like ncpw is known to be hard, already for
systems with fewer flavors of particles [57,58]. When fitting
the CDW correlation function, there are uncertainties about
how to choose the fitting interval, the influence of a nonoscil-
lating term 1/7> (which is not always negligible) next to the
oscillating first harmonic which has an unknown power-law
decay, and the influence of the periodic boundary conditions.
It is argued that a low-momentum analysis of the correspond-
ing static structure factor (see Sec. V) gives a better signal-
to-noise ratio [58—60]. Although we also take this route here,
the drawback in this approach is that there are cases where the
curve bends down for low momenta. Increasing the system
size adds lower momentum points to the curve, which in turn
tends to bend the curve further down; i.e., the extrapolation to
zero momentum can be misleading for small system sizes.

A. Scan of phase diagram atV =1

In the case of very weak interspecies coupling, the induced
interaction is likewise very weak with fermionic Z factors
above 0.9 for U > 1 and L < 70, and increasing with U (see
Fig. 7). It is therefore a good approximation to consider the
bosonic and fermionic subsystems as quasiuncoupled on these
system sizes; i.e., the bosons can be described by the standard
Luttinger theory and the fermions remain nearly free. We
indeed see that the power laws in the CDW and SDW channels
are ncpw ~ 1 and nspw ~ 1, and the difference between the
counter and pair superfluid densities (Fig. 8) is no more than
1%, indicating very weakly coupled superfluids of up and
down spins. We show in Fig. 9 the bosonic density matrix
very close to the Mott transition for V = 3.5 for a system size

1.27
1.26

-
N
o

125
S1.24

-
]
o

T 123
2122
121

(W -wy)?)
-
o
N

1.20

1.0 1.5 2.0 25 3.0 3.5 4.0 45 5.0 1.0 1.5 2.0 25 3.0 35 4.0 45 5.0
U U
FIG. 8. Left: Winding numbers squared in the counterflow chan-
nel for V = 1. Right: Winding numbers squared in the pair-flow
channel for V = 1.
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FIG. 9. Left: Bosonic equal-time density matrix and the fit
f(x) =a—log(d(x|L))/(2n,) for a system with parameters V =
1, U =35, and L = B = 250. The extracted power law is 71, =
2.07(2), which, to a very good approximation for V =1, can be
compared with the bare Luttinger parameter K, and which predicts a
Kosterlitz-Thouless transition to the Mott insulator at n, ~ K} = 2.
Right: Momentum occupation of the fermions for the same system,
showing behavior very close to the one of free fermions.

L = B =250 as well as the fermionic occupation numbers.
We see for U > 3.5 the typical flow of the bosonic winding
numbers towards the insulating state for L = 8 = 30, 50, and
70 in the left panel of Fig. 7, and this flow is also seen in
the power-law decay of G”(x). As the fermions remain nearly
free on these system sizes, this supports the claim that we ex-
pect the bosonic Mott transition at UV = 1) = UV =
0)+ nin = 3.25(5) + % = 3.57(5), where we took the crit-
ical value for the superfluid-to-Mott-insulator transition for
the Bose-Hubbard model from Ref. [54]. In short, the system
behaves as expected for V = 1.

B. Scan of phase diagram atV =2

For V = 2 the renormalization flow in the fermionic chan-
nel is stronger than for V =1 but it is still weak, as can
be seen in the right-hand panel of Fig. 10. It is therefore
not possible to determine the fate of the fermionic phase
diagram with certainty. The bosonic Mott transition can, as
for V =1, be analyzed separately from the fermions due to
the different length scales involved. If we apply the same
formula U™ (V = 2) = U™(V = 0) + 1V?, knowing that it
is beyond its validity regime V <« 1, then we find U'(V =
2) ~ 4.5, which is in fair agreement with the left-hand panel
of Fig. 10. The flow for U = 4.5 is indeed logarithmic, in-
dicating proximity to the transition, but U = 4.5 is in fact

e
—~+
—~
—+
+
5

20 25 3.0 35 40 45 5.0 1.5 20 25 3.0 35 40 45 5.0
U 18}

FIG. 10. Left: Bosonic winding number squared for V =2 as a
function of U for different L = S. Phase separation is seen for U < 1
but not for U = 1.5; the bosonic Mott transition is expected at U =
4.3(2). Right: The jumps in fermionic occupation number at k = kg

(i.e., the Z factor) for the same system, which are seen to range from
0.4t0 0.9.
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FIG. 11. Left: The power law 7, governing the decay of the
bosonic single-particle density matrix for U =4 and U = 4.5 and
L = 30, 50, 70, 110, and 150. On the superfluid side, convergence
is reached; on the insulating side, the quantity flows to zero. Ac-
cording to the bosonization theory [31], the transition is expected
for a nonuniversal value slightly below 2. Right: Scaled bosonic
structure factor close to the superfluid-to-Mott-insulator transition
for U =4 and U = 4.5 for L = 70, 110, and 150. On the superfluid
side, U = 4, the extrapolated value for k — 0 is larger than 2 and
the structure factors show convergence in L. On the insulating side,
U = 4.5, the extrapolated value for k — 0 is smaller than 2 and
increasing L leads to a stronger curvature for low k. The extrapolated
value at k = 0 scales to zero in the thermodynamic limit.

already on the insulating side. Looking again at the right-hand
panel of Fig. 10, we see that Z ~ 0.8 on the scales of relevant
flow in the bosonic channel; hence 4.3(2) is more likely for
the transition point.

