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Scanning tunneling spectroscopy of Majorana zero modes in a Kitaev spin liquid
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We describe scanning tunneling spectroscopic signatures of Majorana zero modes (MZMs) in Kitaev spin
liquids. The tunnel conductance is determined by the dynamical spin correlations of the spin liquid, which we
compute exactly, and by spin-anisotropic cotunneling form factors. Near a Z2 vortex, the tunnel conductance
has a staircase voltage dependence, where conductance steps arise from MZMs and (at higher voltages) from
additional vortex configurations. By scanning the probe tip position, one can detect the vortex locations. Our
analysis suggests that topological magnon bound states near defects or magnetic impurities generate spectro-
scopic signatures that are qualitatively different from those of MZMs.

DOI: 10.1103/PhysRevB.107.054432

I. INTRODUCTION

Presently a major goal in condensed matter physics is to
realize, detect, and manipulate topologically ordered phases
of frustrated quantum magnets, commonly referred to as quan-
tum spin liquids (QSLs). A famous exactly solvable paradigm
is given by Kitaev’s two-dimensional (2D) honeycomb lattice
spin model with bond-dependent anisotropic exchange which,
in a magnetic field, describes a gapped non-Abelian chiral
QSL [1]. Emergent excitations of the Kitaev spin liquid in-
clude Majorana zero modes (MZMs) bound to Z2 vortices
(“visons”), which are Ising anyons of interest for quantum
information processing, as well as gapped bulk fermions and a
chiral Majorana edge mode at the boundary. Being excitations
of an insulating magnet, they are electrically neutral. Sizable
Kitaev couplings are expected [2] and have been reported
in various material platforms for Mott insulators with strong
spin-orbit coupling, e.g., in iridate compounds or in α-RuCl3,
where the smallness of interlayer couplings justifies the use
of 2D models. For recent reviews, see Refs. [3–12]. Despite
the impressive experimental progress achieved over the past
decade, however, no consensus has emerged whether α-RuCl3

or any other known material harbors a QSL. In particular,
the half-quantized thermal Hall conductivity due to the chiral
Majorana edge mode reported in Refs. [13–15] has not been
found in other experiments [16,17]. In fact, some spin-liquid
predictions can be mimicked by topological magnons in a
polarized phase [18–20].

We here show that characteristic signatures of Ising anyons
should be seen in scanning tunneling spectroscopy (STS)
experiments [21] on a 2D Kitaev layer [22–25] by scanning
the probe-tip position in the vicinity of an isolated Z2 vortex
(located far away from all other vortices and from the sample
boundary) and/or by changing the applied voltage; see Fig. 1.
Below we will also compare our results to an alternative
scenario with topological magnon bound states near defects
or magnetic impurities, which could also cause low-energy

features in the STS tunnel conductance. Such a comparison
is important as evidenced by the corresponding topological
superconductor case [26], where the tunnel conductance has
a zero-bias anomaly with quantized peak conductance 2e2/h
due to MZM-mediated resonant Andreev reflection [27–30].
STS experiments have found such zero-bias anomalies near
vortex cores in various superconducting materials and at-
tributed them to MZMs [21,31–34]. A major obstacle to
this interpretation is that very similar conductance peaks can
be caused by conventional disorder-induced Andreev bound
states [35]. However, the magnetic QSL case is rather differ-
ent and warrants a separate investigation. The absence of a
Cooper pair condensate implies that the charge of an electron
(tunneling in from the tip via the MZM) is much harder to
accommodate. For the pure Kitaev model, the infinite charge
gap implies a vanishing tunnel conductance, G(V ) = 0.

To obtain a finite G(V ), we start from the
Hubbard-Kanamori model for Kitaev materials [2,36–
39]. Adding a tunneling Hamiltonian for the QSL couplings
to tip and substrate, see Fig. 1(a), and projecting to states
with energy below the charge gap, we obtain H = HK + Hcot,
where HK describes the Kitaev model [2] and the cotunneling
Hamiltonian Hcot encodes tip-substrate electron transfer
due to virtual excursions to high-energy intermediate states
[40–42]. We compute Hcot for arbitrary tip position and find
that it is anisotropic in spin space. One then obtains G(V )
from the dynamical spin correlations of the QSL [43–47],
which can be computed exactly [48–53]. However, in the
presence of Z2 vortices, we encounter a technical challenge
described and resolved below.

As a function of voltage, we predict a characteristic se-
quence of conductance steps linked to MZMs. By scanning
the tip location at fixed voltage, one can locate MZMs in real
space and obtain information about the vortex configurations
contributing to the conductance. It stands to reason that ex-
perimental tests of our theory will help in identifying QSLs.
(For other proposals aimed at the electric detection of QSLs,
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FIG. 1. (a) Schematic STS setup. Tunnel couplings tA and tB

connect the QSL layer to the tip and the substrate, respectively. The
differential conductance G(V ) = dI

dV follows by measuring the tunnel
current I from tip to substrate as function of the applied voltage V .
(b) Finite 2D Kitaev honeycomb lattice with L × L unit cells and
periodic boundary conditions, shown for L = 7 and a configuration
G with two Z2 vortices (shaded). Full and open circles represent the
two sublattices. Nearest-neighbor bonds 〈 jl〉α of type α ∈ {x, y, z}
are distinguished by different colors.

see Refs. [39,54–57].) Our study of an alternative topological
magnon scenario suggests that MZM signatures obtained by
STS on a Kitaev layer are easier to distinguish from other
mechanisms than in the superconducting case.

The structure of the remainder of this article is as follows.
In Sec. II, we derive the low-energy theory used for calculat-
ing the differential conductance, where technical details have
been relegated to the Appendix. We then show in Sec. III how
to compute the conductance in terms of an exact evaluation
of dynamical spin-spin correlation functions of the Kitaev
layer. Our results for the conductance profile are shown in
Sec. IV. In Sec. V, we then address a complementary topolog-
ical magnon scenario. Finally, we offer concluding remarks in
Sec. VI.

II. EFFECTIVE LOW-ENERGY THEORY

We consider the setup in Fig. 1(a), where a scanning
probe tip at position r = (x, y, d ) is tunnel-coupled to a 2D
Kitaev layer at vertical distance d . The layer is also coupled
to a metallic substrate. Throughout, we assume weak and
spin-independent tunnel amplitudes. Due to the charge gap
in the magnetic layer, electron transport at subgap voltages
V , applied between the tip [with conduction electron creation
operator �

†
Aτ (r) for spin projection τ =↑,↓] and the substrate

[with �
†
Bτ (R j ) below lattice site R j], can only take place via

cotunneling [41,43,58]. We use the Hubbard-Kanamori model
for strongly correlated d5 electrons in α-RuCl3 or related ma-
terials [2,36,37,39], where on-site correlations are captured by
a large Coulomb energy U and a Hund coupling JH . Including
a tunneling Hamiltonian for the contacts to tip and substrate,
the projection to energies below the charge gap ∼U can be
performed by a canonical transformation [2,39]. We show this
calculation in some detail in the Appendix.

TABLE I. Kitaev couplings reported from different methods for
several materials.

