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Anatomy of spin-wave-driven magnetic texture motion via magnonic torques
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The interplay between spin waves and magnetic texture represents the information exchange between the
fast and slow dynamical parts of magnetic systems. Here we formulate a set of magnonic torques acting on
background magnetic texture, by extracting time-invariant information from the fast precessing spin waves.
Under the frame of magnonic torques, we use theoretical formulations and micromagnetic simulations to
investigate the spin-wave-driven domain wall motion in two typical symmetry-breaking situations: the rotational
symmetry broken by the Dzyaloshinskii-Moriya interaction and the translational symmetry broken by magnetic
damping. The torque-based microscopic analyses provide compact yet quantitative tools to reinterpret the
magnetic texture dynamics induced by spin waves, beyond the conventional framework of global momentum
conservation.
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I. INTRODUCTION

The spin wave, the propagating disturbance of ordered
magnetizations, is one of the basic excitations in magnetic
systems. As an alternative angular momentum carrier besides
the spin-polarized conduction electron [1], the spin wave
possesses advantages of high energy efficiency, the ability
to propagate in magnetic insulators [1–3], and integrability
with current magnetic storage techniques [4]. With the above
merits and rapidly developing experimental techniques [5,6],
spin waves are of growing interest from both theoretical and
experimental sides [7,8].

Due to intrinsic nonlinearity of various magnetic interac-
tions, the propagation of spin waves is expected to induce
rich dynamics of underlying magnetic texture. Using spin
waves to harness the magnetic texture, as well as the converse
manipulation of spin waves via magnetic texture, offer an
integrated scheme toward constructing purely magnetic com-
puting devices [9,10]. Despite the urgent demand, transparent
understandings of spin-wave-driving scenarios are impeded
by the complexities brought by the fast precession of spin
waves, as well as the nonuniform magnetization distribution
of magnetic texture. To overcome this obstacle, a powerful ap-
proach is exploiting momentum conservation laws that focus
on global momentum transfer of linear momentum [11–13],
spin angular momentum [14–16], and orbital angular momen-
tum [17–19], as well as their combinations [20–23]. However,
requirements of symmetry-preservation impose stringent lim-
itations on the range of applicability of the above momentum
transfer scenarios to realistic magnetic systems.

To escape the symmetry limitations and gain more insights
into the actions of spin waves, theories focusing on the in-
teraction details are called for, where a useful strategy is to
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make the interaction simple in either space or time. Spatially
local interaction can be realized by constructing a spin wave
packet, and transforming the spin wave packet and magnetic
texture into two particle-like objects [24–27]. On the other
hand, time invariant interaction can be realized by extracting
the magnonic torques from the spin wave, and discarding irrel-
evant information in fast oscillations. The magnonic torques,
although frequently in an incomplete form, have been derived
and employed to explore specific magnetic dynamics in sev-
eral studies [28–31]. Nevertheless, insufficient cross-checking
with micromagnetic simulations and the lack of explicit con-
nections with other theoretical models, especially with the
conventional momentum transfer models, hinder the full ap-
plication of the magnonic torques or their variants.

In this work, we systematically recast actions of spin waves
on magnetic texture to a full set of magnonic torques, and
further establish the generalized Thiele equation for mag-
netic texture dynamics via these torques. To demonstrate
the applicability of these microscopic torques, we investigate
the spin-wave-driven domain wall motion in the presence
of Dzyaloshinskii-Moriya interaction (DMI) and magnetic
damping, for which both rotational and translational sym-
metries are broken. By capturing the domain wall dynamics
in such a typical symmetry-breaking system in the frame of
magnonic torques, we partition the overall contribution into
multiple aspects of spin waves. The detailed analyses enabled
by magnonic torques offer insights in developing purely mag-
netic information processing technologies.

The rest of paper is organized as follows. In Sec. II, we
systematically derive magnonic torques from fast oscillating
spin waves, and then formulate a generalized Thiele equa-
tion to describe the magnetic texture dynamics induced by
these magnonic torques. With the aid of these magnonic
torques, a hierarchy for various magnonic driving models
is also proposed. Using the simplified scenarios based on
magnonic torques, the spin-wave-driven domain wall motion
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in the presence of DMI and magnetic damping, as two typical
situations of broken symmetry, are then thoroughly investi-
gated in Sec. III. Comparisons between actions mediated by
magnons and electrons, as well as a short conclusion, are
given in Sec. IV.

II. MAGNONIC TORQUES AND GENERALIZED THIELE
EQUATION

A. Basic model

Consider a magnetic system with its magnetization direc-
tion denoted by a unit vector m; then the magnetic dynamics
is governed by the Landau-Lifshitz-Gilbert (LLG) equation

ṁ = −γ m × h + αm × ṁ, (1)

where ṁ ≡ ∂t m, γ is the gyromagnetic constant, and α is
the Gilbert damping constant. Here h = −(1/μ0Ms)δU/δm
is the effective magnetic field acting on the magnetization m,
where μ0 is the vacuum permeability, Ms is the saturation
magnetization, and U = ∫

u dV is the magnetic energy with
V the magnetic volume. The magnetic energy density u takes
a typical form of uniaxial magnets,

u = μ0Ms

2

[
A(∇m)2 + K

(
1 − m2

z

) + Dm · ((p × ∇ ) × m)
]
,

(2)

where A is the exchange constant, K is the easy-axis
anisotropy along ẑ, and D is the strength of the (interfacial-
type) DMI with p denoting the symmetry breaking direction.
The dipolar interaction is not considered explicitly since, for
the exchange type spin wave of interest in this work, its main
role is to renormalize the anisotropy [32].

