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Noncollinear twisted RKKY interaction on the optically driven SnTe(001) surface
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The nontrivial spin texture on the (001) surface of topological crystalline insulator SnTe hosts exotic scientific
importance and spintronic applications. Here, we study the effects of weak Floquet optical driving on the
Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction between two magnetic impurities on a doped SnTe(001)
surface. Due to peculiar spin-orbit hybridization, we find a noncollinear twisted RKKY interaction with XYZ-
Heisenberg, symmetric in-plane, and asymmetric Dzyaloshinskii-Moriya (DM) terms. We see that contributions
from the z (x) component of the XYZ-Heisenberg (DM) interaction are dominant for most parameters. The
interactions, including DM terms that are responsible for interesting spin textures, require doping in most cases.
We propose to modify the interactions in situ via optical control of band structure, and thereby doping. A notable
aspect of this control protocol is breaking of electron-hole symmetry, which stems from the DM interaction.
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I. INTRODUCTION

For the past decade, topological insulators (TIs) have been
at the forefront of condensed matter physics [1,2]. Due to
the strong spin-orbit coupling (SOC) [3,4], topological phases
of matter contain gapped bulk and gapless surface states,
protected by the time-reversal symmetry. Notably, quantum
anomalous Hall effect (QAHE) has been observed in mag-
netically doped TIs [5–8], which is a topological effect with
potential for low-power information processing associated
with dissipationless chiral edge transport [9]. However, the
QAHE becomes weak in a wide variety of transition metal-
doped TIs [7,10–13] if one increases the density of surface
carriers, mainly due to weakening of the magnetic order as a
prerequisite for anomalous Hall physics.

Although the mechanism of this phenomenon is still un-
der discussion [14,15], it was suggested that the indirect
Ruderman-Kittel-Kasuya-Yosida (RKKY) exchange coupling
between magnetic ions/impurities plays a significant role
[16,17] among other common types of magnetism because
it is tightly connected to the density of itinerant electrons in
the host material [18]. Depending on the spin-orbit structures
of topological materials, various types of RKKY mecha-
nisms [19–21] and eventually different weak/strong regimes
of QAHE can emerge. Furthermore, emergent spintronic ap-
plications need the RKKY mechanism to find the proper
material with improved adjustability of spin alignments for
logic magnetic devices [22,23]. It is the latter purpose that we
mainly aim at in this paper, and we only conceptually (i.e.,
without additional calculations) state its relationship with the
QAHE.
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It has been shown that nontrivial RKKY interactions can
appear on the surface of three-dimensional TIs [17,24–26]
as well as at the edge of two-dimensional TIs [27–29]. In
the work by Zyuzin and Loss [30], a long-range in-plane
antiferromagnetic RKKY interaction has been found via a
gap induced by placing a superconductor on the top of a
TI. In the work by Lopes et al. [31], magnetic interactions
between transition metal ions in a bismuthene TI with pro-
tected edge states showed that the direct overlap between the
transition metal prevails in gapped bulk bismuthene. At the
same time, a long-range magnetism is present at the borders
of nanoribbons. Moreover, it has been reported that the RKKY
interaction consisting of Heisenberg, Dzyaloshinskii-Moriya
(DM), in-plane, and out-of-plane Ising terms can be formed
on the edge of a two-dimensional TI when time-reversal sym-
metry is weakly broken [32].

In this paper, we proceed with the topological crystalline
insulators (TCIs) [33–37] because, in addition to the time-
reversal symmetry, crystal symmetries protect gapless surface
states as well. This, in turn, covers a broad range of materials
rather than specific TI compounds. Moreover, in contrast to
an odd number of Dirac cones in strong TIs, TCIs provide an
even number of cones, useful for spintronics and valleytronics
[22,23,38]. We choose to focus on the SnTe(001) surface as
one of the well-known TCIs with a nontrivial spin texture [39]
to see how its magnetic features can go beyond the ones in TIs
to be reflected in spintronics and QAHE physics.

In order to understand novel features in these materials,
we need the ability to tune the properties of the surface.
The best way to do so is through a gap opening at Dirac
cones because it suppresses the large density of the doped
surface around the Fermi energy, first, and second, it makes
the magnetic order strong enough through the suppression
of various phase alterations of ferromagnetic (FM) and anti-
ferromagnetic (AFM) interactions. Among various ways for
gap opening [40], we proceed with optical driving using
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Floquet-Bloch states [41–44] because by tuning the intensity
and frequency of the radiation, one can dynamically tune the
photon-dressed bands, and eventually modulate the properties
of an irradiated system in a controlled way. In the work by
Asmar and Tse [45], it has been reported that the RKKY
interaction mediated by a two-dimensional electron system
subjected to a weak periodic driving shows oscillations with
a period tunable by the light amplitude and frequency. Very
recently, a study of the impurity states and RKKY interaction
in irradiated graphene [46] has shown that under irradiation, a
dynamical band gap opens up at the Dirac point in graphene,
allowing impurity levels to exist inside the gap.

Motivated by various light-induced phenomena [47–52],
we consider the interaction of a weak (to avoid the heating
issue) circularly polarized light with the SnTe(001) surface,
which opens a gap isotropically at all four Dirac cones, and
thereby modulates the RKKY interaction. Subsequently, as-
suming that particles fill the Floquet-Bloch bands up to a given
chemical potential when the weak Floquet drive is turned
on, we pose the following question: how does the interplay
between doping and optical driving influence the RKKY inter-
action for both spintronics and QAHE treatment? To answer
this question, we reformulate the Heisenberg RKKY interac-
tion [53,54] of hybrid states of sublattices in SnTe(001) for the
bare spin-orbital states of each sublattice to take into account
the effect of a nontrivial spin texture. This results in non-
collinear twisted spin alignments including XYZ-Heisenberg,
symmetric in-plane, and asymmetric DM interactions, imply-
ing that magnetic moments lie on the surface with increased
adjustability. The asymmetric DM interaction is substantial
for spintronic applications [55–57]. Interestingly, the Floquet
drive tends to treat the QAHE by suppressing the density of
doped states and RKKY amplitudes; however, we note that
topological features of the SnTe(001) surface are not essential
for our paper.

This paper is structured as follows. In Sec. II, we present
the continuum Hamiltonian of a pristine SnTe(001) surface
and construct the main building block of optically driven
states. In Sec. III, we turn to the RKKY theory and derive the
Floquet-Green’s functions for a weak and off-resonant drive.
The numerical results are presented in Sec. IV. We discuss
potential extensions in Sec. V and finally we end the paper
with a conclusion in Sec. VI.