Material K (meV) Method

α-RuCl3 5.0 experimental analysis [60]
6.7 exact diagonalization [38]

8.0–8.25 ab initio [61,62]
10.6 density functional theory [63]

Na2IrO3 16.8 exact diagonalization [38]
16.9 quantum chemistry methods [64]
29.4 perturbation theory [65]

α-Li2IrO3 6.3–9.8 exact diagonalization [38]
Li2RhO3 2.9–11.7 quantum chemistry methods [66]

The low-energy theory is described by spin-1/2 operators,
S j = 1

2σ j , in the QSL layer, where H = HK + Hcot includes
the Kitaev model [1,2]

HK = −K
∑
〈 jl〉α

σ α
j σα

l − κ
∑

〈 jk〉α,〈kl〉β
σ α

j σ
γ

k σ
β

l , (2.1)

with 〈 jl〉α denoting a nearest-neighbor bond of type α ∈
{x, y, z}; see Fig. 1(b). The term ∝ κ describes a magnetic
field [1,52], where (αβγ ) is a cyclic permutation of (xyz) and
the sum runs over triangles ( jkl ) with two adjacent nearest-
neighbor bonds. We measure lengths in units of the lattice
spacing a0, where a0 ≈ 5.9Å for α-RuCl3 [59]. The projec-
tion scheme yields a ferromagnetic (positive) Kitaev coupling
K ∝ JH [2], where experimental analysis gives K ≈ 5 meV
for α-RuCl3 [60]. Theoretical estimates for K in different
Kitaev materials have been reported in Refs. [38,61–66]; see
Table I.

Similarly, summing over all lattice sites, the cotunneling
Hamiltonian follows as

Hcot =
∑

j

�
†
A(r)[T0(r − R j )1 j + T(r − R j ) · σ j]

× �B(R j ) + H.c., (2.2)

where σ j and 1 j act in Kitaev spin space. The 2 × 2 matrices
T0 and T α , with T = (T x, T y, T z ), act in conduction elec-
tron spin space. All T -matrix elements scale ∝ tAtB/U , with
real-valued tunnel couplings tA (tB) from tip (substrate) to a
given site. We assume a constant substrate coupling tB. The
tip couplings depend on the overlap between the spherically
symmetric tip wave function and the respective t2g orbital
(labeled by α = x, y, z) for the d5 electrons. With an energy
scale t0 and a tunneling length l0 � a0, we write [41,43]

tAα (r, R j ) = t0e−|r±vα−R j |/l0 , (2.3)

with the overall coupling tA ≡
√

t2
Ax + t2

Ay + t2
Az. The vectors

vα with |vα| ≈ 0.1a0 encode the orbital overlaps, where the
± signs in Eq. (2.3) label the sublattice type of site R j ; see
the Appendix. The exponential scaling in Eq. (2.3) implies
that only a few sites near the tip location r contribute. Ana-
lytical but lengthy expressions for T0 and T are given in the
Appendix.

Simpler results emerge by approximating vα = 0, which
gives exact results for a tip located on top of a lattice site and
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otherwise causes deviations ∼10% in the tunnel couplings.
(For the figures shown below, we have used the full expres-
sions.) We then obtain

Hcot =
∑

j

tA(r − R j )tB
U

�
†
A(r)[η0 + η1τ · σ j

+ η2(τ x + τ y + τ z )(σ x + σ y + σ z ) j]�B(R j ) + H.c.,

(2.4)

with JH
U -dependent numbers η j ∼ O(1); see the Appendix.

The SU(2) spin rotation symmetry assumed in Refs. [43–45]
is in fact lowered to a Z3 symmetry around the [111] axis.

III. DIFFERENTIAL CONDUCTANCE

At this point, it is straightforward to compute the dif-
ferential conductance, G(V ) = dI

dV , from Fermi’s golden rule
[43,44,58]. In the zero-temperature limit, we find

G(V ) =
∑
jl,αβ

Cαβ

jl (r)
∫ eV

0
dωSαβ

jl (ω) = e2

h̄

∫ eV

0
dωSG(ω),

(3.1)

with the dynamical spin correlation function of the QSL,

Sαβ

jl (ω) =
∫

dt

2π
eiωt 〈�|σα

j (t )σβ

l (0)|�〉. (3.2)

The second step in Eq. (3.1) defines the averaged dynamical
spin correlator SG(ω), which follows by weighting Sαβ

jl (ω)
with its form factor,

Cαβ

jl (r) = 2e2dAdB

h̄
Tr[T α (r − R j )T

β (r − Rl )], (3.3)

with the tip (substrate) density of states dA (dB) and a trace
over conduction electron spin space. Note that dG

dV ∝ SG(V ).
The term ∝ T0 in Eq. (2.2) generates a voltage-independent
background (including a mixing term of T0 and T) not con-
tained in Eq. (3.1). However, this term is insensitive to Z2

vortices and can be disentangled from Eq. (3.1).
The correlation function (3.2) can be computed exactly

for HK by means of a Majorana representation of the spin
degrees of freedom [48–51]. By writing σα

j = ic jcα
j in terms

of Majorana fermions with a local parity constraint, Dj =
c jcx

jc
y
jc

z
j = +1, one obtains an exactly solvable noninteract-

ing Hamiltonian for “matter” Majorana fermions, {c j}, which
move in a conserved Z2 gauge field u〈 jl〉α = icα

j cα
l = ±1 [1],

HK = iK
∑
〈 jl〉α

u〈 jl〉α c jcl − iκ
∑

〈 jk〉α,〈kl〉β
u〈 jk〉α u〈kl〉β c jcl . (3.4)

All eigenstates of HK can be written as a projected tensor
product of a matter fermion state, |ϕ(G)〉, for given static
gauge field configuration |G〉,

|�〉 = P|G〉|ϕ(G)〉, (3.5)

with HK |�〉 = E�|�〉 = Eϕ(G)|�〉, where the projection P =∏
j

1+Dj

2 projects onto the physical subspace. Defining gauge-

invariant plaquette operators,

Wp =
∏

〈 jl〉α∈p

u〈 jl〉α = ±1, (3.6)

the ground state has Wp = +1 for all hexagonal plaquettes p
[1]. Plaquettes with Wp = −1 then define Z2 vortices, which
are expected near vacancies or magnetic impurities [67–69]
and harbor MZMs. In order to study the case shown in
Fig. 1(a), we will then consider |�〉 as the matter ground state
|ϕ0(G)〉 for a gauge configuration G with two well-separated
Z2 vortices. We note that G can be constructed from a zero-
vortex configuration G0 (with all bond variables u〈 jl〉α = +1
for j in sublattice A and l in sublattice B) by reversing
the bond variables along an arbitrary string connecting both
vortices.