The power law of the equal-time bosonic density matrix
np(V =2,U =4) =2.02(1) appears to be nearly constant
with L whereas it is flowing to zero with L for U = 4.5, as
is shown in the left=hand panel of Fig. 11. The transition
can also be studied from the scaled static structure factor,
limy_,¢ w shown in the right-hand panel of Fig. 11, from
which we extract 7y in the limit K — 0. Bosonization [31]
predicts the transition at 1y, = 2, which is reflected in the data
(see also the left-hand panel of Fig. 12).

Figure 13 suggests that there is a strong tendency towards
pair flow on mesoscopic system sizes. It is, however, im-
possible to monitor the flow for big enough system sizes,
even where the lowest Z factors are found, i.e., for the low-
est values of U as can be seen in Fig. 14 for U =2 and

—F— Nov

IS
Ncow, Nsow

15 20 25 3.0 35 40 45 5.0 15 20 25 30 35 40 45 50
U 1)

FIG. 12. Left: The parameter ny, as obtained from the bosonic
static structure factor, lim;_,( % Bosonization predicts a tran-
sition from a Luttinger liquid to a Mott insulator when n,, = 2
(indicated by the dotted line). Right: The parameters ncpw (blue)
and nspw (purple) for V = 2 and L = 30, 50, and 70 (top to bottom)
obtained from their respective static structure factors. The dotted
line is the value of ncpw for free fermions. The parameter nspw
should scale to zero owing to the presence of a spin gap for attractive
induced interactions.
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FIG. 13. Left: Winding numbers squared in the counterflow
channel for V = 2. Right: Winding numbers squared in the pair-flow
channel for V = 2. The convergence in the pair-flow channel is seen
as well as the ongoing renormalization flow in the counterflow chan-
nel, suggesting (at least mesoscopic) pairing fluctuations. Whether
they persist in the thermodynamic limit (cf. the right-hand panel of
Fig. 10, and both panels of Fig. 14) cannot be inferred, unless perhaps
for the smallest values of U.

U = 1.5. Whereas no CDW order can be seen for the largest
L (see Fig. 12), the extrapolation of the pair-flow density to
the thermodynamic limit is nevertheless dangerous, as shown
in Fig. 14 for U =2 and U = 1.5 because the value of the
superflow in the counterflow channel is still a quarter (half) of
the one in the pair channel for U = 2 (U = 1.5) for L = 150.
The superfluid density of the up fermions is also seen to be
going down with L. In the pair-flow phase this value should
be exactly 1/4 of the superflow density. We hence expect as
a rule of thumb that (WTZ) should approach ~0.26 for U = 2,
which is one-quarter of the value seen in the pair-flow channel
for the lowest system sizes and which appears roughly stable
on the system sizes that we can simulate. Hence, the reduction
seen in (WT2> with L is not necessarily a sign of insulating
behavior at astronomically large L, but it cannot completely
be ruled out either. The right-hand panel of Fig. 12 also shows
that the spin gap is not fully developed on the length scales
that we can simulate. Correlations in the charge sector decay
algebraically, and slightly more rapidly than for free fermions
as long as the bosons are superfluid, but the value of ncpw
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FIG. 14. Left: Winding number squared for the spin-up particles
(blue), in the counterflow channel (red), and in the pair-flow channel
(green) as a function of inverse system size with inverse temperature
B =L and system parameters V = 2 and U = 2. The counterflow
channel shows a strong and unstoppable renormalization to zero
whereas the pair-flow channel stays finite and will approach four
times the value of the winding squared of the spin-up particles in
the case of a thermodynamic superflow. Note that we still have a
very sizable Z(L = 150) =~ 0.57 (cf. the right-hand panel of Fig. 10).
Right: Winding number squared for the spin-up particles (blue), in
the counterflow channel (red), and in the pair-flow channel (green)
as a function of inverse system size with inverse temperature 8 = L
and system parameters V =2 and U = 1.5.
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FIG. 15. Left: Bosonic winding number squared for V = 3.
Phase separation is seen for smaller values than U < 3; the bosons
turn insulating for U 2 5.3(2). Right: Jumps in the fermionic oc-
cupation number at kr, showing a strong renormalization when the
bosons are superfluid and a strong tendency towards free fermions
deep in the bosonic insulating regime.

becomes less than 1 when the bosons turn insulating. Note that
it is common for one-dimensional superconducting systems
to show subdominant CDW algebraic correlations [53]. The
rather strong charge correlations can be understood based on
the arguments presented in Sec. III A, and it further seems
reasonable that superfluid bosons suppress such correlations
as uniformity in the system is beneficial for phase rigidity.

C. Scan of phase diagram atV =3

In Fig. 15 we see that the transition from a bosonic su-
perfluid to an insulator takes place for values of U between
U =5 and U = 5.5. Phase separation is found for U < 3. In
the bosonic superfluid regime the Z factors for the fermions
range from 0.1 to 0.5 at L = B = 110. Surprisingly, the power
law of the bosonic density matrix at U = 5 is such that 1, =
1.81(2) < 2 (which was given an explanation in Sec. IIID)
while the system stays uniform (see Fig. 16). For U = 4 this
power law was just n, = 2.01(5). The values nyp, extracted
as before from the scaled bosonic static structure factor, are
oy = 2.20(5) for U =5, L = 70, and nyp, = 1.75(5) for U =
5.5 and L = 70 and are compatible with a universal jump at
vy = 2 as predicted by bosonization [31].