II. HAMILTONIAN MODEL

A. Pristine SnTe(001)

In this section, we introduce the continuum Hamiltonian
model [34–37,40,58] to describe each coaxial Dirac cone in
the low-energy limit of the SnTe(001) surface. Two cones
�x and �′

x are located along the direction X1-�-X1 of the
projected surface Brillouin zone (SBZ), while two cones �y

and �′
y are located along the direction X2-�-X2, as shown in

the left side of Fig. 1. The pristine Hamiltonian of the �x point
is given by (h̄ = 1) [40,53,54,58–60]

H�x = η̃x pxσy − η̃y pyσx, (1)

where px = kx − | ��x| is measured from the Dirac cone at
��x = (

√
n2 + δ2/ηx, 0), py = ky, η̃x = (δ/

√
n2 + δ2)ηx, and

η̃y = ηy [59]. Here, ηx = 3.53 eV Å and ηy = 1.91 eV Å re-

FIG. 1. The low-energy spectrum of Dirac fermions on the SBZ
of the SnTe(001) surface, left side, and the optically driven spectrum,
right side, with induced gap � = 2a2/� from the light with the ac
field a and the frequency �. Other Dirac cones follow from C2 and
C4 rotational symmetries.

fer to the bare Fermi velocities along the x and y direction,
respectively. The Pauli matrices are given by σx and σy and
act on sublattice spaces. The intervalley scattering parameters
n = 55 meV and δ = 40 meV are, respectively, responsible
for the high-energy Dirac cones and the formation of two
copies of Dirac cones with opposite chiralities in the four-
band model (not shown here) [34,40,53,58]. Although they
correctly describe intervalley scattering at the lattice scale of
SnTe(001), they vary sample to sample since they arise from
nonuniversal effects such as surface roughness. Indeed, the
parameter n is the threshold energy below which the low-
energy model is valid.

The rotational symmetry C2 protects the coaxial Dirac
cones resulting in H�′

x,y
= H�x,y , while the perpendicular

cones are formed by the C4 symmetry. This, in turn, implies
that H�y = η̃y pxσy − η̃x pyσx. It should be stressed that the
valence and conduction bands of the energy spectrum refer
to the hybridized p orbitals of the cation Sn2+ and anion
Te2− sublattices, namely, |1〉 = (| ↑, Te〉 + | ↓, Sn〉)/

√
2 and

|2〉 = (| ↑, Sn〉 + | ↓, Te〉)/
√

2 [39,40,58,59].
Before turning to the irradiated SnTe(001) surface, we

make one useful simplification, which will help later to find
analytical RKKY interactions. The anisotropy of the Fermi
velocity along x and y directions can affect the band structure
[61]. However, to include each Dirac cone separately in the
RKKY interaction, we work with small momentum and by
this we neglect the anisotropy feature of the surface Dirac
cones originating from η̃x � 2.08 eV Å and η̃y = 1.91 eV Å.
Hence, we set vF = (η̃x + η̃y)/2 � 2 eV Å.

B. Irradiated SnTe(001)

In this section, we present the expression for the effective
two-band Hamiltonian model discussed above for the case
when the SnTe(001) Dirac cones are weakly driven by a
circularly polarized light. To do so, the time-periodic vector
potential �A(t ) = A0[sin(�t ), cos(�t )], where A0 = E0/

√
2�

(E0 and � are the amplitude and frequency of light, respec-
tively) is chosen to drive the Hamiltonian of the �x point (and
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other Dirac cones) through the minimal coupling scheme as

H�x (t ) =
(

0 −ivF p− − ae+i�t

+ivF p+ − ae−i�t 0

)
, (2)

where p± = px ± ipy and a = eA0vF. The drive induces tran-
sitions between the eigenstates. Since the Hamiltonian is
periodic in time, H�x (t ) = H�x (t + T ) with T = 2π/�, the
valid theory to address the time-periodic Hamiltonians is the
Floquet-Bloch theorem [44,62]: a complete set of solutions
of the time-dependent Schrödinger equation H�x (t )|ψ (t )〉 =
i∂t |ψ (t )〉 reads as |ψ f ,p(t )〉 = e−iε f ,p |F f ,p(t )〉, where the in-
teger Floquet index f classifies different sidebands with
energies ε f ,p. Accordingly, the Fourier series |F f ,p(t )〉 =∑∞

j=−∞ e−i j�t |F j
f ,p〉 describes the time-periodic Floquet

states |F f ,p(t )〉 = |F f ,p(t + 2π/�)〉. It should be mentioned
that f = 0 maps the quasienergies to the first Floquet zone
[−�/2,�/2]. Then, it is straightforward to deduce the
Floquet Hamiltonian HF,�x = H�x (t ) − i∂t in the Fourier
domain [63]

∑∞
j=−∞ HF,m j |F j

f ,p〉 = ε f ,p|Fm
f ,p〉. Having the

driving period T = 2π/�, the matrix elements of the Floquet
Hamiltonian can be found via HF,m j = Hm j − j�δm, j , where
j is the photon number and [64–66]

Hm j = 1

T

∫ T

0
H�x (t )ei(m− j)�t dt . (3)

The Floquet Hamiltonian can be numerically diagonalized
to study the exact dynamics governed by the application of
light. However, for sufficiently weak electric field intensi-
ties, i.e., when the field intensity a is small compared to the
frequency �, we may approximate the Floquet Hamiltonian
using a high-frequency expansion explained below. In the
high-frequency limit, the Floquet sidebands do not overlap;
thus, there are no gaps due to band crossings so the hybridiza-
tion between different Floquet bands becomes weak, meaning
that interband transitions of electrons are suppressed.

Thus, using a perturbative approach known as the Van
Vleck inverse-frequency expansion, we obtain the effec-
tive Floquet Hamiltonian in powers of �−1, HF,�x � H�x +
[H−1,H+1]

�
[43,43,67,68], which reads as

HF,�x =
(

+�/2 −ivF p e−iϕp

+ivF p e+iϕp −�/2

)
, (4)

where ϕp = tan−1(py/px ) and a gap � = 2a2/� opens up at
the Dirac cone through a two-photon process similar to that
in Refs. [41,64,66,69,70]. Using the C2 and C4 symmetries,
one can obtain the Floquet Hamiltonian at other Dirac cones.
Diagonalizing the above Hamiltonian leads to a gapped Dirac
dispersion E�x (p) = ±

√
v2

F p2 + �2/4, as shown in the right
panel of Fig. 1.