For explicit calculations, we consider a finite honey-
comb lattice with L × L unit cells and periodic boundary
conditions. The 2N = 2L2 matter Majoranas are written as
c j = cλ(m, n), where λ ∈ (A,B) labels the sublattice and
m, n = 1, . . . , L the unit cell at R j = mê1 + nê2, with the

primitive lattice vectors ê1 = 1
2 x̂ +

√
3

2 ŷ and ê2 = − 1
2 x̂ +√

3
2 ŷ. We next define the 2N-dimensional Majorana vec-

tor c = (cA, cB )T , with the ordering convention cλ =
(cλ(1, 1), . . . , cλ(L, 1), cλ(1, 2), . . . , cλ(L, L))T , and a com-
plex fermion for each unit cell, f (m, n) = 1

2 [cA(m, n) −
icB(m, n)]. With an N-dimensional vector f formed in
analogy to cλ, the linear transformation between both repre-
sentations is given by

c = T

(
f
f †

)
, T =

(
1N 1N

i1N −i1N

)
, (3.7)

with the N × N identity 1N and T −1 = 1
2 T †. The projection

P here implies a parity constraint for the total number Nf of
f fermions and the total number Nχ of bond fermions χ〈 jl〉α =
1
2 (cα

j − icα
l ) [49–51],

(−1)Nf +Nχ = 1, (3.8)

where we assume a vanishing boundary condition twist pa-
rameter in Ref. [51]. We note that Nχ is uniquely determined
by the bond variables {u〈 jl〉α } defining the gauge configuration
G. Using the f fermions, we obtain

HK = 1

2
( f † f ) T †

(
HG

AA HG
AB

HG
BA HG

BB

)
T

(
f
f †

)
, (3.9)

where the N × N matrices HG
λλ′ for given G can be read off

from Eq. (3.4); see Ref. [39] for explicit expressions.
We next apply a unitary Bogoliubov transformation,(

f
f †

)
= UG

(
a
a†

)
, (3.10)

in order to diagonalize Eq. (3.9) in terms of new (complex)
matter fermions aμ,

HK = 1

2

N∑
μ=1

εμ

(
2a†

μaμ − 1
)
, (3.11)
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FIG. 2. Illustration of several gauge configurations Gα
j contributing to the dynamical spin correlation functions determining the tunnel

conductance. The central plaquette always refers to one of the two well-separated Z2 vortices (the other one is not shown) present in the
reference configuration G. Thick black bonds indicate a flip of the corresponding bond variable u〈 jl〉α → −u〈 jl〉α . (a) The vortex is translated by
one plaquette. (b) An additional pair of adjacent vortices at relatively large distance � (blue double arrow) is created by the bond flip. (c) Same
as (b) but for small distance �.

where εμ are the non-negative eigenenergies ordered as

0 � ε1 � ε2 � · · · � εN . (3.12)

We often use the additional index G, i.e., aμ → aG,μ and
εμ → εG,μ, to emphasize that those operators and energies
refer to the corresponding gauge configuration. The mat-
ter ground state, |ϕ0(G)〉, is determined by the conditions
aμ|ϕ0(G)〉 = 0 (for all μ) and has the energy

EG,0 = −1

2

N∑
μ=1

εG,μ. (3.13)

However, we still have to check that this state respects the
parity constraint (3.8). To that end, we first note that the parity
of the a fermions, (−1)Na with Na = ∑

μ a†
μaμ, satisfies the

relation

(−1)Nf = (−1)Na det UG, (3.14)

where we have verified that the proof for Eq. (3.14) given in
Ref. [51] for κ = 0 can be extended to κ �= 0. Equation (3.8)
can therefore be written as

(−1)Na πG = 1, πG = (−1)Nχ det UG, (3.15)

where the ground-state parity operator, πG = ±1, is gauge
invariant. For configurations with πG = −1, the matter ground
state |ϕ0(G)〉 is not in the physical subspace. One then has to
add a single fermion to the ε1 level for satisfying the parity
constraint (3.15). The corresponding changes,

|ϕ0(G)〉 → a†
μ=1|ϕ0(G)〉, EG,0 → EG,0 + ε1, (3.16)

are implicitly understood below.
We now turn to the dynamical spin correlator, where

a Fourier transformation gives the Lehmann representation
(with j in sublattice A)

Sαβ

jl (ω) =
∑
�′

〈�|σα
j |�′〉〈�′|σβ

l |�〉 δ(ω + E� − E�′ ).

(3.17)

We consider |�〉 as the matter ground state |ϕ0(G)〉 for a given
gauge configuration G (which we will later choose to contain
two vortices), with energy E0 = EG,0 in Eq. (3.13). Inserting
the Majorana decomposition into Eq. (3.17), we next observe
that cα

j commutes with all terms in HK that do not contain

u〈 jl〉α , but anticommutes with all terms that do. Starting from
G = {u〈 j′l ′〉α′ }, we then define a new gauge configuration Gα

j =
{ũ〈 j′l ′〉α′ }, see Fig. 2, with the bond variables

ũ〈 j′l ′〉α′ =
{−u〈 j′l ′〉α′ , if 〈 j′l ′〉α′ = 〈 jl〉α ,

u〈 j′l ′〉α′ , otherwise. (3.18)

With this definition, Eq. (3.17) yields [49–51]

Sαβ

jl (ω) =
∑
ϕ(Gα

j )

〈
ϕ0(G)|c j |ϕ

(
Gα

j

)〉 〈
ϕ
(
Gα

j

)|cl |ϕ0(G)
〉

× δ
(
ω + E0 − Eϕ(Gα

j )
)(

δ jl − iu〈 jl〉α δ〈 jl〉α
)
δαβ.

(3.19)

Here δ〈 jl〉α = 1 if ( jl ) form a nearest-neighbor bond of type
〈 jl〉α , and zero otherwise. Hence Sαβ

jl (ω) �= 0 is possible only
for equal spin indices (α = β) and on-site terms or nearest-
neighbor bonds. As sketched in Fig. 2, G and Gα

j are connected
by either moving a vortex by one plaquette, or by creating two
additional vortices. We note that the zero-frequency peak in
SG(ω) is connected to the configurations in Fig. 2(a). Since we
expect this peak to move to a finite but very small frequency
ω0 in practice, see Sec. IV, we have taken it into account
with the full weight of the delta function peak in the tunnel
conductance (3.1), even though the integral in Eq. (3.1) runs
over positive frequencies only.

Since matter states for two different gauge configurations
are needed in Eq. (3.19), it is convenient to use the notations

aμ = aG,μ, bμ = aGα
j ,μ

,

|0a〉 = |ϕ0(G)〉, |0b〉 = ∣∣ϕ0
(
Gα

j

)〉
, (3.20)

with the N-component spinors a = (a1, . . . , aN )T and b =
(b1, . . . , bN )T . The a matter fermions with ground state |0a〉
thus refer to the gauge configuration G, while the b fermions
with ground state |0b〉 refer to Gα

j . The corresponding ground-
state energies are denoted by E|0a〉 and E|0b〉, respectively.
From Eq. (3.10), the a and b fermions must be connected by a
unitary Bogoliubov transformation [50,51,70],(

b
b†

)
= W

(
a
a†

)
, W = U †

Gα
j
UG =

(
X ∗ Y ∗
Y X

)
, (3.21)

where the N × N matrices X and Y satisfy the relations

XX † + YY † = 1, X †X + Y T Y ∗ = 1,

XY T + Y X T = 0, X T Y ∗ + Y †X = 0.
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For det W = +1, we next observe that |0b〉 can be obtained
from |0a〉 by means of the Thouless theorem [72]. As a result,
one finds [51,73]

|0b〉 = [det(X †X )]1/4 exp
(− 1

2 a† X ∗−1Y ∗ a†
) |0a〉 . (3.22)

The matrix elements needed in Eq. (3.19) are of the form

〈ϕ0(G)|c j |ϕ(Gα
j )〉 = 〈0a|c jb

†
μ1

...b†
μn

|0b〉 , (3.23)

where μ1 � · · · � μn and n is constrained by (−1)n = πGα
j
.