We suppose that the DMI is moderate with D < Dc ≡
4
√

AK/π , hence the ground state is always the homogeneous
magnetization m = ±ẑ with u = 0 [33]. Depending on the ex-
act combinations of magnetic parameters A, K , and D, various
magnetic textures such as domain walls [23], skyrmions [34],
bobbers [35], and hopfions [36] may be stabilized with finite
energy density u > 0.

When temporal evolution is involved, the total magne-
tization naturally divides into the slowly varying magnetic
texture m0 and the fast oscillating spin wave m′. Due to
unity constraint |m| = 1, the transverse condition m′ · m0 = 0
is satisfied everywhere. Hence, we may define the spherical
coordinates êr,θ,φ adhered to texture magnetization êr ≡ m0,
and describe the spin wave as m′ = mθ êθ + mφ êφ .

B. Spin wave density and flux

Before entering into explicit formulations regarding the ac-
tions on magnetic texture, we make the following observations
for spin waves: (i) In uniaxial ferromagnets of interest here,
spin waves can always be treated as right-circularly polarized,
even when traveling upon inhomogeneous magnetic texture.
The special form of magnon superfluidity involves spin waves
in easy-plane magnets [37,38], thus it is beyond the scope
of this work. (ii) Because of much faster oscillation of spin
waves, preprocessing spin wave information in each oscilla-
tion period does not affect the remarkably slower dynamics of
magnetic texture.

Based on the above observations, we proceed to ex-
tract time-invariant information from a fast oscillating spin
wave. Note that first-order correlations vanish, 〈mθ/φ〉 = 0,
where 〈· · · 〉 denotes the time-averaging evaluation. Mean-
while, second-order spin wave correlations yield

〈
m2

θ

〉 = 〈
m2

φ

〉 = ρ, (3a)

〈mφ∇mθ 〉 = −〈mθ∇mφ〉 = j
2γ A

, (3b)

where ρ = 〈m′ · m′〉/2 and j = γ A〈∇m′ × m′〉 · m0 are the
spin wave density and flux, respectively. Besides, other cor-
relations include 〈mθmφ〉 = 0 and 〈mθ∇mθ 〉 = 〈mφ∇mφ〉 =
∇ρ/2.

C. Magnonic torques

By partitioning into magnetic texture m0 and spin wave
m′, the total magnetization reads m = √

1 − m′ · m′m0 + m′
in the small amplitude limit of the spin wave, |m′| � 1, where
the magnitude of the texture magnetization m0 is subject to a
reduction factor

√
1 − m′ · m′ as enforced by unity constraint

|m| = 1. In accordance with above partition scheme, the LLG
equation (1) is recast to

ṁ0 − αm0 × ṁ0 = τ0 + τ, (4)

where τ0 = γ h(m0) × m0 is the torque caused by texture gy-
ration and distortion, and τ is the magnonic torque mediated
by spin wave m′. Performing time averaging and utilizing the
spin wave correlations in Eq. (3), the magnonic torque τ is
then described by (see Appendix A for detailed mathematical
derivations of all four torques below)

τ = τSTT + τDM + τGL + τPL

= (j · ∇ )m0 − D

2A
(p × j) × m0

− 2ργ h(m0) × m0 − γ A(∇ρ · ∇ )m0 × m0, (5)

where the first and second terms are the spin-transfer torque
(STT) and Dzyaloshinskii-Moriya (DM) torque mediated by
the spin wave flux j, and third and fourth terms are gravity-
like (GL) and pressure-like (PL) torques mediated by the spin
wave density ρ, respectively.

The spin-transfer torque τSTT is due to the tracking of spin
wave precession to the inhomogeneous texture magnetization
[28,29], similar to the process of electron spin tracking the
background magnetization direction. The DM torque τDM can
be regarded as an extension of the spin transfer torque in the
spirit of the chiral derivative [39,40]: ∂β → ∂β − (D/2A)(p ×
êβ )×, and is analogous to the Rashba torque in the electronic
case [30]. The gravity-like torque τGL is caused by the rescal-
ing of the texture magnetization (1 − ρ)m0 in the presence
of spin wave m′ [25]. The pressure-like torque τPL is caused
by the inhomogeneous spin wave distribution [31], and is
intimately related to the entropic torque [15,41].

In a homogeneous domain with m0 = ±ẑ, only the DM
torque in Eq. (5) survives, for a proper combination of the
spin wave current j, symmetry breaking direction p, and mag-
netization m0. The specific form of DM torque indicates that
the spin wave flux j generates an effective magnetic field
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TABLE I. Hierarchy of magnonic driving models.