From the winding numbers squared in the pair-flow and
counterflow channels, shown in Fig. 17, we infer a strong
tendency towards superconducting pair-flow correlations that
are almost fully developed (cf. Fig. 5 and the left-hand panel
of Fig. 18). However, as can especially be appreciated from
the data in the pair-flow channel in the range 3 < U < 5 (see

—— fit,ny=1.83(2) 0.67°
- =2
¢ <

—— fit, Negw = 1.20
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FIG. 16. Left: Single-particle bosonic density matrix showing a
marginal superfluid forV =3,U = 5,and L = B = 90. Right: CDW
correlator for the same system. No signs of true long-range order are
seen; the algebraic decay is faster than the one of free fermions and
the amplitude of the correlator small.
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FIG. 17. Left: Winding number squared in the counterflow chan-
nel at V = 3. Right: Same for the pair-flow channel. Despite the
noise, the data are suggestive of stable pair flow and it can be reached
on length scales L ~ 100.

the right-hand panel of Fig. 17), the system is very hard to
thermalize and simulate already for L > 50. Autocorrelation
times are extremely large, ranging from 10° to 10° for
L =70 and rapidly increasing with L, which we attribute
to the frustration caused by the induced interactions and
the competition between paired and insulating phases. We
did not find evidence of gapped CDW order anywhere
in the phase diagram for V = 3. The parameter ncpw is
above 1 everywhere in the bosonic superfluid regime: We
find ncpw(U =5,L =70) =1.10(5), ncow(U =5.5,L =
70) = 1.00(5), and ncpw(U = 6, L = 70) = 0.93(5).

Based on the system sizes that are accessible to the sim-
ulations, the system is for V. =3 (i) in the phase-separation
regime for U < 3, (ii) a bosonic superfluid and uniform s-
wave superconductor for 3 < U < 5.3(2), and (iii) a bosonic
Mott insulator for larger values of U. The fermions remain
superconducting when U remains close to the critical value of
the bosonic Mott transition, and then cross over towards free
fermions when the gap A ~ Ep. As ncpw < 1 in this regime a
tendency towards algebraic charge-density wave order is also
observed.

D. Scan of phase diagram at V = 4

This intermediate regime is very challenging numerically.
In the left-hand panel of Fig. 19 we see constant bosonic wind-

Vi --=- fit, ncpw = 1.23
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FIG. 18. Left: Winding number squared for the spin-up particles
(blue), in the counterflow channel (red), and in the pair-flow channel
(green) as a function of inverse system size with inverse temperature
B = L and system parameters V = 3 and U = 4. Stable superflow is
likely. Right: Rescaled static structure factors for V =3, U =4, and
L = B =90. The low-momentum analysis yields ncpw = 1.22(1),
in good agreement with Fig. 16. The spin gap is almost completely
developed. The peak that develops at k = 7 is present but weak.
Only larger system sizes beyond reach can establish whether the peak
value grows linearly with system size.

0.8

0.6

0.4

(k) = n(ki")

0.2

50 55 6.0 65 7.0 75 80 85 55 60 65 70 75 80 85
U U

FIG. 19. Left: Bosonic winding number squared for V = 4. The
bosons are (marginally) superfluid in the range U = 5.5 to U = 6.5;
for U = 7 the flow indicates insulating behavior. Right: Jumps in
occupation number at kr. As we see below, the low values of
Z(L) < 0.2 allow us to see strong competition between competing
instabilities on the length scales accessible to our simulations.

ing numbers squared for U = 6 and U = 6.5. The decay of
the single-particle density matrix has, however, a power-law
exponent that is less than 2, but ny, is above 2 (and in fact very
close to 2 for U = 6.5). This is the behavior we previously
referred to as a marginal superfluid (cf. Figs. 6 and 16).

From the Z factors shown in the right-hand panel of Fig. 19
we see essentially non-Fermi-liquid behavior up to U = 8.5.
Signs of phase separation were seen for U < 5: Specifically,
for U = 5 the bosonic superfluid density appears to flow to
zero while npp is considerably larger than 2. We will see
such paradoxical behavior also for larger values of V, and
interpret it as a sign of phase separation (see the discussion
for larger values of V below). In addition, according to both
the weak-coupling estimate, V?/m, and the strong-coupling
one, V/0.717, we expect phase separation for U = 5.

From the winding numbers squared in the pair-flow and
the counterflow channels shown in Fig. 20 we see a tendency
towards stable pair flow for U values in the range 7-8 on the
system sizes that we can simulate, which are not enough to
extrapolate to the thermodynamic limit because the Z factors
remain large. We show in the right-hand panel of Fig. 21 the
power-law decay of the four-point correlator GP”(x) and the
simultaneous exponential decay of the four-point correlator
GP"(x) for U = 7 and L = 70, which is indicative of a pair

50 55 6.0 65 7.0 7.5 80 85
U

50 55 6.0 65 7.0 75 80 8.5
U

FIG. 20. Left: Winding numbers squared in the counterflow
channel for V = 4. It shows the typical renormalization with system
size to zero that we have seen before for lower values of V, but here
we reach (almost) zero on accessible system sizes for all values of U
till the strong coupling estimate, U < 2V. Right: Winding numbers
squared in the pair-flow channel for V = 4. Whereas the system
sizes L = 30 and L = 50 can be simulated rather easily, this is not
the case for bigger system sizes, but the data suggest that in the
thermodynamic limit there will be no pair superflow for U < 7.0(5).
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FIG. 21. Left: Finite-size analysis in the relevant superflow chan-
nels for V =4 and U = 6. At mesoscopic length scales L = 8 <
70 a tendency towards pairing is seen in the fermionic channels;
however, jumps in the data then indicate a transition towards an
insulator. Right: Power-law decay of the four-point correlator G””(x)
(computed for hard-core bosons only) and exponential decay of
the four-point correlator GP(x) forV=4,U =7, and L = 70 are
indicative of pair superflow (cf. Fig. 20).

superflow. The weakness of the signal is in line with the
weak superflow properties that we also observed based on the
analysis of the winding numbers. For larger values of U > 8.5
the fermions cross over to quasifree fermions, as we have seen
before.