In addition to optical driving, there are various ways to
open the gap at the Dirac cones [40], namely, the exchange
magnetization, the Zeeman term without an external magnetic
field, and proximity coupling to a ferromagnet. However, de-
spite restrictions in applying other sources of gap opening
(e.g., a proper direction is essential for the exchange field
induced by proximity coupling to a ferromagnet), the Floquet
drive allows us to tune the properties of the dispersion for
various purposes by adjusting the intensity and frequency of

FIG. 2. A simple schematic for the position of magnetic impu-
rities on (a) the same and (b) different sublattices of the SnTe(001)
surface. Cation Sn2+, anion Te2−, and the local magnetic impurities
are, respectively, shown by the black, red, and blue spheres.

light. Moreover, further photon processes in HF,�x can be
taken into account by including higher-order terms [64,64,66].

For our purposes, the Floquet drive will be used to tune the
RKKY interaction for both spintronics and eventually QAHE
physics (indirectly through the density of surface carriers). We
now proceed to the RKKY interaction in irradiated SnTe(001).

III. RKKY INTERACTION IN IRRADIATED SnTe(001)

As explained in the introduction, the indirect exchange
coupling between two magnetic impurities or two localized
spins �S1 and �S2 mediated by the host itinerant electron spins �s
is described by RKKY theory [18]. In our case, the host itin-
erant electrons are the optically driven ones on the SnTe(001)
surface given by Eq. (4). According to this theory, the mag-
netic moments are treated as immobile defects on the lattice
sites �R1 and �R2, and the interaction Hamiltonian is given by
Hint = J

∑
i
�Si · �si, where J denotes the bare exchange energy.

Thus, we consider the total Hamiltonian for the SnTe(001)
surface including a contact interaction with the magnetic
centers, namely, H = HF,�x + Hint. Using second-order per-
turbation theory, one finds [18]

Hαβ

RKKY = J2
∑
l, j

Slα
1 χ

αβ

l j ( �R ) S jβ
2 , (5)

with lattice sites α and β, and the impurity separation
�R = �R2 − �R1. In the above equation, the spin susceptibility
χ

αβ

l j ( �R ) can be obtained from the retarded Green’s functions
in the spin space for different flavors {l, j} ∈ {x, y, z} [71–73]:

χ
αβ

l j ( �R ) = − 2

π
Im

∫ EF

−∞
dE Fαβ

l j (E, �R), (6)

where EF is the Fermi energy and

Fαβ

l j (E, �R) = Tr[σlG
αβ (E, �R)σ jG

βα (E,− �R)]. (7)

The magnetic impurities can reside on the same, Fig. 2(a),
or different, Fig. 2(b), sublattices. Other configurations, such
as impurities on the bonds or in the center of the unit cell,
can be simply obtained by adding together the results for the
RKKY interaction on the nearby sites. For example, if one
magnetic impurity is located halfway between a Sn site at lo-
cation a0ŷ/2 and Te site at −a0ŷ/2 (a0 is the lattice constant),
then the interaction with an impurity located at a distance �R
away on a Sn site is given by Hbond

RKKY = HSnSn
RKKY( �R − a0ŷ/2) +

HTeSn
RKKY( �R + a0ŷ/2). Note that the microscopic coupling J for

this case will be different from the site-located impurity, and
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will depend on the sublattice. Generalizations to other impu-
rity positions are straightforward.

We set the temperature to zero in the present paper, so
EF = μ, where μ is the chemical potential. The role of dop-
ing is then characterized by μ > 0 and μ < 0 referring to
electron and hole doping, respectively. We assume that the
electrons fill all energies up to μ within the Floquet-modified
dispersion because the optical drive considered is sufficiently
weak and off resonant that it may be turned on continuously,
resulting in a new (quasi-zero-temperature) steady state. Note
that this is fundamentally different from many other Floquet
systems which are experimentally constrained to pump-probe
nonequilibrium states to avoid heating, for which the electron
filling is quite different [74]. In Eq. (7), we have

Gαβ (E, �R) =
(

G↑↑
αβ (E, �R) G↑↓

αβ (E, �R)

G↓↑
αβ (E, �R) G↓↓

αβ (E, �R)

)
, (8)

which denotes the real-space noninteracting Green’s function
of sublattices in spin space, given by the photodressed Dirac
bands. However, we must sum over the directions X1-�-X1 and
X2-�-X2 on the SnTe(001) surface, as well as the pair of Dirac
cones at X1 and X2 points, to cover the entire SBZ. Thus, we
have

Gσσ ′
αβ (E, �R) = 1

SSBZ

∫
d2 p ei �p· �R[ei �X1· �RGσσ ′

αβ ( �p + �X1, E )

+ ei �X2· �RGσσ ′
αβ ( �p + �X2, E )],

(9)

with {σ, σ ′} = {↑,↓}, where SSBZ is the area of the entire
SBZ. The integral is dominated by low momentum, p �
|�x,y|, justifying our choice to treat each Dirac cone indepen-
dently in the low-energy limit of the two-band model. The
momentum-space Green’s functions in the above equation are
given by G( �p + �X1, E ) = ei�xRxG�x (p, E ) + e−i�xRxG�′

x (p, E )
and G( �p + �X2, E ) = ei�yRyG�y (p, E ) + e−i�yRyG�′

y (p, E ),

where G�
(′ )
x/y (p, E ) = 1/E + io+ − H

F,�
(′ )
x/y

.

It is necessary to point out that in the Hamiltonian model,
a superposition of sublattices given by the eigenstates |1〉 and
|2〉 appears, rather than the bare sublattices |Te/Se,↑ / ↓〉.
Therefore, one needs to express the real-space Green’s func-
tions of the hybrid states in terms of the bare sublattices
considering the corresponding spins. Hence, we rewrite the
above Green’s function as (see Appendix A)

Gσσ ′
αβ (E, �R) =

∑
γ ,η

u∗
α,γ ,σ uβ,γ ,σ ′Gγ η(E, �R), (10)

in which the summation runs over hybrid states {|1〉, |2〉}
and uTe,1,↑ = uTe,2,↓ = uSn,1,↓ = uSn,2,↑ = 1/

√
2. To calculate

Gγ η(E, �R), we first calculate the reciprocal-space Green’s
functions around all Dirac cones within the weak-driven
approximation. Therefore, using the relation G�x (p, E ) =
[E + io+ − HF,�x ]