Complexity

Level Core approach Reference Spin wave Magnetic texture
Interaction

Time Space Time Space

Wave — LLG equation (1) � � — � �
Torque Time averaging Eq. (5), Refs. [28–31] ✗ � — � �
Force Thiele equation Eq. (7), Refs. [44,45] ✗ � — ✗ �
Particle Spin wave packet Refs. [24–27] ✗ ✗ — ✗ �
Momentum Noether theorem Refs. [11,14,18,23] — — — ✗ ✗

hD = −(D/2γ A)(p × j) acting on the static magnetization
m0, and further leads to a small magnetization tilting [30]
(see also Appendix D). For bulk-type DMI instead of the
interfacial type here, the DM torque is simply replaced by
τDM = (D/2A)j × m0.

When the inhomogeneous distribution of spin wave den-
sity is purely induced by magnetic damping, the following
relation is satisfied: ∇ρ ≈ −(αd/2)(j/γ A), where d is the
system dimension [31]. For this purely dissipative case, the
pressure-like torque is alternatively written as [29,31]

τPL = αd

2
(j · ∇ )m0 × m0 = αd

2
τSTT × m0, (6)

which serves as a dissipative (or nonadiabatic) correction
[42,43] to the (adiabatic) spin-transfer torque with a factor
αd/2. The nonadiabatic nature of τPL in Eq. (6) originates
from the slight mistracking of spin wave precession to the
background magnetization variation, which we attribute to the
response lag caused by magnetic damping.

D. Generalized Thiele equation

As seen in Eqs. (4) and (5), trimming the actions of
rapidly oscillating spin waves into several magnonic torques
markedly reduces the complexity of magnetic dynamics.
Since magnetic texture tends to maintain its shape, fur-
ther complexity reduction can be achieved by capturing
the magnetic texture dynamics via the evolution of col-
lective coordinates {Xμ} with μ = 1, 2, 3, . . . , i.e., m0(t ) ≡
m0[{Xμ(t )}]. Specifically, left multiplying ∂μm0 × m0 to
Eq. (4) and integrating in the whole magnetic volume V yields
the generalized Thiele equation [44,45],

B0
μν Ẋν + E0

μ − α�0
μν Ẋν

=
∫ [(

b0
μβ + bD

μβ

)
jβ + 2e0

μρ + γ Aλ0
μβ∂βρ

]
dV, (7)

where μ and ν are indices reserved for collective co-
ordinates of magnetic texture, β is for Cartesian coordi-
nates, and the Einstein summation rule on repeated indices
is implied. Here b0

μβ = m0 · (∂μm0 × ∂βm0) and bD
μβ =

(D/2A)(p × êβ ) · ∂μm0 are the fictitious magnetic fields
caused by the magnetic topology and DMI [25,46,47], e0

μ =
−(γ /μ0Ms)∂μu0 is the fictitious electric field caused by the
inhomogeneous magnetic energy density [25,48], and λ0

μβ =
∂μm0 · ∂βm0 is the adhesion field characterizing the “rough-
ness” of the nonuniform magnetizations. The global quantities
denoted in upper case follow the definitions of the above local

quantities in lower case, i.e., B0
μν = ∫

b0
μνdV , E0

μ = ∫
e0
μdV ,

and �0
μν = ∫

λ0
μνdV . Alternatively for magnetic texture, B0

μν

is the gyroscopic coefficient correlated with the topology
charge, E0

μ = −(γ /μ0Ms)∂μU0 is the restoration force, and
α�0

μν is the viscous coefficient.
In Eq. (7), all magnonic torques are transformed to forces

mediated by the fictitious fields generated by the magnetic
texture (see Appendix B for detailed discussions): the spin-
transfer torque τSTT and the DM torque τDM to Ampère
forces, the gravity-like torque τGL to electrostatic force, and
the pressure-like torque τPL to adhesion force. Note that the
two sides of Eq. (7) share the same fields b0, e0, and λ0,
reminding one that magnetic texture and spin waves are under
the same magnetic environment. The only unpaired force is
due to the additional field bD, which highlights the unique role
of DMI in shaping magnetic dynamics. Indeed, DMI is a key
ingredient that introduces chirality to magnetic texture [49],
and nonreciprocity to spin waves [50,51].

By decomposing a continuous spin wave into discrete spin
wave packets, Ampère forces exerted by flux j in Eq. (7)
are divided into Lorentz forces exerted by moving charges.
Consequently, the interplay between spin wave packets and
magnetic texture mimics the collision between two particle-
like objects, as established in Ref. [25].

E. Hierarchy of magnonic driving models

From the preceding discussions, a hierarchy of magnonic
driving models can be constructed by making more and more
simplifications in each stage, as listed in Table I. Note that
above five models lie at different levels of complexity, and
thus have their own advantages and limitations in handling
specific problems.

III. DOMAIN WALL MOTION INDUCED
BY MAGNONIC TORQUES

In the following, we scrutinize the torque model es-
tablished in the preceding section by investigating the
spin-wave-driven domain wall motion in a magnetic wire,
where both DMI and magnetic damping are present. Specif-
ically, the DMI breaks the rotational symmetry, and the
magnetic damping breaks the translational symmetry in both
space and time. While the momentum model hinging on sym-
metry preservation is no longer applicable, the microscopic
torque model naturally fits into such investigations.