For smaller values of U < 7.0(5) the pair flow looks stable
on mesoscopic length scales but then abruptly jumps to zero,
and the data are very noisy. In many cases, for instance for
U = 6, we see an unphysical increase in the flow with L
before jumping to zero at larger length scales (see Fig. 21).
This noisy behavior (due to autocorrelation times that exceed
10) is in fact often encountered in our simulations (cf. the
discussion for V = 3 before). When this happens, one has to
wonder if the data at larger system sizes (here for L > 90)
have properly thermalized, but we are confident that this is so
here: We saw a value of (near) O for U = 6 and L = 90 also in
a simulation protocol in which the temperature was systemati-
cally lowered at fixed L, and also in a different protocol where
we started from a configuration with stable superflow found at
larger U after which we reduced the value of U. We therefore
consider this system to be an insulator for the fermions.

In the left-hand panel Fig. 22 we show the extrapolated
values of ncpw and nspw obtained from the linear behavior of
the static correlation functions SSPW/SPW () for small g. It is
seen that the spin gap is fully developed for5 < U < 7atL ~
100. For larger values of U the behavior crosses over to the
one of free fermions, which sets in around U = 9-10. Similar

0.4{ " —— fit, Neaw = 1.03
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FIG. 22. Left: The quantities ncpw (blue) and nspw (purple)
for V=4 and L = 30, 50, and 70 (top to bottom) obtained from
their respective static structure factors. Right: The CDW correlation
function forV =4,U = 6.5, and L = 8 = 70. The fit value ncpw =
1.03(5) agrees within error bars with the value in the left-hand panel.

7 8 9 10 11 12 7 8 9 10 11 12
1) U
FIG. 23. Left: Bosonic winding number squared for V = 5. Su-
perflow is thermodynamically stable for U = 8 and U = 8.5; and
U = 7.5 appears to be very close to the transition but on the insulat-
ing side. Right: Jumps in occupation number at k. The low values
we see are promising for being close to the thermodynamic limit.

as for lower values of V, we see that ncpw drops below 1
when bosonic superfluidity is lost, indicating Luttinger liquid
behavior with somewhat stronger charge fluctuations on top
of a bosonic Mott insulator. We saw no conclusive evidence
of lattice symmetry breaking for any value of U at V. =4 on
the system sizes that we can simulate.

E. Scan of the phase diagram atV =5

The strong-coupling argument predicts phase separation
forU < V/0.717 = 7 while the weak-coupling argument sees
phase separation up to U < V2/m & 7.96. The bosonic wind-
ing number squared is plotted in the left-hand panel of Fig. 23.
We indeed see a renormalization to zero for U < 7.5 and
stable superflow for U ~ 8. The superflow is again marginal,
as reflected in the decay of the single-particle density matrix,
G"(x), which decays already fast with an exponent 7, ~ 1.3
for L = 8 =30and U = 8, but barely faster for L = = 90
where 7, ~ 1.2. We come back to the issue of bosonic su-
perfluidity when discussing nup. The fermionic Z factors are
shown in the right-hand panel of Fig. 23. The flow scales
inversely with system size and we see a very strong renormal-
ization everywhere except when U 2 2V, in agreement with
the arguments of Sec. III B. The winding numbers squared
in the counterflow and pair-flow channels, shown in Fig. 24,
show the tendency towards free fermionic behavior for U >
12. For 9 < U < 10 the counterflow channel flows to zero
with system size whereas the pair flow seems to approach
a constant on mesoscopic length scales, within error bars,
indicating superconducting correlations. This is elaborated in

bt

w.)?)

FIG. 24. Left: Winding number squared in the counter flow
channel at V = 5. Right: Same for the pair-flow channel. One-
dimensional superconducting order is stable at least on mesoscopic
length scales for 9.5 < U < 10, but it is unclear what happens on
longer length scales. Insulating behavior is certain for U < 9.
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FIG. 25. Left: Winding number squared for the spin-up particles
(blue), in the counterflow channel (red), and in the pair-flow channel
(green) as a function of inverse system size with inverse temperature
B = L and system parameters V = 5 and U = 10. Right: The quan-
tities ncpw, Nspw, and 1y, for V =5 obtained from an analysis of
the low-momentum behavior of the CDW, SDW, and bosonic static
structure factors for L = 30, 50, and 70 (top to bottom). The spin gap
is fully developed at L = 100 for U < 10. Bosonization predicts a
transition from a superfluid to a Mott insulator when 1y, = 2 (dotted
cyan line); simultaneously, ncpw drops below 1 (dotted blue line).

the left-hand panel of Fig. 25 for U = 10. For smaller values
of U < 8.5 any superflow disappears in the thermodynamic
limit. For U = 9 and U = 9.5 the signal is noisy; it indicates
either thermodynamically stable superflow or mesoscopic
flow extending over hundreds of sites. It is, given the data,
certain that the bosonic and the fermionic pair flow do not co-
exist, and likely that they are adjacent in the phase diagram.