−1 with infinitesimal parameter o+ →
0 for the �x point as well as using the expressions
d2 p = p d p dϕp and exp [i �p · �R] = exp[i p R cos(ϕp − ϕR)]
with ϕp = tan−1(py/px ), we obtain

Gγ η(E, �R) = 1

SSBZ

∫ pc

0

∫ 2π

0
d2 pei �p· �R Gγ η(p, E ). (11)

The details of the integration in the above equation are very
similar to the ones reported in Refs. [71–73] and we would
avoid repetition here. To obtain analytical expressions for a
better understanding of numerical results, we set the cutoff
pc → ∞. The validity of such an extension of the linearity
of the Dirac bands to infinity has been well established in
the above references such that both numerical short-range and
long-range responses in the low-energy limit match the analyt-
ical results obtained from the above approximation. Although
it is evident that for undoped states, the above extension per-
fectly works, the approximation maintains its validity in the
presence of weak doping (to separate four Dirac cones) and
driving (to avoid heating) potentials in our model. Hence, for
the �x point, the real-space Green’s functions of hybrid states
|1〉 and |2〉 read as

G11(E, �R) = −2π [E + io+ + �/2]

SSBZ v2
F

K0(−iẼ R/vF), (12a)

G12(E, �R) = +2π i e−iϕR Ẽ
SSBZ v2

F

K1(−iẼ R/vF), (12b)

G21(E, �R) = −2π i e+iϕR Ẽ
SSBZ v2

F

K1(−iẼ R/vF), (12c)

G22(E, �R) = −2π [E + io+ − �/2]

SSBZ v2
F

K0(−iẼ R/vF), (12d)

where Ẽ =
√

(E + io+)2 − �2/4 and K0,1 denote modified
Bessel functions. For the �′

x, �y, and �′
y points, we have the

exact same expressions since the gap is opened isotropically
at all Dirac cones by the optical driving. The above ele-
ments fulfill the relations G11/22(E,− �R) = G11/22(E, �R) and
G12/21(E,− �R) = −G12/21(E, �R).

Turning back to Eq. (5), one would rewrite the RKKY
Hamiltonian as

HRKKY = − 2J2

π
Im

∫ μ

−∞
dE

∑
l j

Sl
1S j

2 Fl j . (13)

The components Fα α
l j and Fα β

l j for the spins on the same
and different sublattices, respectively, are presented in Ap-
pendix B. Accordingly, the Hamiltonians read as

Hα α,αs
RKKY =

∑
i

J α α
i Si

1Si
2 + �J αs

DM · (�S1 × �S2)

+αsJ α α
xy

[
Sx

1Sy
2 + Sy

1Sx
2

]
, (14a)

Hα β,αd
RKKY =

∑
i

J α β
i Si

1Si
2 + �J αd

DM · (�S1 × �S2), (14b)

where we have �J αs
DM = (J α α

DM,x, αsJ α α
DM,y, 0), and �J αd

DM =
(J α β

DM,x, 0, αdJ α β

DM,z ). When the impurities are placed on the
TeTe (SnSn) sublattices, we use αs = +1 (−1), while αd =
+1 (−1) for the TeSn (SnTe) sublattices. In general, for the
sublattice setup, we continue only with αs = +1 in Eq. (14)
henceforth for the magnetic impurities on the same TeTe sub-
lattices. A sign change in J̃ αα

DM,y and J̃ αα
xy gives rise to the

results for magnetic impurities on the same SnSn sublattices;
for different TeSn sublattices, one can simply use Eq. (17).
Finally, the sign of J̃ αβ

DM,z should be swapped for the results
on different SnTe sublattices.
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The first terms in both Hamiltonians of Eq. (14) couple the
same spin directions with different exchange strengths {Jx,
Jy, Jz}, which gives the XYZ-Heisenberg interaction. Fur-
thermore, due to the intrinsic SOC of the SnTe(001) surface,
the symmetry of spin space is expected to be broken in re-
sponse to the impurities, leading to off-diagonal components
of the RKKY Hamiltonian (the last terms) [75,76]. While
the asymmetric second terms resemble a DM interaction, the
third term in Eq. (14a) gives rise to an in-plane symmetric
interaction. The large DM interaction (which we will show
in the following) compared to the one in TI thin films [77]
can lead to interesting phenomena such as spin Nernst effect,
the appearance of the nontrivial topology, and topological spin
excitations [78–80]. The DM interaction has been also ex-
plored extensively in recent years for spintronic applications
[55–57,81]. These off-diagonal terms enable the full RKKY
Hamiltonian to provide noncollinear twisted alignment be-
tween the magnetic impurities.

Let us define the form factor between Dirac points and {X1

and X2} points from Eq. (9):

f ( �R) = 2 [eiX1Rx cos(�xRx ) + eiX2Ry cos(�yRy)]. (15)

For clarity, we work with the normalized exchange interac-
tions, C J2 | f ( �R)|2, where C = 4π/S2

SBZv4
F and thus J̃ (R) =

J (R)/C J2 | f ( �R)|2 suppresses the beating type of oscillations
from the multiple surface Dirac cones [53], as shown in Fig. 6
of Appendix C. With this, we show the results for a single
Dirac cone in what follows. The modulations captured in
| f ( �R)|2 are different than those of graphene and other sys-
tems [82–85] and can be useful to modulate the couplings on
medium-length scales 1/�x,y. Crucially, such a length scale
only exists in TCIs and is potentially tunable via, e.g., strain.

For numerical purposes, we first define E − μ = E ′, owing
to the electron-hole symmetry [71–73,84], to set the upper
limit of the integral in Eq. (13) to zero. Then, we use the imag-
inary energy representation E ′ + io+ = iω to get rid of the
numerical singularities and tight tolerances in the real energy
integration. After simple algebra calculations and defining
ω̃2 = (ω − iμ)2 + (�2/4), the components of RKKY Hamil-
tonians for the first configuration (impurities on the same
sublattices) read as

J̃ α α
x (R) = +Im

∫ ∞

o+
idω ω̃2

[
K2

0(ω̃ R/vF)

+ cos(2ϕR)K2
1(ω̃ R/vF)

]
, (16a)

J̃ α α
y (R) = +Im

∫ ∞

o+
idω ω̃2

[
K2

0(ω̃ R/vF)

− cos(2ϕR)K2
1(ω̃ R/vF)

]
, (16b)

J̃ α α
z (R) = +Im

∫ ∞

o+
idω ω̃2

[
K2

0(ω̃ R/vF) + K2
1(ω̃ R/vF)