054441-3



HANXU AI AND JIN LAN PHYSICAL REVIEW B 107, 054441 (2023)

STT DM

GL PL

m0 m

(a) wave model

(b) torque model

(c) force model

i. magnonic forces ii. internal forces

FIG. 1. Schematics of the domain wall dynamics induced by (a) spin waves, (b) the equivalent magnonic torques, and (c) magnonic forces.
In (a) and (b), the red arrows depict the domain wall magnetizations, and all magnetizations are united in a magnetic Bloch sphere. For
(a) the red circles represent the precessing spin waves, and for (b) the green/orange/purple/blue arrows represent the corresponding magnonic
torques. In (c), the arrows depict the magnonic/internal forces (see Appendix B for definitions) in the left/right panels at three selected times.
The black dots plot the time evolution of the domain wall in parametric space {X,�}, and the red dots depict the three observation points.

A. Theoretical formulations

Consider a magnetic wire extending in the x axis, where
the easy axis of the anisotropy and the symmetry-breaking
direction of DMI both lie in the z axis. The ground states
are magnetic domains with m0 = ±ẑ, and the domain wall
lying in between two domains is of Néel type as enforced
by DMI, as seen in Fig. 1. More explicitly, the domain wall
takes the Walker profile with θ0 = 2 arctan[exp(x/W )] and
φ0 = 0, where θ0 and φ0 are the polar and azimuthal angles
of m0 about ẑ, and W = √

A/K is the characteristic width.
The domain wall energy is u0 = μ0MsK sech2(x/W ), which
is contributed by the exchange coupling and the anisotropy
half by half. The slow variation of the domain wall can be
described by

θ0(t ) = 2 arctan

[
exp

(
x − X (t )

W

)]
, φ0(t ) = �(t ), (8)

where the central position X and rotation angle � constitute
the minimal set of collective coordinates of the domain wall.

Denoting the spin wave by complex field ψ = mθ − imφ ,
the spin wave dynamics is recast from the LLG equation (1)
to a Schrödinger-like equation,

i − α

γ
ψ̇ =

(
−A∂2

x + K − 2

μ0Ms
u0 + D

2W
mx

0

)
ψ, (9)

where two effective potentials arise due to the inhomogeneous
domain wall profile and DMI. Since the reflection by the
Pöschl-Teller type potential well −(2/μ0Ms)u0 is always ab-
sent, and the scattering by the additional potential (D/2W )mx

0
is negligible except for extremely low frequency, as shown
in Fig. 4 of Appendix C, here we suppose perfect spin wave
transmission for all cases. Consequently, the spin wave travel-
ing upon the domain wall governed by Eq. (9) simply takes a
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decaying plane wave form,

ψ = c exp(ikx − κx − iωt ), (10)

where c is the amplitude, k and κ are the real and imaginary
parts of the wave vector, and ω is the angular frequency. The
spin wave dispersion is (1 + iα)ω = γ [A(k + iκ )2 + K], and
the group velocity is v ≡ ∂kω = 2γ Ak.

From above spin wave information in Eq. (10), the spin
wave density is ρ = (c2/2) exp(−2κx), the spin wave flux is
j = 2γ ρAk = ρv, and the density gradient is ∂xρ = −2ρκ .
Therefore, the magnonic torques in Eq. (5) are explicitly given
by

τ =τSTT + τDM + τGL + τPL

=ρv

(
∂xm0 + D

2A
m0 × ŷ

)

+ 2ρ(m0 × γ h0 − κγ Am0 × ∂xm0), (11)

where all torques are proportional to the spin wave density ρ,
i.e., lying in second order to the spin wave.

With magnonic torques in Eq. (11), the domain wall dy-
namics with collective coordinates X and � is recast from
Eq. (7) to

Ẋ

W
− α�̇ = −ρ0v

W
(1 − D̃ cos �) + (1 − 2ρ0)

v

W

D̃ sin �

2kW
,

(12a)

�̇ + αẊ

W
= 2κρ0v

(
D̃ sin � − ε

2kW

)
, (12b)

where ρ0 = ρs exp[−2κ (X − xs)] is the spin wave density at
the domain wall center, and xs and ρs are the position and spin
wave density of the spin wave source, respectively.

In Eq. (12b), a correction factor ε = 3/2 is artificially in-
troduced to take account of the domain wall dynamics beyond
the parametric space {X,�}. As seen in Appendix D, the
DM torque tends to tilt the magnetization out of the domain
wall plane, with the tilting magnitude proportional to local
spin wave density. This tilting adds to the overall rotation of
the domain wall, and thus leads to complicated distortion as
formulated in Eq. (D4).

