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Hybrid symmetry breaking in classical spin models with subsystem symmetries
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We investigate two concrete cases of phase transitions breaking a subsystem symmetry. The models are two
classical compass models featuring line-flip and plane-flip symmetries and correspond to special limits of a
Heisenberg-Kitaev Hamiltonian on a cubic lattice. We show that these models experience a hybrid symmetry
breaking by which the system display distinct symmetry broken patterns in different submanifolds. For instance,
the system may look magnetic within a chain or plane but nematic-like when observing from one dimensionality
higher. We fully characterize the symmetry-broken phases by a set of subdimensional order parameters and
confirm numerically both cases undergo a non-standard first-order phase transition. Our results provide new
insights into phase transitions involving subsystem symmetries and generalize the notion of conventional
spontaneous symmetry breaking.
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I. INTRODUCTION

Subsystem symmetries are symmetries acting on lower-
dimensional manifolds of the system, such as lines or planes
of a cube. Their early studies in condensed matter physics are
in the context of compass models [1] which represent a family
of effective Hamiltonians for direction-dependent spin-orbital
couplings in correlated electron systems [2–4] and ultracold
quantum gases [5,6]. The interest is recently renewed thanks
to the developments of fracton topological orders [7–11]
that can be obtained by gauging certain subsystem symme-
tries. These symmetries have fundamentally different physical
implications than global and gauge symmetries. A global
symmetry has a constant ground-state degeneracy (GSD), and
the Landau order-parameter theory of spontaneous symmetry
breaking describes its phase transition [12]. A gauge sym-
metry supports topological degeneracies on closed manifolds
and fractionalized excitations, while its phase transition is
typically formulated as topological field theories [13–15]. In
contrast, the GSD arising from subsystem symmetries scales
subextensively with the system’s size. Their field theories can
mix IR and UV physics [16–18], while their ordering mech-
anisms and phase transitions do not fully fit into any known
scenarios [19–21].

In this work we study two classical three-dimensional (3D)
lattice models from an order-parameter perspective to explore
the impacts of subsystem symmetries on phase transitions.
The models belong to the compass-model family and exhibit
Z2 line-flip or plane-flip subsystem symmetries. They do not
support fracton excitations by construction and hence can
untwist the influences of subsystem symmetries and fractons.
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We find that breaking these subsystem symmetries leads
to distinct long-range orders in different submanifolds of the
system, which we refer to as hybrid symmetry breaking. The
phase transitions in both cases are first order; nevertheless,
their finite-size dependencies differ from the conventional
first-order scaling.

The manuscript is organized as follows. In Sec II we de-
fine the models and construct their ground states and order
parameters. Section III is devoted to a brief review of the
standard and nonstandard finite-size scalings for first-order
phase transitions. Sections IV and V discuss the phase tran-
sitions and the resulting orders breaking the planar and linear
subsystem symmetries, respectively. We conclude in Sec. VI
with an outlook.

II. MODELS AND ORDER PARAMETERS

One of the simplest models permitting subsystem symme-
tries is the classical Heisenberg-Kitaev Hamiltonian on a 3D
cubic lattice,

H =
∑
〈i j〉γ

(
J �Si · �S j + KSγ

i Sγ
j

)
, (1)

where �Si is a classical O3 spin at lattice site i, γ = x, y, z labels
its three components, and 〈i j〉γ denotes a nearest-neighboring
bond along the lattice direction êγ . Hence the interaction in
the second term is directional. This Hamiltonian generally
has a global cubic symmetry and magnetic ground states. The
linear and planar subsystem symmetries of our interest and
supporting nontrivial ground states are present in the limiting
cases J = 0 and J + K = 0, respectively.

For simplicity, we consider a ferromagnetic K = −1 at the
J = 0 limit and a ferromagnetic J = −1 at the J + K = 0
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FIG. 1. Illustration of the models and ground states. (a) In the
anti-Kitaev limit, interactions between Sγ components are canceled
on γ bonds. The reduced Hamiltonian is invariant under flipping Sγ

for all spins in a spatial plane perpendicular to êγ . A ground state
is illustrated in the right panel: the system spontaneously selects
a global ordering direction êγ , and each plane of spins orthogo-
nal to it develops magnetic order along ±êγ . (b) In the Kitaev
limit, spins interact solely through Sγ components along the direc-
tion êγ . The model accordingly gains a line-flip symmetry. Ground
states are comprised of magnetically ordered lines arranged into
planes with rank-2 nematic order. Red, green, and blue colors dis-
tinguish orientations of lines and planes, and êγ denotes a unit lattice
vector.

limit. The opposite cases with antiferromagnetic couplings
can be analyzed analogously, and we expect similar physics.