]
−�2

2
Im

∫ ∞

o+
idωK2

0(ω̃ R/vF), (16c)

J̃ α α
xy (R) = + sin(2ϕR)Im

∫ ∞

o+
idω ω̃2 K2

1(ω̃ R/vF), (16d)

J̃ α α
DM,x(R) = −2 sin(ϕR) Im

∫ ∞

o+
dω ω̃

√
ω̃2 − �2/4

×K0(ω̃ R/vF)K1(ω̃ R/vF), (16e)

J̃ α α
DM,y(R) = −2 cos(ϕR) Im

∫ ∞

o+
dω ω̃

√
ω̃2 − �2/4

×K0(ω̃ R/vF)K1(ω̃ R/vF). (16f)

Due to the symmetrical form of the states |1〉 and |2〉, the x and
y components of the XYZ-Heisenberg interaction differ only
by a sign in the off-diagonal components of the real-space
Green’s functions. Moreover, the DM components are shifted
by the π/2 phase.

For the second configuration (impurities on different sub-
lattices), we find

J̃ α β
x (R) = +J̃ α α

x (R), (17a)

J̃ α β
y (R) = −J̃ α α

y (R), (17b)

J̃ α β
z (R) = −J̃ α α

z (R), (17c)

J̃ α β

DM,x(R) = −J̃ α α
DM,x(R), (17d)

J̃ α β

DM,z(R) = −J̃ α α
xy (R), (17e)

stemming from the spin-orbit structure of the model, and not
from the spatial symmetry of the SnTe(001) surface.

IV. RESULTS AND DISCUSSION

The role of the chemical potential μ and the optical gap �

in various terms of the RKKY interaction form the main mes-
sages of the present paper for both spintronic applications and
QAHE physics. The Fermi sea can be drained out if one keeps
increasing the driving strength for a fixed impurity separation
R and direction ϕR. This, in turn, manipulates the surface
states involved in the RKKY coupling. It is very important to
control the chemical potential to bring the surface states into
the so-called low-energy regime. This can be tuned with, e.g.,
a back gate from the thin film substrates [86,87].

It is necessary to mention that the Floquet parame-
ter a/� mainly tunes the light-matter interaction effect on
the SnTe(001) surface, which should be small in the weak
drive regime (to avoid heating of the sample). It is worthwhile
commenting that the alignment of magnetic moments can
be influenced by both a and �. In Fig. 7 of Appendix D,
we systematically address this matter. As soon as we turn on
the light, independent of the symmetric and asymmetric con-
tributions to the RKKY interaction, magnetic moments talk to
each other only beneath the line a ∝ √

�. The bandwidth of
our model is given by 2n = 110 meV. To have a broader range
of light intensity for tuning the RKKY interaction (less zero
response), we continue with an off-resonant high-frequency
� = 1 eV ∝ 270 THz much larger than the bandwidth. Thus,
the gap of the system can reach � � 23 K [88], i.e., a �
47 meV. However, we vary intensity a up to 200 meV (optical
gap � up to 80 meV) in what follows.

From Eqs. (16a)–(16f) and (17a)–(17e), one can observe
the periodicity of interactions in ϕR—except ϕR-independent
J̃ α α

z (R)—which provides HRKKY(ϕR) = HRKKY(ϕR + π ).
Due to the square lattice of the host SnTe(001) surface, three
angles ϕR = 0, π/4, and π/2 between the magnetic impu-
rities lead to special RKKY interactions. A quick analysis
results in J̃ α α

xy (R) = 0 for both 0 and π/2 and J̃ α α
DM,x/y(R) =

0, respectively, for 0 and π/2, while for π/4, we find
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FIG. 3. RKKY interactions on the SnTe(001) surface at ϕR =
π/3 as a function of impurity separation R when the surface is
(a) pristine (undriven-undoped), (b) undriven-doped, (c) driven-
undoped, and (d) driven-doped. We set μ = 27.5 meV and � =
45 meV, respectively, for the chemical potential and optical gap. It
can be observed that the asymmetric DM term exists only on the
doped surface. Furthermore, the Floquet drive suppresses all terms
due to the reduced density of mediating states.

J̃ α α
x (R) = J̃ α α

y (R) and J̃ α α
DM,x(R) = J̃ α α

DM,y(R). But, for non-
collinear twisted alignments of magnetic moments on the
surface with more adjustability, we continue with an in-plane
angle, e.g., ϕR = π/3. For other angles, sine and cosine pref-
actors in Eq. (16) will be changed, which do not affect the
main messages of the present paper. We set the chemical po-
tential and the optical gap at μ = 27.5 meV and � = 45 meV,
respectively, where necessary. In the driven-doped surface,
this set helps to have effective interactions because of μ >

�/2 (see interpretation below).
Figure 3 shows the RKKY terms as a function of impurity

separation R/a0. For the pristine (undriven-undoped) surface,
μ = 0 and � = 0, which leads to real ω̃ = ω, the analytical
solution of Eqs. (16a)–(16d) is already known [53,54,71–
73,85] and can straightforwardly be found with the help of
Eq. (E1) in Appendix E such that the nonzero interactions
decay as R−3 [see Fig. 3(a)]. Under the same conditions, the
DM terms in Eqs. (16e) and (16f) vanish, J̃ αα

DM,x/y(R) = 0,
due to the absence of imaginary energy. The physical reason
for a vanishing DM interaction stems from the presence of
inversion symmetry between sublattices (absence of μ) for
which asymmetric alignment of spins from the interplay of
diagonal and off-diagonal spin-orbital states does not take
place. The presence of DM interaction due to doping has been
experimentally confirmed in TI thin films [56]. Interestingly,
only J̃ αα

x (R) forms an AFM order since the responses from
different spin-orbital states, {|1〉 and |2〉} or {|2〉 and |1〉},
are three times larger than the same spin-orbital states, {|1〉
and |1〉} or {|2〉 and |2〉}, resulting in J̃ αα

x (R) < 0. In fact,
for FM characters of J̃ αα

y (R) and J̃ αα
z (R) in Fig. 3(a), one

can use Eq. (E1), which makes Eq. (16b) positive because of
cos(2π/3) = −1/2. Also, Eq. (16c) at � = 0 is positive for
the same reason. For J̃ αα

x (R), the second term of Eq. (16a)
is larger than its first term and it becomes negative (AFM
character). In the presence of � in Fig. 3(c), Eqs. (16a)–(16c)

remain positive. In the presence of μ in Figs. 3(b) and 3(d),
negative signs in Eqs. (16e) and (16f) are the main reasons for
DM terms.