We plot the quantities ncpw and nspw as a function of U
and for L = 30, 50, and 70 in the right-hand panel of Fig. 25
obtained from the low-momentum analysis of the static CDW
and SDW structure factors. In the region of putative bosonic
superfluidity, we obtain values between 1 and 1.25 (and a fully
developed spin gap), indicating a decay faster than the one
of free fermions. The fermions are hence paired because of
the attractive induced interactions but a picture of molecules
with charge-density wave order does not apply. For U > 9
the values of ncpw are below 1. Note that the spin gap has
not fully developed for U > 9.5 for L = 70, as can be seen
in the lower curve of the right-hand panel in Fig. 26. The
spin gap develops, however, rather quickly for U < 11, and
(exponentially) slowly for U > 12. Figure 26 also shows 7y,
which is larger than 2 for U = 8, in line with uniform bosonic
superfluidity. For U > 9 the flow towards a bosonic Mott
insulator is apparent. At U = 8.5 the bosonic density-density
correlation function has an exponent 7, < 2. It seems to be
nearly constant on our system sizes (whereas it should flow
to zero in a Mott-insulating phase). We attribute this to the
(mesoscopic) superfluidity, which counters stronger density
fluctuations (cf. also the behavior of n, forU =4.5and V =
2 in Fig. 12 and for U = 14 and V = 8 in Fig. 35). Hence,
within our system sizes, U = 8 shows a bosonic superfluid
and is very close to the phase-separation line (and also very
close to a Mott transition), whereas U = 8.5 is already on the
Mott-insulating side based on its value of npp.

We saw the strongest CDW correlations for U = 9 with
nepw = 0.72(3) and U = 9.5 with nepw = 0.75(3), both for
L = B =70, as shown in Figs. 25 and 26. These CDW corre-
lations decay algebraically and for larger and smaller values
of U they decay as faster power laws; for L = § = 70 we find
ncow = 0.79(2) for U = 10. We did not see any indication of
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FIG. 26. Left: The CDW correlation function for V =5 and
U = 9.5 and various system sizes and inverse temperatures chosen as
L = B showing convergence at short distances with system size and
asymptotic power-law decay with exponent ncpw = 0.74(2), indica-
tive of algebraic CDW correlations. Right: Rescaled static structure
factors in the CDW and SDW channels for V =5, U = 9.5, and
L = 8 =90 from which ncpw and nspw in the right-hand panel of
Fig. 25 are extracted and which are compatible with the data shown
on the left. The peak that develops at k = w in the CDW static
structure factor might be an indication of lattice symmetry breaking
developing at longer length scales that are out of reach, however. The
SDW correlations are close to being fully gapped.

lattice symmetry breaking for V = 5 on the system sizes that
we can simulate (cf. below for a discussion on this for V =
6 and V = 8). There remains the small region between the
strong-coupling prediction for phase separation at U ~ 7 and
the onset of bosonic superfluid for U < 8. The data show no
sign of superflow in any channel, and furthermore ncpw and
Nbb are large because of an upturn in their respective structure
factors at low momentum. At the phase-separation transition
line the compressibility is divergent, with which the increase
of ncpw and ny, is consistent. Most likely, on finite sys-
tems in the canonical ensemble, the data are already phase
separated [58] and this leads us to the dotted cyan line in the
phase diagram of Fig. 1. The dotted cyan line is for V = 4 and
V = 5 in fair agreement with the weak-coupling prediction for
phase separation.

F. Scan of phase diagram at V = 6

For this value of V = 6 the strong-coupling analysis pre-
dicts phase separation to occur for U < V/0.717 ~ 8.36. As
we do not know if the strong-coupling analysis applies, it
could extend to higher values of U.

The bosonic winding number squared is plotted in the
left-hand panel of Fig. 27. The flow stops for U = 9.5 on
a scale L ~ 150, and also for U = 10.5 it will vanish. For
U = 10, the flow is reminiscent of the one of a critical point.
The single-particle density matrix G decays with an expo-
nent 1, =~ 1.1 for L = = 30 and goes down very slowly
with system size as is seen from n, ~ 1.0 for L = g = 70.
The value of ny, appears to be 1.98(2) for L = 70 (see the
left-hand panel of Fig. 30). Whether any stable superflow
for slightly different values of U at V = 6 can be found is
outside our resolution. We will consider U = 10 a critical
point; for the system sizes that we can simulate it behaves
locally as a superfluid. The fermionic Z factors are shown in
the right-hand panel of Fig. 27. We see a very strong renormal-
ization towards non-Fermi-liquid behavior everywhere except
for U > 12, which is in agreement with the argument given
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FIG. 27. Left: Bosonic winding number squared for V = 6.
Phase separation is seen for (at least) U < 8.5. The system flows
towards an insulator in the thermodynamic regime despite the ap-
pearance of nonzero winding numbers at mesoscopic length scales
in the range U = 9.5 to U = 11. Right: Jumps in occupation number
at kr, showing a strong tendency towards free fermions for U > 13,
and non-Fermi-liquid behavior for U < 12.

in Sec. IIIB. For U < 11.5 the low values of Z(L) < 0.2
indicate that we have good chances of monitoring the entire
flow on the system sizes that we can simulate. The fact that
we still need to go to L =150 for U =11 and U = 11.5
is, however, remarkable given that U,V > t. The winding
numbers squared in the counterflow and pair-flow channels,
shown in Fig. 28, likewise show the tendency towards free
fermionic behavior for U > 14. For U = 12 the counterflow
channel flows to zero with system size whereas the pair-flow
channel seems to approach a nonzero value on mesoscopic
length scales within error bars, indicating superconducting
correlations (see the analysis in the left-hand panel of Fig. 29).
For smaller values of U < 10.5 any superflow disappears in
the thermodynamic limit. For U = 11.5 the signal is noisys; it
indicates either thermodynamically stable superflow or strong
correlations at least extending over hundreds of sites and close
to the transition. The induced pairing between the fermions
cannot be caused by a soft bosonic mode.