One can understand this constraint by noting that Eq. (3.23),
which is a matrix element of the single fermion operator c j ,
must vanish if |ϕ0(G)〉 and |ϕ(Gα

j )〉 have the same fermion
parity. We note that for det W = 1, exactly one of the two
fermionic vacua |0a〉 and |0b〉 will not be in the physical
subspace since the πG operator will change sign when flip-
ping a bond. As discussed above, we therefore have to add a
single fermion to one of the two states. Using Eq. (3.22) and
the relation c = TUG (a, a†)T , which follows from Eqs. (3.7)
and (3.10), we can finally express all matrix elements (3.23)
exclusively in terms of a and a† operators, facilitating their
practical computation.

For a numerical implementation, we restrict the number n
of excitations in Eq. (3.23) by imposing 0 � n � nmax. Under
this truncation, exactness of the computed dynamical spin
correlations is ensured only for frequencies

ω < ωmax = E|0b〉 − E|0a〉 +
nmax+2∑
μ=1

εGα
j ,μ

. (3.24)

However, already for nmax = 2, accurate results can be ob-
tained even for ω > ωmax in the vortex-free configuration G0

[51]. For the two-vortex configuration G, rapid convergence
of the numerical results upon increasing nmax was ob-
served. Since the characteristic MZM features stem from the
low-frequency part of Sαβ

jl (ω), in all cases shown here, a trun-
cation with nmax = 2 was sufficient to reach convergence for
ω < ωmax.

However, for selected bonds 〈 jl〉α in the two-vortex con-
figuration G, we find that det W = −1. In such cases, the
Thouless theorem breaks down and X in Eq. (3.21) is a sin-
gular N × N matrix. As a result, Eq. (3.22) does not apply
anymore. For computing the STS tunnel conductance near a
single Z2 vortex, it is essential to resolve this issue. For closely
related problems, Refs. [71,72] have obtained a solution by in-
terchanging the ground-state occupancies of a single particle
and its hole partner. We follow their approach and define the
matrices X (μ) and Y (μ), see Eq. (3.21), according to

X (μ)
kl =

{
Xkl , l �= μ,

Ykl , l = μ,
Y (μ)

kl =
{

Ykl , l �= μ,

Xkl , l = μ,
(3.25)

where μ refers to the index of the interchanged particle and
hole. This interchange of columns renders X (μ) nonsingular as
it corresponds to a Bogoliubov transformation with positive
determinant. We can then use the Thouless theorem again,
such that after the operation (3.25), we can effectively use
Eq. (3.22). The thereby obtained state, |0′

b〉, has the energy
E|0′

b〉 = EGα
j ,0 + εGα

j ,μ
, and the chosen index μ should mini-

mize εGα
j ,μ

. For instance, if it corresponds to a zero mode,
εGα

j ,μ
= 0, the interchange (3.25) introduces no approxima-

tion, the energy ordering in Eq. (3.12) remains unaffected,

and |0′
b〉 captures the ground state for the b fermions. For

the configurations studied in this work, we can always find a
low-energy fermion level that approaches a zero mode in the
thermodynamic limit for κ �= 0. These low-energy modes are
well separated from the fermion continuum which has a finite
gap ∝ |κ|.

It is worth mentioning that two consistency checks are
passed successfully by our numerical calculations. First,
limV →∞

∫ eV
0 dω Sαβ

jl (ω) recovers the static equal-time spin
correlator [39]. Second, dynamical spin correlations are ra-
dially isotropic around an isolated Z2 vortex despite of the
presence of a gauge string.

IV. CONDUCTANCE SIGNATURES OF MZMs

Figure 3 shows numerical results for SG(ω) and G(V ) for
three different tip positions near an isolated Z2 vortex. The
different peaks in each SG(ω) curve have a clear physical
meaning. First, the ω = 0 peak is directly connected to MZMs
and stems from configurations Gα

j with the vortex translated
by one step. (For nonuniform Kitaev couplings, the peak can
shift to a small frequency ω0; see below.) The support for
this peak comes only from on-site terms and nearest-neighbor
bonds directly enclosing the vortex. Indeed, Fig. 3(a) shows
that the peak weight decreases rapidly with the tip-vortex dis-
tance. Second, the peaks at ω = �E2v (�) (≈ 0.1K in Fig. 3)
correspond to the energy cost for creating a configuration Gα

j
with an additional pair of adjacent vortices by flipping a bond
at distance � from the original vortex, with the fermion bound
state built from the new overlapping MZM pair unoccupied.
This peak may contain several subpeaks since various con-
figurations Gα

j with different �, and hence different �E2v (�),
may contribute to SG(ω) in this frequency range. Third, the
peak structure at ω = �E2v (�) + ε f (�) ≈ 0.25K includes the
energy cost ε f (�) for occupying the fermion bound state.
Finally, the onset of the gapped two-fermion continuum is
marked by a (small) peak at ω = �E2 f = 3

√
3

2 |κ| (≈ 0.5K
in Fig. 3).

The conductance G(V ) in Fig. 3(b) follows by integrating
SG(ω) and therefore shows steps at the voltages matching a
peak in SG(ω). One can thus measure the important energy
scales �E2v , ε f , and �E2 f by STS. However, the respective
step sizes are not universal because the peak weights in SG(ω)
depend on the tip position and on the form factors. It is
instructive to compare to the vortex-free configuration G0,
see Fig. 3(b), where G(V ) is strongly suppressed for eV <

�E2v (∞) + ε f (∞). Indeed, here the lowest-energy excitation
probed by G(V ) corresponds to adding a vortex pair and
filling the fermion bound state in order to respect the parity
constraint. In this low-voltage regime, the conductance for the
two-vortex configuration G is instead dominated by MZMs
and will be finite at small V , with a step at eV = �E2v (�).
We also observe from Fig. 3(b) that the “bulk” behavior of
G(V ), found for arbitrary tip position in configuration G0, is
approached by moving the probe tip far away from the vortex
center. We note that the zero-voltage step is particular to the
integrable Kitaev model with uniform couplings (assumed in
Fig. 3), where the eigenstates are degenerate with respect to
the vortex position. In a generic nonintegrable case, vortices
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FIG. 3. STS for a Kitaev QSL in a two-vortex configuration G, see Fig. 1(b), for κ = 0.2K , L = 37, JH = 0.05U , l0 = 0.75a0, and d = l0.
For α-RuCl3, one expects K ≈ 5 meV [60]. (a) Weighted spin correlation function SG vs ω, see Eq. (3.1), for three tip positions (inset).
We plot SG(ω) in units of S0 = dAdB(t0tB/U )2, with delta function peaks replaced by Lorentzians of width �L = 0.005K due to higher-order
tunneling processes. (b) Conductance G (in units of G0 = S0

e2

h̄ ) vs V , see Eq. (3.1), for the tip positions in (a). The black dashed curve is for
the vortex-free configuration G0. The voltages V1,2 are used in Fig. 4.

are mobile but can be trapped by bond disorder, vacancies,
magnetic impurities, or by an external electrostatic poten-
tial. The V = 0 step may then shift to a small finite voltage
eV = ω0, where ω0 describes the difference in vortex creation
energies on different plaquettes. Such shifts may be useful to
distinguish MZM-induced conductance steps from the back-
ground conductance due to T0 in Eq. (2.2).