For the undriven-doped surface, μ �= 0 and � = 0, which
leads to imaginary ω̃ = ω − iμ, one needs Eq. (E2) in
Appendix E. It is obvious that the short-range RKKY interac-
tions are given by the power-law R−3, while for the long-range
couplings, oscillatory Meijer functions [89,90] emerge, as
presented in Fig. 8. Our numerical data in Fig. 3(b) confirm
this dependence. In contrast to the pristine surface, DM inter-
actions wake up when the surface is doped for the same reason
of inversion symmetry breaking between sublattices.

For the driven-undoped surface, μ = 0 and � �= 0, which
leads to real ω̃ =

√
ω2 + �2/4, with the help of Eq. (E3)

in Appendix E, we find short-range RKKY interactions
∝ R−3, while for the long-range interactions, one needs
to use lim�R/vF→∞ Kn(�R/vF) � √

πvF/2�R exp(−�R/vF)
and the Laplace method to obtain RKKY interactions ∝
(R/�)−3/2 exp(−2�R/vF) [71], which are again in agreement
with the numerical results in Fig. 3(c). For the reason men-
tioned before about the doping effect on the DM interaction,
one still expects a vanishing DM response for the driven-
undoped surface.

For the driven-doped surface in Fig. 3(d), we consider the
μ > �/2 regime where the chemical potential is outside the
optical gap so the states added by doping play a role in RKKY
interactions (for μ < �/2 the DM terms vanish). Although it
is not easy to find analytical expressions for the driven-doped
surface, we expect a modified version of Meijer functions
for the long-range coupling as the interactions behave like
the undriven-doped surface. However, we believe that the
power-law R−3 is still valid for short-range couplings. As
both driving and doping are present, the drastic change of
oscillations for all RKKY components is evident. This is a
direct consequence of the optical gap for which the corre-
sponding density of mediating states in the RKKY interaction
decreases, and thus, most of the doped states are washed out.
For this reason, the oscillations are accompanied by smaller
amplitudes compared to the undriven-doped surface. This is
mainly where our contribution pays off in QAHE physics
since magnetic characters focus more on purely positive (FM)
and negative (AFM) signs.

It is also worth mentioning that various FM and AFM char-
acters emerge for symmetric XYZ-Heisenberg J̃i and in-plane
J̃xy components depending on the interplay between driving
and doping, as well as between the impurity separation and
direction. But, for the change of signs in DM components, one
needs to take into account the chirality. When DM is positive,
the coupling between magnetic impurities favors clockwise
rotation, meaning that it tends to align right handedly more
naturally than left. Similarly, a negative DM interaction favors
counterclockwise rotation for magnetic moments.

To gain further insights into the gap dependency of in-
teractions, we proceed to plot the RKKY couplings against
the optical gap � for μ = 13.75 meV, Fig. 4(a), and μ =
27.5 meV, Fig. 4(b), at R/a0 = 50 and ϕR = π/3. As soon as
we turn on the Floquet drive, all interactions start to emerge
due to the presence of μ. It is noteworthy that once the gap
edge lies at the chemical potential level, i.e., when � = 2|μ|,
they start to vanish because the doped states start to lie in
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FIG. 4. RKKY interactions for (a) μ = 13.75 meV and (b) μ =
27.5 meV at R/a0 = 50 and ϕR = π/3 as a function of the opti-
cal gap � on the SnTe(001) surface. Independent of the chemical
potential, RKKY responses vanish for � � 2|μ| once the chemical
potential lies in the gap, due to their exponential decay with R.

the gap without any significant density of mediating states.
If we dope the surface stronger, Fig. 4(b), RKKY responses
become stronger compared to Fig. 4(a). This can be easily
understood by taking into account that the density of carriers
on the surface with μ = 27.5 meV is larger than at μ = 13.75
meV; thus, more itinerant carriers act as mediators for the
indirect exchange coupling between impurities.

Next, we systematically explore the RKKY interactions of
the driven-doped SnTe(001) surface at fixed direction ϕR =
π/3 and impurity separation R/a0 = 50. In Fig. 5, at first
glance, one would observe that the amplitude of oscillations
increases as more surface states (larger μ) are involved in
the exchange coupling. However, the gap opening reduces the
rate of involved states and for a certain chemical potential μ,
RKKY interactions are nonzero only below � = 2|μ|. For ex-
ample, at μ = ± 27.5 meV, one obtains zero RKKY responses
at � � 50 meV, as confirmed in Figs. 5(a)–5(f), implying that
there is no effective mediating state anymore on the surface (at
least, within our approximations) so that the RKKY responses
approach zero. The red and blue colors highlight the character
of FM and AFM (clockwise and counter-clockwise spin rota-
tions) for symmetric (asymmetric) RKKY components, while
the yellow color displays nearly zero responses.

Additionally, the dominant oscillation amplitude belongs
to the z component of the XYZ-Heisenberg, though the x
component of the DM term is the next prevalent among
others. As mentioned before, DM interaction enables the
system to be applicable for emergent spintronic applications
[55–57,81]. Although DM contribution is significant on the
SnTe(001) surface, it also appears on the conventional surface
of three-dimensional TIs [17,24–26] and at the edge of two-
dimensional TIs [27–29], while it exceptionally vanishes in
TI thin films [77]. Therefore, our large DM compatible with
J̃ αα

z (R) is a very useful feature of TCIs.
It is also worth exploring the intrinsic electron-hole

symmetry on the driven-doped SnTe(001) surface. The
electron-hole symmetry is valid for all symmetric interactions,
XYZ-Heisenberg and in-plane xy, independent of doping and
optical gap (also independent of the impurity separation and
position of impurities—not shown here). For the DM in-
teraction at a given direction, one immediately extracts the
following relation:

J̃ αα
DM,x/y(−μ,�) = −J̃ αα

DM,x/y(+μ,�), (18)

FIG. 5. RKKY interactions at ϕR = π/3 and R/a0 = 50 as a
function of both optical gap � and chemical potential μ on the
driven-doped SnTe(001) surface. Red (blue) color refers to FM
(AFM) order in (a)–(d), while they refer to clockwise (counterclock-
wise) spin rotation in the DM terms of (e) and (f). The yellow color
depicts nearly zero RKKY response. The dominant contribution to
the RKKY interaction belongs to the z (x) component of symmetric
(asymmetric) interaction, i.e., J̃ αα

z (J̃ αα
DM,x). As expected, no response

appears for � � 2|μ| due to the vanishing density of mediating
states.

which has already been confirmed experimentally on the sur-
face of TI thin films [56], as also shown in Figs. 5(e) and
5(f). It has an opposite sign when the chemical potential
cuts through the upper or lower band. We emphasize that
the presence of inversion symmetry between sublattices and
the corresponding spin-orbital states is the main origin of the
above relationship.