We plot the quantity ncpw as a function of U and for
L =50 and 70 in the left-hand panel of Fig. 30 obtained
from the low-momentum analysis of the static CDW structure
factor. In the region of the (local) bosonic superfluid, we ob-

9 10 11 12 13 14 15 16 9
U U

10 11 12 13 14 15 16

FIG. 28. Left: Winding number squared in the counterflow chan-
nel at V = 6 as a function of U for various system sizes and inverse
temperatures with L = 8. Right: Winding number squared in the
pair-flow channel at V = 6 for the same system as in the left panel.
For U > 13 the fermions are quasifree on our system sizes; for lower
values of U the signal in the counterflow channel flows to zero with
system size. Insulating behavior in the pair-flow channel is certainly
seen for U < 10. For U = 12 it appears stable (see Fig. 29) and for
U = 11.5 the signal is suggestive of stable pair flow as well. The
error bars for the data in the pair-flow channel for L > 100 are too
noisy over the range 9.5 < U < 11.5 to show.
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FIG. 29. Left: Winding number squared for the spin-up particles
(blue), in the counterflow channel (red), and in the pair-flow channel
(green) as a function of inverse system size with inverse temperature
B = L and system parameters V = 6 and U = 12. The counterflow
channel shows a strong and unstoppable renormalization to zero
whereas the pair-flow channel stays finite and will approach four
times the value of the winding number squared of the spin-up parti-
cles in the case of a thermodynamic superflow. Note that the residue
is still about 0.4 on the largest system sizes (cf. Fig. 27), so further
renormalizations will happen on longer length scales. Right: Same
but for V =8 and U = 16, suggesting thermodynamically stable
pair flow. This should be taken with some caution when taking into
account that the residue is still 0.31(1) for L = 150 (cf. Fig. 27).

tain values between 1 and 1.2 (and a fully developed spin gap),
indicating a decay faster than the one of free fermions. The
fermions are hence paired because of the attractive induced
interactions but a picture of molecules with charge-density
wave order does not apply. As the bosons gap out for larger
L we expect ncpw to diminish as well. For U > 11 the values
of ncpw are below 1. Whether true lattice symmetry breaking
develops is impossible to say given the data, but unlikely as
shown in Figs. 31 and 32 for U = 11, which has the lowest
value of ncpw: It is equally well possible to fit the CDW data
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FIG. 30. Left: ncpw, nspw, and 1y, as a function of U for V =
6 computed at L = 8 = 30, 50, and 70 (solid, dashed, and dash-
dotted lines, respectively) from extrapolation of the CDW, SDW, and
bosonic static structure factors for low momenta. When values for
ncpw below 1 are found, fits that involve lattice symmetry breaking
are equally good but the value of the constant is very low and only
larger system sizes could settle this issue. Right: Illustration of the
scaled CDW and SDW static structure factors for V=6 and U = 12
in the CDW and SDW channels. The nonzero value below 1 seen
in the scaled SDW correlator is certainly a finite-size effect: it must
approach 1 for systems with SU(2) symmetry, or go to zero in the
case of a spin gap, which is the case here. There appears to be
a § peak developing at k = w which also is suggestive of lattice
symmetry breaking. For this to hold, one must show that this peak
[SCP¥(k = )] scales with L, and given the low values of the peak it
is not possible to do so with certainty on the system sizes that we can
reach (not shown). Cf. Fig. 36 for the same quantity for V = 8 and
U =2V =16.
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FIG. 31. Left: The CDW correlator for V =6 and U = 11 for
different system sizes (L = B = 30, 50, 70, 90, 110, 130, 150) show-
ing convergence at short distances. Right: The same CDW correlator
for L = B = 110 is best fit with a power law; the alternative fit with
a constant yields a constant C that is too small in value according to
our criterion comparing C with 1/L. Strong CDW correlations are,
however, undeniable.

with a staggered constant at large distances as with a power
law over the cord function, but the value of this constant is
so low (and lower than 1/L such that far bigger system sizes
would be needed to answer this question). As shown in the
right-hand panel of Fig. 32 the CMPW correlation function
shows the same oscillating (alternating) pattern as CPV [and
C"®(x)] and has the largest amplitude. This strengthens the
picture of a density wave consisting of alternating bosonic and
fermionic molecules.

We now turn our attention to the region without superflow
for U = 8.5-9.5. Care has to be taken with thermalization in
this regime because in the absence of superflow properties
we have no efficient updates, and the proximity of the phase
separation further complicates the simulations. The spin gap
is fully developed, and the bosonic single-particle density
matrix decays exponentially on long enough length scales
and the parameters ny, and ncpw are large. The behavior is
similartoV =4and U =5andtoV =5 and U = 7-8, and,
as discussed in the previous paragraph, this is interpreted as
phase separation.
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FIG. 32. Left: Scaled static structure factor for the same system
asin Fig. 31 with V = 6, U = 11, and L = 8 = 110. There appears
to be a § peak developing at k = 7 which also is suggestive of lattice
symmetry breaking. For this to hold, one must show that this peak
[SPV (k = )] scales with L, and given the low values of the peak it
is not possible to do so with certainty on the system sizes that we can
reach (not shown). Right: The bosonic density-density []) and MDW
[CMPW (x)] correlation functions for the same system, showing a sim-
ilar strong power law, within error bars, for the the same asymptotic
behavior as the CDW correlation function [CPW (x)].
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FIG. 33. Left: Bosonic winding number squared for V = 8.
Phase separation is seen for smaller values than U < 12. The system
flows towards an insulator in the thermodynamic regime despite the
appearance of winding number at mesoscopic length scales in the
range U = 14. Right: Jumps in occupation number at kr, showing a
strong tendency towards free fermions for U > 17, and non-Fermi-
liquid behavior everywhere else.