Noting that κ ≈ αω/v for small damping α � 1, the lead-
ing order of the domain wall motion in Ẋ (rotation in �̇) then
lies at the zeroth (first) order of the damping constant α. In this
regard, the domain wall motion in Ẋ is mainly contributed by
spin transfer torque τSTT, DM torque τDM, and internal torque
τ0, while the contribution of τGL is negligible due to smallness
of rotation angle � � 1 and spin wave density ρ � 1. In
the meantime, beside the contribution of DM torque τDM and
pressure-like torque τPL induced by the spin wave attenuation,
the hybridization term between X and � also manifests as a
crucial ingredient in the rotating domain wall. Alternatively,
Eq. (12) can be interpreted as a balance between external
magnonic forces and internal texture forces, as elaborated in
Appendix B.

The spin wave in Eq. (10) together with the corresponding
magnonic torques formulated in Eq. (11) and the magnonic
forces formulated in Eq. (B3) are schematically depicted in
Fig. 1. Note that by converting spin wave to magnonic torques
and further to magnonic forces, the driving scenarios become

increasingly transparent. For the torque model in Fig. 1(b),
both the spin transfer torque τSTT and gravity-like torque
τGL tend to move the domain wall, while the pressure-like
torque τPL tends to rotate the domain wall. Meanwhile, the
DM torque τDM competes with all these torques in both do-
main wall motion and rotation. The above relations between
magnonic torques are corroborated by the force model in
Fig. 1(c), where the participation of DMI in both dynamics
of X and � is unambiguously indicated by the tilting of FDM.
In addition, the tilting of both F0

B and F0
α also highlight the dy-

namics hybridization between X and �, due to the gyroscopic
nature of ferromagnetic dynamics.

B. Numerical results

To quantitatively investigate the domain wall dynam-
ics, we carry out three types of numerical calculations
in parallel: (i) wave-based analysis, by performing micro-
magnetic simulations using the original LLG equation (1)
with the spin wave included; (ii) torque-based analysis,
by performing micromagnetic simulations using the equiv-
alent magnonic torques in Eq. (11); and (iii) force-based
analysis, by seeking numerical solutions to the collective
coordinate equation (12). For micromagnetic simulations in
wave- and torque-based analyses, a micromagnetic mod-
ule developed by Yu et al. [52] is employed, where the
LLG equation is transformed to a weak form, and solved
by the generalized-alpha method. The magnetic parame-
ters are mainly based on yttrium iron garnet (YIG) [9,53]:
the exchange coupling constant A = 3.28 × 10−11 A m, the
easy-axis anisotropy K = 3.88 × 104 A m−1, the saturation
magnetization Ms = 1.94 × 105 A m−1, the gyromagnetic ra-
tio γ = 2.21 × 105 m A−1s−1, and the vacuum permeability
μ0 = 1.26 × 10−6 T m A−1.

When damping is negligible, κ = α = 0, domain wall is
subject to no rotation (� = 0) according to Eq. (12b), and the
domain wall velocity is simply given by

V ≡ Ẋ = −ηρsv, (13)

where η = 1 − D̃. The scaling factor η originates from the
rotational symmetry breaking induced by DMI, as we note
that the relation V = −ρsv at D = 0 is a manifestation of
angular momentum conservation [14]. The slowdown of the
domain wall motion by DMI is clearly shown in Fig. 2(a),
for a series of DM strengths. Moreover, the factor η extracted
at different spin wave frequencies also coincides well with
the theoretical expectation in Eq. (13). Nevertheless, slight
deviation from Eq. (13) is spotted as D approaches Dc (or η

approach 0), which we attribute to the increasing instability
toward a spin spiral state.

When magnetic damping is finite, α �= 0, but the DMI
is absent, D = 0, the domain wall velocity is simply de-
scribed by V = −ρ0v, according to Eq. (12a). However, due
to spin wave attenuation, the domain wall experiences larger
magnonic torque as its approaches the spin wave source. As a
result, domain wall velocity is modulated by V̇ /V = ρ̇0/ρ0 =
−2κV , i.e., the domain wall is subject to an effective drag
force with coefficient 2κ . Consequently, the domain wall ve-
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FIG. 2. Spin-wave-driven domain wall motion under (a) D �= 0, α = 0 and (b) D = 0, α �= 0. In (a), the upper panel plots the time evolution
of domain wall position under a set of different DM strengths D, and the lower panel plots the scaling factor η as function of DM strength. In
(b), the upper panel plots the time evolution of domain wall position under a set of magnetic dampings α, the lower panel plots the domain
wall velocity V for a relatively long time. For all plots, the dots/solid lines are extracted from micromagnetic simulations based on the original
LLG equation (1) and the magnonic torques (11), and the dashed lines are based on Eq. (12). The spin wave is excited at x0 = −300 nm with
excitation frequency f = 10 GHz and spin wave density ρ0 = 0.02.

locity is explicitly described by [27]

V = − |V0|
1 − 2κ|V0|t , (14)

where V0 = −ρsv exp[−2κ (X0 − xs)] is the domain wall ve-
locity at initial position X0. For a short time t � t0 ≡
1/2κ|V0| ≈ 55 ns, the domain wall velocity is almost invariant
in time, and decreases exponentially as damping constant α

increases, as depicted in Fig. 2(b). For a long time t ∼ t0, the
domain wall velocity increases reciprocally as formulated in
Eq. (14), deviating from an empirically anticipated exponen-
tial law V = −|V0| exp(2κ|V0|t ).