For the experimental perspectives, one would extract the
following critical Floquet driving amplitude E c

0 (considering
an arbitrary driving frequency �) in the low-energy regime
of the SnTe(001) surface above which a nearly zero RKKY
coupling is achieved:

E c
0 =

√
n

evF
�3/2. (19)

For instance, in our case, for the selected light frequency
of � � 1 eV, the Fermi velocity of vF � 2 eV Å, and n =
55 meV, one finds E c

0 � 109 V/m, which is nowadays easily
realizable in experiment [91–93]. Having this information,
we would suggest using a light intensity below E c

0 in exper-
iments so tuning the RKKY coupling with light can play role
in determining the prerequisites for spintronic applications
and QAHE. Experimentally, single-atomic magnetometry and
magnetotransport through scanning tunneling microscopy and
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angle-resolved photoemission spectroscopy can measure the
RKKY interaction [94–96].

V. OUTLOOK

Before closing the discussion, let us briefly discuss possi-
ble avenues for upcoming research. The present paper for the
“weak” light-induced RKKY interaction, which still reports
applicable findings, can also be addressed for the “strong”
driving regime. First, in the strong driving regime, the full
Floquet Hamiltonian is required for further photon processes
[64]; second, the nonlinear corrections should be solved nu-
merically [64,66]. The extended continuous strong driving
must inevitably lead to heating, which without remediation
would destroy the sample. We can propose a heat sink [97],
which maintains a low system temperature despite the Floquet
drive. Beyond the weak driving regime, our calculations could
also be done for a “linearly” polarized light if one considers
the nth-order Bessel functions for the corrections up to infinite
orders [98].

To address the low-frequency limit beyond our high-
frequency expansion, band crossings should also be con-
sidered in the theory; this requires another expansion of
the effective Floquet Hamiltonian and extra terms will be
generated. Additionally, the finite temperature effects can
also be explored for both short- and long-range couplings
within the finite-temperature self-consistent field approxima-
tion [99,100]. Stressing that the magnetic scattering potential
may also happen between the magnetic impurities, the RKKY
interaction can be approached beyond the linear response the-
ory [101].

Note that the drive used to tune the RKKY interaction
also opens up a topological gap in the surface Dirac cones.
With four Dirac cones of identical chirality, it will corre-
spond to Chern number 2, suggesting that TCIs may also
be a useful playground for light-induced anomalous quan-
tum Hall physics. Unlike existing two-dimensional systems,
such as graphene [93], we propose to realize the gapped
TCI surface states by continuous, moderate amplitude optical
driving, which allowed the realization of an effective Fermi
surface earlier in the paper, Sec IV. This also implies the qua-
sistatic topology of the surface electronic states, which will
be an interesting topic for future exploration. However, unlike
graphene, this topological state is complicated by the presence
of gapless edge states on the other [non-(001)] surfaces as
well as the bottom (001) surface of the material. We leave
an analysis of topological transport in this geometry for future
work.

VI. CONCLUSIONS

Exploring the physics of magnetically doped topological
systems in tuning QAHE as well as for the spintronics com-
munity has triggered interest in condensed matter physics.
Recently, experimental photonic platforms have also become
increasingly urgent for tuning the properties of materials. To
contribute to these, we have employed the isotropic optically
driven continuum model for Dirac cones with nontrivial spin
textures on the doped SnTe(001) surface as a well-known
TCI to investigate the (quasi)out-of-equilibrium physics of the

RKKY interaction between two magnetic impurities. This, in
turn, aims at providing spintronic applications as well as mak-
ing the TCI-based QAHE strong. To tune the features, in par-
ticular, we have focused on the weak driving effects and off-
resonant regime between the light and bandwidth of the Dirac
cones using the Van Vleck inverse-frequency expansion. We
make use of the bare spin-orbital states of each sublattice, re-
sulting in noncollinear twisted RKKY interaction with XYZ-
Heisenberg, symmetric in-plane, and asymmetric DM terms.

Preliminary analyses highlighted the z (x) component of
the XYZ-Heisenberg (DM) interaction as the first (second)
dominant contribution to the total RKKY interaction. More-
over, depending on the position of magnetic impurities, chem-
ical potential, and the optical gap, the driven-doped SnTe(001)
surface reaches various modulations of FM and AFM char-
acters for the symmetric RKKY terms as well as of the
clockwise and counterclockwise spin rotations for the asym-
metric DM ones. A systematic analysis of the RKKY coupling
on the interplay between doping and driving demonstrated
that the efficient range of chemical potential in controlling
the amplitudes belongs to the strengths outside the optical
gap. The optical gap (Floquet drive) in the presence of doping
leads to a reduction of the RKKY amplitudes because of the
decreased total density of mediating states. This is where we
propose a Floquet drive to make the TCI-based QAHE strong
when the surface is doped. Alongside, we find nonzero DM
interactions only for the doped surface because of inversion
symmetry breaking between sublattices. Moreover, to eval-
uate the intrinsic electron-hole symmetry of the system, we
found that the symmetry is broken because of the DM term.

Providing reasonable light intensity and frequency com-
patible with the low-energy Dirac bands of the SnTe(001)
surface, insights from the present paper are discussed for fea-
sible experimental observations. Finally, we would mention
that the large DM term on the surface of TCIs is highly desir-
able for spintronic applications, highlighting their additional
usefulness compared to TIs due to the presence of multiple
Dirac cones.
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APPENDIX A: COMPONENTS OF THE REAL-SPACE
GREEN’S FUNCTION

The real-space Green’s functions of hybrid states
in terms of bare sublattices considering correspond-
ing spins require the following definition Gσσ ′

αβ (E, �R) =∑
γ ,η u∗

α,γ ,σ uβ,γ ,σ ′Gγ η(E, �R), where components are given by
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[in the following we omit (. . . ), so Gγ η means Gγ η(E, �R)]

G↑↑
Te Te = G11/2, G↑↓

Te Te = G12/2, (A1a)

G↓↑
Te Te = G21/2, G↓↓

Te Te = G22/2, (A1b)