G. Scan of phase diagram atV = 8

According to the strong-coupling estimates, phase sep-
aration is expected for U < 11.15, although, as discussed
below, it extends probably to U = 12 (cf. also Fig. 3). The
bosonic superfluid properties are shown in the left-hand panel
of Fig. 33. As one can expect for such strong values of U
and V the bosons are in the thermodynamic limit always
insulating. However, for U = 14 nonzero winding numbers
can be observed up to ~500 sites (after extrapolation, not
shown), with the typical flow for one-dimensional systems.

In the right-hand panel of Fig. 33 we see that the flow of the
residue in the fermionic channel is completed for U < 15. In
Fig. 34 we observe that the pair-flow and counterflow signals
decay to zero with system size for U = 15. However, very
close to the U = 2V = 16 value, where our strong-coupling
arguments favor a homogeneous system, indications of pair
flow (at least on finite-size systems) are seen. For U > 18
we are close to the behavior of decoupled, free fermions. In
Fig. 35 we show the dependence of 1y, ncpw, and nspw on
U for L = 30, 50, and 70 as obtained from the low-momentum
behavior of their respective static structure factors. The curve
for nyp is nonmonotonous. The most likely explanation is that
for U = 14 the mesoscopic bosonic superfluidity suppresses
the density fluctuations, as we have seen for lower values of

FIG. 34. Left: Winding numbers squared in the counterflow
channel for V = 8. Right: Winding numbers squared in the pair-flow
channel for V = 8. The width of the mesoscopic pair-superflow re-
gion seen around U =~ 16 is narrower than the corresponding region
forV =6andU = 12 and forV = 5and U = 10, and situated closer
to the asymptotic line U = 2V; for V > 17 the analysis of the various
superflow quantities shows that the fermionic behavior is close to
that of noninteracting ones on our length scales, in agreement with
the right-hand panel of Fig. 33.
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FIG. 35. Left: The quantities ncpw, nspw, and ny, for V=38
obtained from an analysis of the low-momentum behavior of the
CDW, SDW, and bosonic static structure factors for L = 30, 50, and
70 (top to bottom; solid, dashed, and dash-dotted lines, respectively).
The spin gap is fully developed at L ~ 70 for U < 16. Right: The
CDW correlator for V =8 and U = 13 for different system sizes
(L =B =14, 30, 42, 50, 62, 70) showing convergence at short
distances.

V. The “fan” does not visibly open for U = 14 although the
value of 7y is below 2 (because it is still rather close to 2), but
we expect it to open for larger system sizes when the bosonic
superfluidity is negligible. The suppression of charge fluctu-
ations in the bosonic channel is then also reflected in ncpw.
This parameter point (U = 14 and V = 8) demonstrates a
recurrent theme of this paper, namely, monitoring competing
instabilities to more than 100 lattice sites.

For U > 15, we see strong indications of bosonic insu-
lating behavior, similar to what we have seen before in the
regime U ~ 2V. For U = 13 we observe a fast reduction of
ey With L. The spin gap is fully developed on our length
scales up to the point when U ~ 2V, then shows a strong
renormalization on the length scales that we can study for
U values in the range 15-18 and nspw approaches 1 from
below in the quasifree fermion regime for larger values of
U. This is also similar to what we have seen before. For
U > 15, ncpw < 1 and it approaches 1 from below when
further increasing U as we approach the regime of quasifree
fermions.

There are fingerprints of spontaneous lattice symmetry
breaking for U = 13 based on the linear scaling of the
staggered static structure factors in the bosonic and CDW (and
MDW) channels, as shown in Fig. 36. The slope in the left-
hand panel of Fig. 36 for the CDW channel is consistent with
the value C = 0.10(2) seen in the right-hand panel of Fig. 35.
Although the bosonic structure factor also scales extensively
with L, its slope is less steep than for the fermions. The
spin-density wave structure factors are obviously insensitive
to such charge order. Given the absence of any superflow, this
data point would then be in an insulating phase characterized
with alternating bosonic molecular pairs and fermionic molec-
ular pairs, and is predicted by the strong-coupling arguments
of Sec. III B. Nevertheless, the observed order is weak, and a
final answer would require bigger system sizes. We were not
able to let the simulations converge for those, however. For
U = 16, the right-hand panel of Fig. 29 is suggestive of stable
pair flow. In Fig. 37 the data for the CDW structure factor
can equally well be fitted by a linear line as with a logarithm.
Given the very low value of the linear slope, an interpretation
of the data in terms of the absence of lattice symmetry break-
ing (and thus the logarithmic fit) is more likely, however. This
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FIG. 36. Staggered structure factors for V. = 8 and U = 13 (left)
and V =8 and U = 16 (right) in the bosonic, CDW, and SDW
channels. Spontaneous breaking of the lattice symmetry is seen in
the linear scaling of this quantity with L in the CDW and bosonic
channels for U = 13. The slope is compatible with the amplitude
of the oscillations in the right-hand panel of Fig. 35. For U = 16,
however, the scaling is most likely subextensive and no breaking of
the lattice symmetry can be established, since the value of the slope
in the linear fit is too low for our resolution and available system
sizes. In such a scenario, a logarithmic fit is expected to take over at
larger distances.

can also be understood from the strong-coupling arguments
of Sec. III B: For U > 2V we expect a uniform n = 1 bosonic
Mott insulator, and U = 2V is the critical point. The strong-
coupling arguments have hence quantitative predictive power
for the upper boundary at V = 8. In between U = 13 and
U = 16 (not shown) the staggered structure factors are seen
to diminish with increasing U, and one cannot be sure about
spontaneous lattice symmetry breaking. For ncpw, U = 14
has a higher value than U = 13, which we attributed to the
mesoscopic bosonic superflow. For U = 15 we find, however,
the lowest nepw.