For the voltages V1,2 marked in Fig. 3(b), we show the tip-
position dependence of the conductance in Fig. 4. For V = V1,
see Fig. 4(a), the physics is dominated by the zero-frequency
MZM peak in SG(ω), and the spatial profile in Fig. 4(a) en-
codes a convolution of the (squared) MZM wave function [53]
with the form factor (3.3). However, in contrast to the standard
situation in STS [21], it is not possible to map out the MZM
wave function beyond the immediate vicinity of the vortex
because only terms from sites or bonds encircling the vortex
contribute for eV < �E2v (�). The conductance profile for
V = V2 in Fig. 4(b) reveals a dip in the center, which arises be-
cause for a tip away from the vortex, the form factors enhance
the peak contribution for eV > �E2v (�). However, this volt-
age regime involves many vortex configurations Gα

j , rendering

it difficult to extract the MZM wave function. Nonetheless,
the conductance profile allows us to detect the MZM at the
vortex location. Finally, the angular isotropy of the spatial
profile approximately found at low voltage is reduced to a
C6 symmetry at higher voltages. While this effect is hardly
visible for the tip distance d = l0 in Fig. 4, it becomes more
prominent for smaller d .

V. TOPOLOGICAL MAGNONS

In this section, we explore a different mechanism that could
in principle generate similar tunnel conductance features to
those reported above for MZMs in the spin-liquid phase. To
that end, we consider topological magnons in the polarized
phase of the Kitaev model in a magnetic field [18,19,43].
Such models have been proposed as an alternative scenario
for explaining the observed half-quantized thermal Hall con-
ductivity [18,19]. Below we clarify whether local defects or
magnetic impurities are able to generate topological magnon
bound states below the magnon gap. If present, such bound
states may produce tunnel conductance steps at voltages

(a) (b)

FIG. 4. Spatial conductance profile near a vortex (central plaquette) in the xy plane, for the parameters in Fig. 3 with (a) V = V1 and
(b) V = V2; see Fig. 3(b). Note the different color scales.
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matching the respective bound-state energies. In analogy to
the topological superconductor case, magnon-induced con-
ductance steps could then be difficult to distinguish from those
caused by MZMs in a Kitaev spin liquid.

We consider spin-S operators Sγ
i on the 2D honeycomb

lattice with Kitaev couplings. The Hamiltonian is given by

Hm = −
∑
〈i j〉γ

Ki jS
γ
i Sγ

j −
∑

j

h j · S j, (5.1)

where γ ∈ {x, y, z} ≡ {1, 2, 3} denotes the spin components
as well as the bond directions; see Sec. II. For simplic-
ity, we assume that the local magnetic fields are oriented
along the [111] direction, h j = h jc, with the unit vector c in
Eq. (A14); see the Appendix. In the homogeneous case, the
Kitaev couplings and local fields are given by Ki j = K and
h j = h, respectively. In order to model a defect, we study
inhomogeneous Kitaev couplings Ki j near a single plaque-
tte corresponding to the defect, similar to models for bond
disorder and vacancies [74–76]. Recalling that a large-spin
magnetic impurity is equivalent to a local change of the mag-
netic field at a single site [77], we model a magnetic impurity
by a local change of the field hi �= h at this site relative to the
bulk field h. We follow Refs. [18,19] and derive the linear spin
wave theory which becomes exact in the large-S limit.

We first rotate the local basis to have the magnetization
axis along the c direction. With the orthogonal matrix R =
(a b c), see Eq. (A14), we have the rotated spin operators S̃α

i =
RαβSβ

i . Next, we employ a Holstein-Primakoff transformation
to expand around the polarized state,

S̃z
i = S − b†

i bi , S̃x
i ≈

√
S

2
(bi + b†

i ),

S̃y
i ≈ −i

√
S

2
(bi − b†

i ), (5.2)

with bosonic magnon operators bi. Expanding Hm in Eq. (5.1)
in powers of 1/S, we obtain Hm = Ecl + H1 + H2 + O(S1/2).
The first term describes the classical ground state energy,
Ecl = − S2

3

∑
〈i j〉 Ki j − S

∑
j h j . The second term is linear in

the bosons,

H1 = S3/2

3

∑
i

⎛
⎝∑

γ

e−i2πγ /3Ki,i+δγ

⎞
⎠bi + H.c., (5.3)

with the in-plane nearest-neighbor vectors

δ1 = 1

2
x̂ + 1

2
√

3
ŷ, δ2 = −1

2
x̂ + 1

2
√

3
ŷ, δ3 = − 1√

3
ŷ.

(5.4)

One finds H1 = 0 for Ki j = K , but in the presence of de-
fects, H1 �= 0 indicates that we have expanded around the
wrong classical state. Due to the anisotropy of the Kitaev
interactions, the spins do not align with the [111] direction
anymore if the Z3 symmetry is broken by defect bonds. To
correct for this problem, one has to find the correct classical
state with an inhomogeneous magnetization and then apply
position-dependent R matrices in order to rotate the spins to
their local magnetization axis. While such refinements could

give quantitative corrections, we here focus on the quadratic
term,

H2 = − S

3

∑
〈i j〉γ

Ki j (b
†
i b j + b†

jbi + ei2πγ /3bi b j + e−i2πγ /3b†
jb

†
i )

+ S
∑

i

⎛
⎝hi + 1

3

∑
j

Ki j

⎞
⎠b†

i bi . (5.5)

Indeed, in general terms, the linear spin wave theory resulting
from Kitaev (or other) interactions on the 2D honeycomb
lattice must be of the form

H2 = S
∑
〈i j〉γ

(ti jb
†
i b j + t∗

i jb
†
jbi + �i jbi b j + �∗

i jb
†
jb

†
i )

+ S
∑

i

Bi b†
i bi , (5.6)

where Bi is an effective magnetic field including the Weiss
field. The misalignment of spins around defects here should
give rise to an additional position dependence in the parame-
ters ti j , �i j , and Bi in Eq. (5.6), on top of the immediate effects
of Ki j anisotropy in Eq. (5.5). In what follows, we consider
Hm � H2 as given by Eq. (5.5).

We first address the homogeneous case, where
Fourier transformation gives H2 = S

∑
k∈ 1

2 BZ �
†
kMk�k .

Here k runs over half the Brillouin zone, �
†
k =

(b†
k,A b†

k,B b−k,A b−k,B ) is a four-component spinor
(including the sublattice index), and

Mk =
(

Ak Bk

B∗
−k AT

−k

)
. (5.7)

Using the notation �k,n = ∑
γ e−i2πnγ /3eik·δγ with n ∈ {0, 1},

we have defined the matrices

Ak =
(

h + K − 1
3 K�k,0

− 1
3 K�−k,0 h + K

)
,

Bk =
(

0 − 1
3 K�k,1

− 1
3 K�−k,1 0

)
. (5.8)

This Hamiltonian can be diagonalized by a Bogoliubov
transformation. With � = diag(1, 1,−1,−1), we obtain the
magnon band dispersion from the positive eigenvalues of
�Mk. The result is illustrated in Fig. 5. We find two bands
ω1(k) and ω2(k), where analytical but lengthy expressions are
available. These topological magnon bands cover the energy
range

h < ω1(k) <
√

h(h + 2K ), h + K < ω2(k) < h + 2K.