Although both the DMI and the damping slow down the
domain wall motion driven by the spin wave in Fig. 2,
their roles are distinct from the viewpoint of symmetry.
The main role of DMI is to generate a DM torque that
counteracts the spin-transfer torque, i.e., the underlying mech-
anism is the rotational symmetry breaking. In contrast, the
role of damping is to attenuate the spin wave and thus de-
crease the spin wave density (flux) touching the domain

wall, i.e., the underlying mechanism is translational symmetry
breaking.

When sizable DMI and magnetic damping are both present
with D �= 0 and α �= 0, the evolution of domain wall velocity
becomes more complicated, due to competitions and corre-
lations between multiple torques in Eq. (11). Despite these
complexities, the evolution of domain wall velocity is quan-
titatively reproduced by both torque-based simulations and
force-based analyses, as shown in Fig. 3(a). Furthermore, ac-
cording to Eq. (12), the overall domain wall velocity naturally
splits into three different parts: VSTT by spin transfer torque,
VDM from DM torque, V� from the internal restoration torque.
A small contribution from gravity-like torque also appears
in Eq. (12b), but can be neglected due to the smallness of
both rotation angle � and spin wave density ρ. Among these
contributions, VSTT and VDM are much larger, and remain as
the major part even after mutual cancellation, while V� driven
by finite angle � is also noteworthy, even though no spin wave
reflection is included here. To further investigate the driving
mechanism, the rotation angle � is also divided into two parts
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FIG. 3. Time evolution of (a) domain wall velocity V and (b) an-
gle � under D = 0.6 × 10−3 A and α = 0.05. The dots are for
wave-based analysis using Eq. (1), the solid lines are for torque-
based analysis using Eq. (11), and dashed lines are for force-based
analysis using Eq. (12), respectively.

in Fig. 3(b): �V caused by dynamics hybridization between
X and �, and �PL caused by pressure-like torque τPL. While
�V and �PL always tend to cancel out with each other, the
accumulation of the small mismatch gives rise to a small but
gradually increasing rotation angle �, and further modifies the
domain wall velocity via V� in Fig. 3(a).

IV. DISCUSSIONS AND CONCLUSION

The magnonic torque in Eq. (5) shares many similari-
ties with its electronic counterpart, as manifested in the spin
transfer torque and the DM (Rashba) torque, because both
spin wave and spin-polarized conduction electrons are angular
momentum carriers [1]. However, different from the electric
nature of conduction electron, the magnetic nature of spin
waves adds several new flavors to magnonic torques: (i) Un-
like conduction electrons, spin waves share the same magnetic
degree of freedom with the background magnetization, and
thus the gravity-like and pressure-like magnonic torques ad-
ditionally emerge. (ii) The intrinsic magnetic nature of the
spin wave implies its sensitivity to magnetic environment,

therefore the spatial distribution of spin waves and further
magnonic torques can be quite complicated due to magnetic
scattering. In contrast, the electric current can be regarded as
uniform in the length scale of magnetic texture, giving rise to
a much simpler form of its electronic counterpart. (iii) Due to
relatively slow spin wave propagation, a finite time is required
for magnonic torque to act on the whole magnetic texture,
as demonstrated in Figs. 2 and 3; Given the extremely high
propagation speed of electric current, such a response time is
negligible.

In this work, the validity of magnonic torques rests with the
circularly polarized form of the spin wave, which is ensured
when exchange coupling is dominating. However, when hard-
axis anisotropy is remarkable in biaxial ferromagnets, the
spin wave is squeezed to elliptical form [54]. Furthermore, in
antiferromagnets and ferrimagnets, the spin wave is endowed
with full polarization degree of freedom [5,12,47,55,56] and
may take arbitrary polarization including all circular, linear,
and elliptical forms. To account for these complications, po-
larization and other relevant information beside the spin wave
density and flux are necessary to fully describe the magnonic
torques. The above information would also be added as in-
gredients to further distinguish the magnonic torque from its
electronic counterpart.

In conclusion, by converting the action of spin waves to
a set of magnonic torques, we established torque model to
formulate the general dynamics of magnetic texture induced
by spin waves. Via the torque-based simulations and force-
based analyses, the domain wall motion driven by spin waves
is systematically investigated, even though the translational
and rotational symmetries are broken by DMI and magnetic
damping, respectively. With unique features and transparent
meanings of these magnonic torques, more delicate manipu-
lations of magnetic texture using spin waves are envisioned.
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APPENDIX A: DERIVATION OF MAGNONIC TORQUES

When spin wave m′ travels upon magnetic texture m0,
the total magnetization subject to unity constraint |m| = 1 is
described by

m =√
1 − m′ · m′m0 + m′

≈
(

1 − m′ · m′

2

)
m0 + m′

=m0 + m′ − ρm0, (A1)

which corresponds to zeroth-, first-, and second-order terms
in spin wave m′. Meanwhile, the effective magnetic field is

h(m) = A∇2m + Kmzẑ − D(p × ∇ ) × m, (A2)

which naturally splits into three parts, h(m) = h(m0) +
h(m′) − h(ρm0), according to Eq. (A1). Furthermore, the
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effective field has the following property:

h(ρm0) − ρh(m0) ≈2A(∇ρ · ∇ )m0 − D(p × ∇ )ρ × m0,

(A3)

which is caused by the fact that ∂β (ρm0) − ρ∂βm0 =
(∂βρ)m0.