G↑↑
Te Sn = G12/2, G↑↓

Te Sn = G11/2, (A1c)

G↓↑
Te Sn = G22/2, G↓↓

Te Sn = G21/2, (A1d)

G↑↑
Sn Te = G21/2, G↑↓

Sn Te = G22/2, (A1e)

G↓↑
Sn Te = G11/2, G↓↓

Sn Te = G12/2, (A1f)

G↑↑
Sn Sn = G22/2, G↑↓

Sn Sn = G21/2, (A1g)

G↓↑
Sn Sn = G12/2, G↓↓

Sn Sn = G11/2. (A1h)

APPENDIX B: COMPONENTS OF THE SPIN
SUSCEPTIBILITY

The spin susceptibility is described by χ
αβ

l j ( �R ) =
− 2

π
Im

∫ μ

−∞ dE Fαβ

l j (E, �R) with the following expressions for
the first configuration (impurities on the same sublattices):

Fα α
xx = | f ( �R)|2

4

[
2G11G22 − G2

12 − G2
21

]
, (B1a)

Fα α
yy = | f ( �R)|2

4

[
2G11G22 + G2

12 + G2
21

]
, (B1b)

Fα α
zz = | f ( �R)|2

4

[
2G12G21 + G2

11 + G2
22

]
, (B1c)

Fα α,αs
xy/yx = iαs

| f ( �R)|2
4

[
G2

21 − G2
12

]
, (B1d)

Fα α,αs
xz/zx = ±αs

| f ( �R)|2
4

[G11 + G22][G21 − G12], (B1e)

Fα α
yz/zy = ∓i

| f ( �R)|2
4

[G11 + G22][G12 + G21]. (B1f)

For the second configuration (impurities on different sub-
lattices), we achieve

Fα β/β α
xx = | f ( �R)|2

4

[
2G11G22 − G2

12 − G2
21

]
, (B2a)

Fα β/β α
yy = | f ( �R)|2

4

[−2G11G22 − G2
12 − G2

21

]
, (B2b)

Fα β/β α
zz = | f ( �R)|2

4

[−2G12G21 − G2
11 − G2

22

]
, (B2c)

Fα β,αd
xy/yx = ±iαd

| f ( �R)|2
4

[
G2

12 − G2
21

]
, (B2d)

Fα β,αd
xz/zx = αd

| f ( �R)|2
4

[G11 + G22][G12 − G21], (B2e)

Fα β

yz/zy = ±i
| f ( �R)|2

4
[G11 + G22][G12 + G21]. (B2f)

APPENDIX C: BEATING OSCILLATION OF RKKY
INTERACTION

Here, we aim at showing the beating type of oscillations
from multiple Dirac cones on the SnTe(001) surface [see

0 /2 3 /2 2
0

1

2

3

4 10 30

FIG. 6. Beating type of RKKY oscillations due to the multiple
Dirac cones on the SnTe(001) surface, Eq. (15), for impurity separa-
tions R/a0 = 10 and 30 as a function of the polar angle ϕR.

Eq. (15) for | f ( �R)|2, as shown in Fig. 6]. The momenta con-
tributed to this beating function are X1/2 ± �x/y and 2�x/y on
the SBZ [53].

APPENDIX D: FLOQUET ENGINEERING OF MAGNETIC
MOMENTS ALIGNMENT ON THE SnTe(001) SURFACE

An important motivation for Fig. 7 presented here orig-
inates from the spintronics community where the quest for

FIG. 7. Magnetic phase diagram of RKKY interactions on the
driven-doped SnTe(001) surface at R/a0 = 50 and ϕR = π/3. De-
pending on the interplay between light intensity a and frequency �,
various FM/AFM and clockwise/counterclockwise characters can
be seen for symmetric and asymmetric components, respectively.
Also, J̃ αα

z (R) > J̃ αα
DM,x (R) holds true.
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FIG. 8. Oscillatory Meijer functions, Eq. (E2), vs x = μR/vF

for the undriven-doped SnTe(001) surface, resulting in oscillatory
RKKY interactions in Fig. 3(b).

the control of magnetic phases is still active. Among the
fundamental open questions is whether the magnetic moments
alignment on the SnTe(001) surface with a nontrivial spin
texture is adjustable through the interplay between the in-
tensity and frequency of light. This is somehow important
for the Floquet engineering of surfaces. As can be seen,
phase diagrams for symmetric and asymmetric contributions

to the RKKY interaction highlight the characters of FM/AFM
[for symmetric contributions in Figs. 7(a)–7(d)] as well as
clockwise/counterclockwise [for asymmetric contributions in
Figs. 7(e)–7(f)] in different controlled ways, characterized
by red and blue colors. In a certain regime above the line
a ∝ √

�, the RKKY interaction vanishes. Getting away from
the alignments, we have the relation J̃ αα

z (R) > J̃ αα
DM,x(R)

between the strongest symmetric and asymmetric RKKY
components.

APPENDIX E: SOLUTION OF INTEGRALS IN EQ. (16)
FOR UNDRIVEN-UNDOPED, UNDRIVEN-DOPED,

AND DRIVEN-UNDOPED SnTe(001) SURFACES

In this part, we present the analytical expressions for the
integrals in Eq. (16). For the pristine surface, we use the
following relation for n = {0, 1}:

Im
∫ ∞

o+
idω ω2K2

n(ωR/vF) = +(2n + 1)
π2v3

F

32R3
. (E1)

For the undriven-doped surface, the following relations are
required to understand the short- and long-range responses:

Kn(iu) = (−1)n+1 π

2
einπ/2[Yn(u) + iJn(u)], (E2a)

Im
∫ ∞

o+
idω[ω − iμ]2K2

n([ω − iμ]R/vF) = +(2n + 1)
π2v3

F

32R3
− (−1)n π2μ3

4
√

π
G 2,1

2,4

( − 1
2 , 1

2
0, n,− 3

2 ,−n

∣∣∣∣ μ2R2

v2
F

)
︸ ︷︷ ︸

Mn(μR/vF )

, (E2b)

where Mn(x) is the special Meijer function [89,90], as shown in Fig. 8, which leads to oscillatory RKKY interactions in Fig. 3(b).
For the driven-undoped surface, we use the following mathematical identity [102]:∫ 0

−∞
x j−1dx Kn(ax)Km(ax) = 2 j−3

a j�( j)
�([ j + n + m]/2)�([ j + n − m]/2)�([ j − n + m]/2)�([ j − n − m]/2), (E3)

where �(. . . ) is the Gamma function.
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