(5.9)

The magnon band gap is thus given by �Em = h. For h →
0, the lower magnon band becomes a zero-energy flat band,
signaling the degeneracy of the classical Kitaev model at zero
field.

A. Defect from bond disorder

Next we turn to inhomogeneous Kitaev interactions, where
we model a defect by modifying the bonds Ki j → ξK around
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FIG. 5. Topological magnon bands for h/K = 0.4 (with momen-
tum unit a−1

0 ) from linear spin wave theory for the homogeneous
model (5.1).

a given plaquette representing the defect by a positive fac-
tor ξ �= 1. We have studied two different radially symmetric
bond defect patterns. In the first case, we modify only the
six bonds directly surrounding the defect plaquette. In the
second case, we instead change only the six adjacent bonds
pointing radially outward from this plaquette. The conclusions
described below are identical for both cases. We have studied
the spectrum of H2 in Eq. (5.5) by numerical diagonalization
on a finite L × L honeycomb lattice as described in Sec. III.
We observe that making the bonds stronger (ξ > 1) creates a
repulsive potential for magnons, which generates antibound
states above the top of the upper band, ε′

m > h + 2K . There
are also bound states in the gap between both bands. How-
ever, even if we make the bonds significantly weaker, ξ < 1,
we never observe bound states below the lower band, εm <

�Em. We conclude that bond defects are unlikely to produce
magnon bound states at subgap energies. At the same time, we
cannot rule out that a more complex bond defect pattern could
cause subgap features that can mimic the Majorana features
described in Sec. IV. Future work should investigate this issue
in more detail.

B. Magnetic impurity

Another limiting case is to locally modify only the mag-
netic field hi in Eq. (5.5), keeping homogeneous Kitaev
couplings Ki j = K . For a radially symmetric inhomogeneous
magnetic field profile, Z3 symmetry remains intact and the
linear-boson term H1 in Eq. (5.3) vanishes. If we change the
field only at a single site, hi = h′ �= h, with the bulk field h
acting at all other sites, we can find a single subgap bound
state for h′ < h as shown in Fig. 6. The bound-state energy
εm < �Em vanishes for h′ ≈ −1.1h for h = 0.4K . For smaller
h, the vanishing of εm occurs at lower values of h′/h < 0.
For generic values of h′/h, we find that εm is positive. The
dynamical spin correlation function then will have a peak
at ω = εm, and Eq. (3.1) yields a single steplike feature in
G(V ) at eV = εm. Except for the fine-tuned case with εm = 0,

FIG. 6. Magnon spectrum ω vs h′/h for a local magnetic field
h′ �= h at a single site. The bulk field is h = 0.4K . Shaded regions
describe continuum states; see Eq. (5.9). A single subgap bound state
can exist for h′ < h. A high-energy antibound state is visible for h′ >

h, and another bound state exists in the minigap between both bands.

this step does not occur at zero voltage as expected for the
MZM case.

For a wider field profile, with the field change extending
over several sites, we typically find several subgap bound
states. This case can be realized if the impurity is coupled
to several sites. In such cases, from the G(V ) curve alone, it
can be difficult to disentangle the effects of magnon bound
states from those due to MZMs. However, a collection of
several nearby magnetic impurities causing such a field profile
should be identifiable by concomitant STM surface topogra-
phy scans.

VI. CONCLUSIONS

Based on the above analysis, we expect that the tunnel
conductance features due to MZMs in a spin liquid will be
quite robust. For the topological magnon scenario in Sec. V,
we find that defects modeled by locally inhomogeneous
Kitaev couplings do not bind subgap magnon bound states.
On the other hand, a large-spin magnetic impurity can induce
a single subgap bound state centered at the corresponding
site. One then expects a single conductance step, where the
spatial distribution of the STS tunnel conductance peaks at
this site. For the MZM case, we instead predict a characteristic
sequence of steps and the spatial distribution should peak at
the center of the hexagon defining the vortex.

We conclude that the perspectives for STS detection of
MZMs in spin liquids appear promising. In fact, tunnel-
ing experiments on monolayers of α-RuCl3 have recently
observed interesting low-energy excitations [62]. Given the
rapid progress in encapsulating and probing atomically thin
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materials [78], detailed experimental tests of our predictions
will likely soon be available.
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APPENDIX: DERIVATION OF LOW-ENERGY THEORY

This Appendix provides a derivation of the cotunneling
Hamiltonian (2.2) with the corresponding transition matrix
elements. As starting point, we take the general Hamiltonian
Htot = HM + Vat + Htun, where HM describes noninteracting
metallic leads representing the scanning probe tip and the
substrate,

HM =
∑

ν∈{A,B}

∑
τ∈{↑,↓}

∑
k

εντ (k)c†
ντ (k)cντ (k). (A1)

The fermion annihilation operators cντ (k) with ν = A, B refer
to tip and substrate electrons, respectively, where τ is the spin
projection and εντ (k) the energy with respect to the Fermi
energy. The Pauli matrices τ used below act in the spin space
of the conduction electrons.

For the 2D Kitaev layer, we start from a Hubbard-
Kanamori model for the d5 electrons in an edge-sharing
octahedral environment, e.g., those of the Ru3+ ions in
α-RuCl3. For lowest-order perturbation theory in the tunnel
Hamiltonian Htun connecting the layer to the STM tip and
to the substrate, only the single-site atomic Hamiltonian Vat

in the Hubbard-Kanamori model is needed (see, for instance,
Ref. [39]),

Vat = U − 3JH

2
(N̄ − 1)2 − 2JH S̄2 − JH

2
L̄2 + λsoL̄ · S̄,

(A2)

with the on-site Coulomb energy U , the Hund coupling JH ,
and the spin-orbit coupling λso. The respective couplings can
be renormalized by screening processes resulting from the
presence of the tip and the substrate, but one expects U ≈

2 eV and λso � JH ,U . For definiteness, we assume JH � U .
To lowest order in Htun, contributions from different lattice
sites simply add up. The operators N̄ , S̄, and L̄ in Eq. (A2)
refer to hole number, spin, and angular momentum, respec-
tively. In terms of the hole annihilation operators hs with the
combined spin-orbital index s = (α, σ ), they are expressed as

N̄ = h†h, S̄ = 1
2 h†(σ̄ ⊗ 13)h, L̄ = h†(12 ⊗ l̄)h, (A3)

with h† = (h†
x↑, h†

y↑, h†
z↑, h†

x↓, h†
y↓, h†

z↓). The five d electrons
in a cubic crystal field occupy three t2g orbitals (xy, yz, zx),
denoted here by the complementary index α = (z, x, y). The
Pauli matrices σ̄ act in the spin space of the magnetic layer
site, and l̄ = (l̄ x, l̄ y, l̄ z ) represents the leff = 1 orbital angular
momentum of the corresponding t2g states, with explicit ma-
trix representations specified in Ref. [39]. Following standard
practice, the spin-orbit coupling λso will be taken into account
later through a projection to the lowest-lying hole states with
total angular momentum jeff = 1/2.