Inserting Eq. (A1) to the LLG equation (1) yields

ṁ0 − αm0 × ṁ0 = − m0 × γ h(m0) − m′ × γ h(m′)

+ ρm0 × γ h(m0) + m0 × γ h(ρm0),

(A4)

where only zeroth- and second-order terms in spin wave m′
are kept, and the first-order terms are dropped since they
always average out in time evolution. On the right side of
Eq. (A4), the first term is τ0 caused by the texture distortion
and gyration, and the remaining three items together consti-
tute the magnonic torques τ. Inserting Eqs. (A2) and (A3) into
Eq. (A4), the magnonic torque is then described by

τ ≈ 2ρm0 × γ h(m0) + m0 × γ [2A(∇ρ · ∇ )m0

− D(p × ∇ )ρ × m0] − 〈m′ × γ A∇2m′〉
+ 〈m′ × γ [D(p × ∇ ) × m′]〉, (A5)

where the time averaging 〈· · · 〉 is used to further remove
redundant fluctuations.

In the second line of Eq. (A5), the torque related to the
exchange coupling is transformed to

−〈m′ × γ A∇2m′〉 = − ∂β〈m′ × γ A∂βm′〉
= ∂β ( jβm0 + γ Aρ∂βm0 × m0)

≈ (j · ∇ )m0 + γ A(∇ρ · ∇ )m0 × m0,

(A6)

where following relation is employed:

〈m′ × ∂βm′〉
= (m0 · 〈m′ × ∂βm′〉)m0 + m0 × (〈m′ × ∂βm′〉 × m0)

= − jβ
γ A

m0 + 〈(m0 · ∂βm′)(m′ × m0)〉

= − jβ
γ A

m0 − 〈(∂βm0 · m′)(m′ × m0)〉

= − jβ
γ A

m0 − ρ∂βm0 × m0. (A7)

Similarly, the torque related to the DMI in third line of
Eq. (A5) is transformed to

〈m′ × [γ D(p × ∇ ) × m′]〉
= 〈m′ × [γ D(p × êβ ) × ∂βm′]〉
= −〈[γ D(p × êβ ) · m′]∂βm′〉 + γ D(p × êβ )〈m′ · ∂βm′〉

≈ −γ D(p × êβ ) × jβ
2γ A

m0 + γ D(p × êβ )∂βρ

= − D

2A
(p × j) × m0 + γ Dm0 × [(p × ∇ )ρ × m0].

(A8)

In the derivation of Eqs. (A7) and (A8), we utilize the
following properties for circularly polarized spin wave m′,
supposing that c = cθ êθ + cφ êφ is an arbitrary vector trans-
verse to êr ≡ m0:

〈(c · m′)m′〉
= 〈(cθmθ + cφmφ )(mθ êθ + mφ êφ )〉
= 〈

m2
θ

〉
cθ êθ + 〈

m2
φ

〉
cφ êφ

= ρc, (A9a)

and similarly

〈(c · m′)∂βm′〉
≈ 〈(cθmθ + cφmφ )(∂βmθ êθ + ∂βmφ êφ )〉
≈ 〈mθ ∂βmφ〉cθ êφ + 〈mφ∂βmθ 〉cφ êθ

= jβ
2γ A

(c × m0). (A9b)

Inserting Eqs. (A6) and (A8) into Eq. (A5), we then ob-
tain the full set of magnonic torques in Eq. (5) of the main
text. In the above derivations, we use m0 × (· · · × m0) to
extract the transverse components of magnonic torques with
respect to texture magnetization m0, to ensure the constant
length of magnetization. In addition, several simplifications
and approximations are utilized in the above derivations, to
organize the magnonic torques in a compact and meaningful
form.

APPENDIX B: MAGNONIC FORCES

The Thiele equation formulated in Eq. (7) can be rewritten
in a force balance form, F 0

μ + Fμ = 0. Here, F 0
μ is the internal

force experienced by magnetic texture in the parametric space
{Xμ},

F 0
μ = F 0

B + F 0
E + F 0

α

= B0
μνẊν + E0

μ − α�0
μνẊν, (B1)

and Fμ is the external magnonic force transformed from
magnonic torques Eq. (5),

Fμ = FSTT + FDM + FGL + FPL

= −
∫ [(

b0
μβ + bD

μβ

)
jβ + 2e0

μρ + γ Aλ0
μβ∂βρ

]
dV . (B2)

The Ampère force FSTT (electrostatic force FGL) in Eq. (B2)
and its dual partner F 0

B (F 0
E ) in Eq. (B1) share the same field b0

(e0), and they together serve to transfer angular and linear mo-
menta between spin wave and magnetic texture. Meanwhile,
the adhesion force FPL and viscous force F 0

α share the same
adhesion field λ0, and they mimic the sliding friction between
two contacting surfaces. After above pairing of external and
internal forces, the Ampère force FDM imposed on field bD

is left out as the only unpaired magnonic force, highlighting
the unique role of DMI. When FDM has nonzero overlap with
FSTT or FGL, it acts as an additional source for angular and
linear momenta, i.e., momentum conservation is destroyed by
DMI.
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FIG. 4. Transmission probability of the spin wave across the
domain wall under different DM strengths. The black/red/blue lines
represent different DM strengths, and the gray shaded area denotes
the frequency range below the gap.