The data in the regime U = 11.5-12 is again contradictory
and misleading. The fermionic residues indicate the absence
of quasiparticle degrees of freedom, and the Luttinger parame-
ters indicate a Luttinger liquid with ncpw > 1. The bosons are
nonsuperfluid but have ny, > 2. As with similar conflicting
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FIG. 37. Left: The CDW correlation function for V =8, U =
16, and L = B = 90 is asymptotically equally well fit by a power law
as with a small constant alternating on even and odd sites. The value
of ncpw is seen to go down with L, starting from ncpw (L = 30) &~
0.81. Error bars on ncpw are dominated by systematic effects and
estimated to be at least 5%. The alternative fit with a constant yields
C = 0.004(1), which is below our criterion value of lattice symmetry
breaking. Hence, no spontaneous lattice symmetry breaking can be
established, but strong CDW correlations remain undeniable. Right:
The corresponding CDW and SDW scaled static structure factors,
yielding a value of ncpw in close agreement to the fit in the left-hand
panel. The peak that develops at k = 7 is weak and in line with the
left panel.
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results for V =5 and V = 6, we think that these values of
U are in the phase-separation regime. The strong-coupling
arguments from Sec. III B are for V = 8§ not quantitatively
precise for the lower boundary, although the dashed black and
dotted cyan lines will merge for somewhat larger values of V
in the phase diagram of Fig. 1: Lanczos results for very small
system sizes and V = 20 show very good agreement with the
strong-coupling predictions (cf. Figs. 2—4).

VII. DISCUSSION AND CONCLUSION

The simulation of multicomponent systems, weakly in-
duced interactions, competing instabilities at work on hun-
dreds of lattice sites, and long autocorrelation times presents
a frontier in current computational physics. The system un-
der investigation, a one-dimensional mixture of scalar bosons
and S = 1/2 fermions defined on the lattice and subject to
Hubbard interactions, is perhaps the simplest model where
such physics can be explored. We employed path-integral
Monte Carlo simulations with worm-type updates to simulate
this system. We have introduced worm-type operators for all
single-particle Green functions, but restricted the two-worm
operators to the particle-particle and particle-hole channels of
the spin-up and spin-down fermions. Although the algorithm
is efficient almost everywhere in the nongapped part of the
phase diagram, there are cases where the autocorrelation times
explode for reasons ill understood. Despite the numerical
challenges, the phase diagram shown in Fig. 1 is brought un-
der reasonable control. It is straightforward to understand that
for V > U the system phase separates, and that for U > V
the bosons impose a uniform n = 1 Mott insulator on top of
which the fermions remain quasifree. In between, the bosons
induce attractive interactions between the fermions, which
must lead to a spin gap. We have systematically monitored
the development of the spin gap and the fermionic residue
as a function of V, U, and L, and used it as an indication
of how close we are to the thermodynamic limit. The in-
duced interactions can lead to phase separation, pair flow,
and/or molecular-density wave structures. For not too high
values of V, the bosons are found to be uniformly superfluid
in between the phase-separation and Mott-insulator phases.
Bosonic superfluidity is the dominant energy scale, and this
in turn suppresses fermionic charge fluctuations. The bosonic
superfluid is most likely adjacent to the regime of phase sepa-
ration by a first-order transition. The Mott insulator is reached

by a Kosterlitz-Thouless transition when ny, = 2 (this is the
exponent governing the decay of the bosonic density-density
correlation function), and this implies that 1, (the exponent
governing the power-law decay of the off-diagonal single-
particle, equal-time bosonic density matrix is less than 2 at
and close to the Mott transition), in line with the predictions
from bosonization [31]. We referred to 7, < 2 as a marginal
superfluid (see Fig. 6). We find a bosonic superfluid (almost)
uptoV=6and U = 10, and even for V =8 and U = 14
there is mesoscopic bosonic superflow up to several hundreds
of lattice sites. Superflow for such large values U,V >t is
a clear signature of the competition in the system: it must
be that there is a delicate parameter regime where induced
interactions between the bosons mediated by the fermions
lower the value of U and prefer a homogeneous system. At
least up to the system sizes that we can simulate (note that
the “Cooper” pair size exceeds hundreds of lattice sites even
for V = 2), the signal in the counter- and pair-flow channels
hints at pair flow for the fermions for low values of V < 4,
with ncpw > 1 as long as the bosons are superfluid. For
Mott-insulating bosons, we immediately arrive at ncpw < 1
throughout the phase diagram. For V =4 and V = 5 we ob-
serve a transition between pair flow and insulating fermionic
behavior as a function of U that is very hard to simulate and
therefore hard to determine precisely. The quantity ncpw is
not strongly affected by this. We expect for very large values
of V, U > ¢ that over the range V/0.717 < U < 2V a molec-
ular charge-density wave alternating with bosonic molecular
pairs is formed (see Sec. III B). We see some evidence for that
for V. =8 and U = 13 as shown in Fig. 36, but increasing U
further leads to a reduction in the strength of the charge order
correlations.

Numerical data for this paper are available [61]. Our sim-
ulations make use of the ALPSCore library [62] for error
evaluation.
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