A. Anti-Kitaev limit

In the limit J + K = 0 with J = −1, Eq. (1) becomes

Hanti-K = −
∑
〈i j〉γ

∑
α �=γ

Sα
i Sα

j , (2)

which eliminates couplings between the Sγ components in
the lattice direction êγ . For example, the local Hamiltonian
on a z bond reads Hz = −Sx

i Sx
j − Sy

i Sy
j . We refer to this as the

anti-Kitaev limit. The reduced Hamiltonian Eq. (2) is invariant
upon transforming Sγ → −Sγ for all spins in a spatial αβ

plane orthogonal to êγ , as visualized in Fig. 1. The symmetry
acts on d = 2 submanifolds and leads to a subextensive GSD
∝ 2LD−d = 2L for linear system size L.

The precise ground states are found by examining the local
environment of individual spins. The local minimal energy at
a site i is minimized ferromagnetically as Ei = −2[(Sx )2 +
(Sy)2 + (Sz )2] = −2|�S|2 (double counting removed). This

means its ground-state manifold has an accidental O3
symmetry. Because this O3 is not a symmetry of Hanti-K, it will
be lifted by entropy effects via the order-by-disorder mecha-
nism [22,23]. The selected states are illustrated in Fig. 1: spins
form collinear configurations by spontaneously picking up a
common axis c ∈ {x, y, z}. Nevertheless, due to the subsystem
symmetry, a long-range spin order is only possible within a
spatial plane orthogonal to êc.

This model provides an example of hybrid symmetry
breaking: the system will appear magnetic if observing along
directions within an ordered plane but nonmagnetic in the
perpendicular direction. The corresponding order parameters
can be constructed as follows:

mc
P,rc

:= 1

L2

∑
(ra,rb)∈P

Sc
ra êa+rbêb+rc êc

, (3)

Qcc := 1

L

∑
rc

(
mc

P,rc
mc

P,rc
− 1

3

)
, (4)

where Sc denotes the spin component forming the magnetic
order, and a, b, c = x, y, z are mutually exclusive. The two
order parameters mc

P,rc
and Qcc measure the ordering within

and between planes, respectively, and their codimensions,
codim(mc

P,rc
) = 2 and codim(Qcc) = 1, add up to the global

dimension D = 3. The quadratic quantity Qcc may be viewed
as an analog of the nematic order in a uniaxial liquid crystal
[24]. However, its building blocks here are not local director
fields but subdimensional macroscopic objects mc

P,rc
. This also

indicates that the associated phase transition will not follow a
usual Landau theory of two order parameters.

B. Kitaev limit

We next discuss the J = 0, K = −1 limit

HK = −
∑
〈i j〉γ

Sγ

i Sγ

j , (5)

where spins couple solely through the γ component in a γ

bond. This reduced Hamiltonian HK is also known as a t2g

compass model [3], and its form is akin to Kitaev’s honey-
comb model [25]. Due to the cubic geometry, it features a
d = 1 subsystem symmetry by flipping Sγ in an entire γ line
of the lattice and consequently, a subextensive GSD ∝ 2L2

.
The ground states of HK can be analyzed in a similar way as

in the case of Hanti-K. The energy per site is Eg = −|�S|2 = −1,
indicating an accidental O3 symmetry. Stable ground states
are magnetically ordered, decoupled chains as illustrated
in Fig. 1. More concretely, spins form line magnetizations
(rank 1) thanks to a thermal order-by-disorder. The d = 1
subsystem symmetry ensures no magnetic order beyond one
chain. The magnetic chains have to pack into planes towards
one of their two orthogonal directions, leading to a planar
nematicity (rank 2) for the interchain ordering. The interplane
order further induces a rank-4 quantity as the two orthogonal
directions are picked randomly in different planes.
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FIG. 2. Correlation functions for Hanti-K at various temperatures below (blue) and above (red) the phase transition. (a) Spin-spin correlation
along one of the lattice basis vectors in the ordered planes. At low temperatures, a long-range magnetic correlation between the Sc components
arises. The symmetric form of the curves comes from periodic boundary conditions. (b) No magnetic correlation is seen between the planes.
(c) Nematic correlation in the direction orthogonal to the planes, with a long nematiclike order at low temperatures. An L = 30 system is taken,
for example. NT = 56 temperatures are simulated in a range T ∈ [0.610, 0.683]; not all curves are shown for better visibility.