Specifically for a domain wall, by inserting Eq. (8) into
Eq. (B2) in parametric space {X,�}, the magnonic forces F ≡
(FX , F�) are explicitly given by

FSTT = 2ρ0v(0, 1), FDM = −2ρ0v(−2κD̃ sin �, D̃ cos �),

(B3a)

FGL = ρ0(0, πγ D sin �), FPL = −4ρ0

(
κγ A

W
, 0

)
,

(B3b)

where ρ0 denotes the spin wave density at the domain wall
center, and D̃ = D/Dc is the normalized DM strength with
Dc = 4

√
AK/π the critical DM strength. In responses to

above magnonic forces, the internal forces are

F0
B = 2(−�̇, Ẋ ), (B4a)

F0
E = (0,−πγ D sin �/2), (B4b)

F0
α = −2α(Ẋ/W,W �̇), (B4c)

where the gyroscopic coefficients are B0
�X = −B0

X� = 2, and
the viscous coefficients are �0

XX = 2/W and �0
�� = 2W .

Collecting all forces above, the domain wall dynamics in
Eq. (12) is reproduced.

APPENDIX C: SPIN WAVE TRANSMISSION
ACROSS THE DOMAIN WALL

Acoording to Eq. (9), the problem of spin wave scattering
by the domain wall is equivalent to the problem of the elec-
tronic scattering by two effective potentials, hence it can be
directly calculated via the Green function method [57]. The
spin wave transmission across the domain wall is plotted in
Fig. 4 under different strengths of DMI. When DMI is absent
(D = 0), the transmission is always perfect; and even when
DMI is sizable, only little reflection occurs for extremely low
frequencies near the frequency gap.

FIG. 5. Modification of magnetic profile by magnonic DM
torque in (a) a uniform domain and (b) a domain wall. The gray
solid line is for total magnetization my extracted from wave-based
simulations, and all other lines (dots) are for the static magnetization
my

0. The blue dots are from wave-based simulations, the blue solid
line is from torque-based simulations, and the red dashed line is
from theoretical equations (D3) and (D4). In all simulations and
calculations, the DM strength is D = 0.9 × 10−3 A and the magnetic
damping is α = 0.05. The spin wave density is ρ0 = 9 × 10−3 at the
excitation point x = 0 nm, and all magnetic data are taken after a
relaxation time of t = 3 ns.

APPENDIX D: ASYMMETRIC DOMAIN WALL PROFILE
INDUCED BY DZYALOSHINSKII-MORIYA TORQUE

We first consider the case where the spin wave is travel-
ing upon a uniform domain, in a magnetic wire along the x
axis. The overall magnetic field experienced by the uniform
magnetization is

h = Kmz
0ẑ − D

2γ A
ρvŷ, (D1)

where the former is the anisotropic field and the latter is
effective field caused by magnonic DM torque according to
Eq. (11).

At equilibrium, the magnetization aligns parallel to the
magnetic field, m0 ‖ h, or my

0/mz
0 = hy/hz, therefore the
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magnetization is slightly tilted out in the ŷ direction with [30]

my
0 ≈ − D

2γ AK
ρv, (D2)

where only terms linear in ρ are retained. It is noteworthy that,
to achieve the equilibrium magnetization state, finite magnetic
damping (α �= 0) is required to release redundant energies.
Therefore, the spin wave density ρ decays exponentially along
x direction, and Eq. (D2) is further given by

my
0 ≈ − D

2γ AK
ρsv exp[−2κ (x − xs)], (D3)

where ρs is the spin wave density at the excitation point xs.
Such a magnetization tilting is verified by both wave-based
and torque-based simulations in Fig. 5(a).

We then move to the case where the spin wave is traveling
upon a domain wall. Since the DM torque maintains the same
form outside and inside the domain wall, we expect that the
magnetization tilting in Eq. (D3) valid for both domains at

two sides naturally extends to the domain wall region. Hence,
the full domain wall profile reads

my
0 ≈ sech

(
x − X

W

)
sin � − D

2γ AK
ρsv exp[−2κ (x − xs)],

(D4)

where the first term is the Walker profile defined at central
position X and rotation angle � of the domain wall. As a
result of DM torque, the domain wall profile apparently be-
comes asymmetric with respect to the central position X . In
Fig. 5(b), the extra magnetization tilting is confirmed by the
torque-based simulation. However, the magnetization tilting
is not discernible in wave-based simulation, possibly due to
relatively large and complicated spin wave oscillations. Nev-
ertheless, the magnetization tilting in Eq. (D4) indicates that
the domain wall dynamics induced by DM torque cannot be
fully captured by Eq. (8) with only two collective coordinates
X and �.
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