Electron transfer between tip (or substrate) and the Mott
insulating site is described by a tunneling Hamiltonian Htun =
T1 + T−1, where T±1 refers to changes of the hole number
by �N̄ = ±1, respectively. With the complex-valued tunnel
amplitude tντ s(k) connecting a conduction electron in lead
ν = A, B with spin τ and momentum k to the spin-orbital hole
state s = (α,−σ ) on the magnetic site,

T1 =
∑
ν,τ,s

∑
k

tντ s(k)c†
ντ (k)h†

s , T−1 = T †
1 . (A4)

We then employ H0 = HM + Vat as the unperturbed
Hamiltonian. The ground-state sector has a single hole at
the spin-liquid site, and the intermediate states have either
N̄ = 0 or N̄ = 2 holes, depending on whether T−1 or T1 is
applied to a single-hole state. In the latter case, we have
to distinguish between angular momentum channels with
L = 0, 1, 2. Following Ref. [39], we use the notation P (n)

L
for the projection operators to states with angular momentum
L and hole number n = 0, 1, 2. We omit the lower index
for n = 0, 1 because in those cases there is only a single
angular momentum channel. The projector to two-hole states
is P (2) = ∑

L P
(2)
L . For a lowest-order expansion in Htun, the

Hilbert space can be truncated to have at most two holes at
the magnetic layer site, 1 � P (0) + P (1) + P (2).

Next we employ a canonical transformation to perform
the projection to the low-energy sector, which is equivalent
to a Schrieffer-Wolff transformation. Writing H̃ = eSHe−S =
H + [S, H] + · · · , the first-order generator S = S1 must then
obey [H0, S1] = Htun. Using the commutators

[H0,P (2)
L T1P (1)] =

∑
ν,τ,s

∑
k

tντ s(k)[�EL + εντ (k)] c†
ντ (k)P (2)

L h†
sP (1),

[H0,P (0)T−1P (1)] =
∑
ν,τ,s

∑
k

t∗
ντ s(k)[�E0 − εντ (k)]P (0)hsP (1)cντ (k), (A5)

and writing S1 = S(+)
1 − S(−)

1 with S(−)
1 = S(+)†

1 , the part increasing the hole number at the magnetic site is

S(+)
1 =

∑
ν,τ,s

∑
k

c†
ντ (k)

(
− tντ s(k)

�E0 − εντ (k)
P (1)h†

sP (0) +
∑

L

tντ s(k)

�EL + εντ (k)
P (2)

L h†
sP (1)

)
. (A6)
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The excitation energies �EL are given by

�E0 = U

2
+ JH , �E1 = U

2
− 4JH , �E2 = U

2
− 2JH ,

(A7)

where the energy for the transition to a state with zero holes
is the same as for the transition to two holes with L = 0. The
charge gap is set by the smallest of those energies, Eg = �E1.

The canonical transformation then results in the cotunneling
Hamiltonian

Hcot = − 1
2P

(1)(T−1S(+)
1 − T1S(−)

1 )P (1) + H.c., (A8)

which accurately describes the low-energy subspace with en-
ergy scales below Eg. Inserting the above expressions, we find
the explicit representation

Hcot = −1

2

∑
ν1,τ1,s1

∑
ν2,τ2,s2

∑
k1,k2

tν2τ2s2 (k2)t∗
ν1τ1s1

(k1)

�E0 − εν1τ1 (k1)
P (1)h†

s2
hs1

P (1)c†
ν2τ2

(k2)cν1τ1
(k1)

−1

2

∑
ν1,τ1,s1

∑
ν2,τ2,s2

∑
k1,k2

∑
L

t∗
ν2τ2s2

(k2)tν1τ1s1 (k1)

�EL + εν1τ1 (k1)
P (1)hs2

P (2)
L h†

s1
P (1)cν2τ2

(k2)c†
ν1τ1

(k1) + H.c. (A9)

We next compute the required matrix elements between spin-orbital states (where σ̄ = −σ for σ =↑,↓= +1,−1),

〈s′|h†
s2

hs1
|s〉 = δs′s2δss1 , 〈s′|hs2

P (2)
L=0h†

s1
|s〉 = 1

3σ2σ1δα′α2δαα1δσ2σ̄ ′δσ1σ̄ ,

〈s′|hs2
P (2)

L=1h†
s1
|s〉 = 1

2 (δα2α1δα′α − δα2αδα′α1 )(δσ2σ1δσσ ′ + δσ2σ δσ1σ ′ ),

〈s′|hs2
P (2)

L=2h†
s1
|s〉 = δs2s1δss′ − δs2sδs1s′ − 〈s′|hs2

P (2)
L=0h†

s1
|s〉 − 〈s′|hs2

P (2)
L=1h†

s1
|s〉. (A10)

We then obtain the matrix elements of Hcot in spin-orbital space as

(Hcot )s′s = −1

2

∑
k1ν1τ1

∑
k2ν2τ2

Fs′s(k2, ν2, τ2; k1, ν1, τ1)c†
ν2τ2

(k2)cν1τ1
(k1)

−1

2

∑
k1ν1τ1

∑
k2ν2τ2

2∑
L=0

GL
s′s(k2, ν2, τ2; k1, ν1, τ1)cν2τ2

(k2)c†
ν1τ1

(k1) + H.c., (A11)

with the definitions

Fs′s(k2, ν2, τ2; k1, ν1, τ1) = tν2τ2s′ (k2)t∗
ν1τ1s(k1)

�E0 − εν1τ1 (k1)
,

GL
s′s(k2, ν2, τ2; k1, ν1, τ1) =

∑
s1,s2

t∗
ν2τ2s2

(k2)tν1τ1s1 (k1)

�EL + εν1τ1 (k1)
〈s′|hs2

P (2)
L h†

s1
|s〉. (A12)

In a low-energy approach, we can now assume low ener-
gies, |εντ (k)| � Eg, for all conduction electron states involved
in virtual processes. For simplicity, we also consider effec-
tively k-independent, spin-conserving, and spin-independent
tunneling amplitudes,

tντ s(k) = tναδτσ , (A13)

with s = (α,−σ ). Tunneling between the substrate (ν = B)
and the magnetic layer is modeled by a featureless isotropic
coupling, tBα = tB. However, the tunnel couplings connecting
the tip (ν = A) to a magnetic site depend on the t2g orbital (α)
as well as on the relative position between tip and site. For
definiteness, we model the t2g orbitals by real wave functions
with the proper symmetry. For instance, for the xy orbital
centered at R j = 0, we take �xy(r′) ∝ x′y′e−|r′ |/ld , where ld
sets the size of the orbital. Here the components of r′ refer to
the axes fixed by the octahedral environment of the magnetic
ion; see Fig. 7(a). In these coordinates, the unit vectors for the

conventional crystallographic directions are given by

a = 1√
6

⎛
⎝ 1

1
−2

⎞
⎠, b = 1√

2

⎛
⎝−1

1
0

⎞
⎠, c = 1√

3

⎛
⎝1

1
1

⎞
⎠,

(A14)

where c is perpendicular to the honeycomb plane. As the wave
function for the tip at position r, we consider

�s(r′) ∝ e−|r′−r|/ls , (A15)

with characteristic length ls.
In Fig. 7(b) we show the overlap between �xy and �s as a

function of the tip position, keeping the tip height r · c > 0
constant and varying the coordinates parallel to the honey-
comb plane. The coordinates are scaled by the effective radius
of the t2g orbitals, rd = ∫

d3r′ r′|�α (r′)|2 = 7ld/2. We denote
by vα the in-plane vector that corresponds to the relative
position of maximum overlap between the tip and the α or-
bital. Note that vα lies in the direction perpendicular to the α

bond. This shift in the position of maximum overlap can be
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a

b

(a) (b)

×10−3

FIG. 7. Orbital and spatial dependence of tunnel couplings. (a) xy orbital in the edge-sharing octahedra geometry of α-RuCl3. The red,
green, and blue lines represent the directions of x, y, and z bonds in the honeycomb plane, respectively. (b) Overlap between the xy orbital at
R j = 0 and the wave function for electrons in the tip, modeled as an s orbital centered at position r; see Eq. (A15). The arrow indicates the
point of maximum overlap, corresponding to the vector vz. Here we set ls = 4ld and r · c = 3ld .

interpreted in terms of the direction in which the α orbital
points above the plane; see Fig. 7(a). Comparing the ionic ra-
dius of Ru3+ with the lattice spacing of α-RuCl3, we estimate
|vα| ≈ 0.1a0. To capture the orbital and position dependence
in the tunnel couplings within a simple analytical expression,
we parametrize tAα (r, R j ) as given in Eq. (2.3), with tunneling
length l0 ∼ ls � a0.

For given r and R j , it is convenient to express the tunnel
couplings tAα in terms of spherical angles ϕ ∈ [0, 2π ) and θ ∈
[−π, π ], ⎛

⎝tAx

tAy

tAz

⎞
⎠ = tA

⎛
⎝cos ϕ sin θ

sin ϕ sin θ

cos θ

⎞
⎠. (A16)

Inserting the above expressions into Eq. (A12) and using
Eq. (A10), we finally perform the projection to the jeff = 1/2
subspace selected by the spin-orbit coupling. The correspond-
ing basis states are [39]

|+〉 = 1√
3

(−|z,↑〉 − i|y,↓〉 − |x,↓〉),

|−〉 = 1√
3

(|z,↓〉 + i|y,↑〉 − |x,↑〉). (A17)

The spin operator appearing in the Kitaev model for this
site, S = 1

2σ, acts in the space spanned by Eq. (A17). The
cotunneling Hamiltonian follows as

Hcot = −
∑
k1ν1

∑
k2ν2

tν1tν2

2�E0
c†
ν2

(k2)( f01 + f · σ )cν1
(k1) −

∑
k1ν1τ1

∑
k2ν2τ2

∑
L

tν1tν2

2�EL
cν2

(k2)
(
gL

01 + gL · σ
)
c†
ν1

(k1) + H.c., (A18)

with f0 and f = ( fx, fy, fz ) given by

f0 = F↑↑ + F↓↓
2

, fx = F↑↓ + F↓↑
2

, fy = i
F↑↓ − F↓↑

2
, fz = F↑↑ − F↓↓

2
, (A19)

and likewise for gL
0 and gL. For given (σ, σ ′) indices, the 2 × 2 matrices Fσσ ′ and GL

σσ ′ act in conduction electron spin space.
We find

F↑↑ = 1

3

(
cos θ (1 + i) cos θ

e−iϕ sin θ (1 + i)e−iϕ sin θ

)
, F↑↓ = 1

3

(
(1 − i) cos θ − cos θ

(1 − i)e−iϕ sin θ −e−iϕ sin θ

)
, G0

↑↑ = F↓↓
3

, G0
↑↓ = −F↑↓

3
,

G1
↑↑ = 1

6

(
(1 − i)eiϕ sin θ + 2 cos θ (1 + i) cos θ

e−iϕ sin θ (sin ϕ + cos ϕ) sin θ

)
, G1

↑↓ = 1

6

(
e−iϕ sin θ (sin ϕ + cos ϕ) sin θ

(1 − i)e−iϕ sin θ −(1 − i) cos θ

)
,

G2
↑↑ = [(cos ϕ + sin ϕ) sin θ + cos θ ]1 − F↑↑ − G0

↑↑ − G1
↑↑, G2

↑↓ = −F↑↓ − G0
↑↓ − G1

↑↓. (A20)

The remaining matrices are obtained by using a time-reversal operation,

F↓↓ = τyF ∗
↑↑τy, F↓↑ = −τyF ∗

↑↓τy, GL
↓↓ = τy(GL )∗↑↑τy, GL

↓↑ = −τy(GL )∗↑↓τy, (A21)
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with Pauli matrices τ in conduction electron spin space. In the
second term of Eq. (A18), we now use

cν2τ2
(k2)c†

ν1τ1
(k1) = −c†

ν1τ1
(k1)cν2τ2

(k2) + δν1ν2δτ1τ2δk1k2 .

The factor δτ1τ2 in the last term implies a trace over the
2 × 2 matrices for conduction electrons. As a result, only the
identity can contribute. We thereby obtain the cotunneling
Hamiltonian (2.2), where �A(r) = ∑

k cA(k) is a real-space
two-component spinor field describing conduction electrons
on the tip at position r. Likewise, �B(R) refers to the substrate
spinor field below the site with position R. Cotunneling pro-
cesses are then characterized by the transition matrices T0 and
T α , with T = (T x, T y, T z ), which act in conduction electron
spin space and are given by

T0 = − tAtB
�E0

f0 +
2∑

L=0

tAtB
�EL

gL
0,

T = − tAtB
�E0

f +
2∑

L=0

tAtB
�EL

gL. (A22)

All matrix elements scale ∝ tAtB/U , where individual contri-
butions carry JH

U -dependent factors. We emphasize that T0 and
T depend on r − R j , with the tip (site) position r (R j).

The above expressions can be simplified considerably
when neglecting the orbital-dependent shifts vα in Eq. (2.3).
This approximation becomes exact for a tip placed right on top

of a magnetic site, and otherwise causes quantitative (≈10%)
deviations in the tunnel couplings. We then obtain

f0 = 1

2
√

3
1, fα = 1

3
√

3
(τ x + τ y + τ z ) − 1

2
√

3
τα,

g0
0 = 1

6
√

3
1, g0

α = − 29

2
√

3
(τ x + τ y + τ z ) + 1

6
√

3
τα,

g1
0 = 1

2
√

3
1, g1

α = 13

2
√

3
τα,

g2
0 = 23

3
√

3
1, g2

α = − 55

9
√

3
(τ x + τ y + τ z ) + 26

3
√

3
τα,

and Hcot takes the form (2.4), where we define the JH
U -

dependent coefficients ( j = 0, 1, 2)

η j = U

2
√

3�E0

ζ j +
2∑

L=0

U

2
√

3�EL

ζ L
j (A23)

with �EL in Eq. (A7) and the numbers

ζ0 = 1, ζ 1
0 = 1

3
, ζ 2

0 = 1, ζ 3
0 = 46

3
,

ζ1 = −1

2
, ζ2 = 1

3
, ζ 0

1 = 1

6
, ζ 0

2 = −1

9
, ζ 1

1 = 0,

ζ 1
2 = 1

6
, ζ 2

1 = 1

3
, ζ 2

2 = − 7

18
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