Thus, three order parameters are demanded to characterize
the states fully:

ma
L,(rb,rc ) := 1

L

∑
ra

Sa
ra êa+rbêb+rc êc

, (6)

Qaa
L,rc

:= 1

L

∑
rb

(
ma

L,(rb,rc )m
a
L,(rb,rc ) − 1

3

)
, (7)

Qaabb
4 := 1

L

∑
rc

(
Qaa

L,rc
− Qbb

L,rc

)2
, (8)

which all have a codimension 1. The mutually exclusive
a, b, c are determined spontaneously in the hybrid symmetry
breaking, while (rb, rc) and rc index the selected lines and
planes, respectively. Qaa

L is also a nematiclike order but now
made from chain magnetizations ma

L. Correspondingly, Qaabb
4

is analogous to a generalized biaxial nematic order [26].
The hybrid symmetry-breaking patterns are richer than in

the previous example. The rank-4 order Qaabb
4 breaks the spin

and spatial permutation symmetries with a global plane orien-
tation. The fourfold rotation symmetry of each square plane
is further broken down to a twofold one by the direction of
Qaa

L , whereas no nontrivial symmetries are left in a magnetic
chain. We emphasize that these are not three sequential phase
transitions but the same phase transition observed at different
submanifolds of the system.

III. FIRST-ORDER FINITE-SIZE SCALING

First-order phase transitions may be routinely considered
less interesting, as they do not incur criticality but reflect a
sharp change in the system. However, a recent work Ref. [27]
showed that first-order phase transitions involving subsys-
tem symmetries deviate from the conventional L−D finite-size
scaling. In this section we briefly review the standard [28–30]
and nonstandard [27] first-order scalings. For simplicity we
will follow the arguments in Ref. [30] and consider a periodic
boundary condition (PBC), but we refer to Ref. [29] for a more
comprehensive discussion and Ref. [31] for the effects of open
boundaries.

Assume the system undergoes a single order-disorder tran-
sition, where the ordered phase has q equivalent degenerate
states. We denote the thermodynamical free energy density of
the ordered and disordered phases as fo and fd , respectively.

The possibility of the system in a particular ordered or disor-
dered state can be estimated by Boltzmann factors

po ∝ e−βLD f̂o, (9)

pd ∝ e−βLD f̂d . (10)

Then the weights of the two phases are given by Wo ∝
qe−βLD f̂o and Wd ∝ e−βLD f̂d , with Wo + Wd = 1.

A first-order phase transition occurs at the inverse temper-
ature β where Wo = Wd . This fact can be understood from the
behaviors of the specific heat CV . For simplicity, we ignore
fluctuations within a phase and denote energy density of the
order and disordered phases by Eo and Ed , respectively. The
nth moment of the energy density for an arbitrary state can
then be approximately estimated by a weighted average [30],
〈En〉 	 WoEn

o + Wd En
d . The specific heat hence becomes

CV = β2LD(〈E2〉 − 〈E〉2)

= β2LDWo(1 − Wo)(Ed − Eo)2, (11)

which peaks at Wo = Wd = 1
2 . Thus at a first-order phase

transition one has

0 = ln (Wo/Wd ) 	 ln q + LDβ( fd − fo). (12)

Using f = E − T S, where S is the entropy density, and
Taylor expanding Eq. (12) around the thermodynamical
(L → ∞) transition point β∞, we obtain in leading order

βc(L) = β∞
c − ln q

LD(Ed − Eo)
+ O

(
1

LD−1

)
. (13)

Namely, for a constant GSD, which is the case when breaking
a global symmetry, the leading finite-size correction is ∝ L−D.

The above analyses can be straightforwardly generalized
to subsystem symmetry breaking by accordingly taking into
account the GSD’s size dependence, which is the central idea
of the nonstandard first-order scaling [27]. Specifically, for a
d-dimensional subsystem symmetry, the number of equivalent
ground states q grows exponentially with LD−d . In conse-
quence, Eq. (13) should be modified as

βc(L) = β∞
c + b

L−d (Ed − Eo)
+ O

(
1

L−d−1

)
, (14)
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where the constant parameter b depends on specific global
symmetries and, up to the leading order, affects only the slope
of the scaling.

The nonstandard scaling Eq. (14) has been verified for
the 3D plaquette Ising model and an anisotropically coupled
3D Askin-Teller model [27,32]; both have a d = 2 plane-flip
symmetry. As the essential idea in the above discussion is the
subextensive degeneracy, we expect it should generally hold
in lattice models with subsystem symmetries. Nevertheless,
the phase transitions can experience stronger finite-size effects
due to the slower vanishing of correction terms.

IV. PHASE TRANSITION IN THE ANTI-KITAEV LIMIT

We first discuss the order and phase transition in the anti-
Kitaev limit. We simulate Hanti-K with Monte Carlo techniques
by jointly using parallel tempering [33], heat-bath, and micro-
canonical over-relaxation updates [34]. NT = 56 temperatures
are simulated in the proximity of the phase transition, whose
distribution is fine tuned to maximize iterations of the replicas
[35]. Simulations are carried out for linear lattice sizes up to
L = 46 (∼105 spins) under PBC. We typically run 107 Monte
Carlo sweeps and determine the equilibration by comparing
results of uniform and random initializations. The system is
considered equilibrated when expectation values of all observ-
ables using different initializations agree within error bars.

The hybrid symmetry breaking in Hanti-K and the associated
order parameters are confirmed by measuring the discon-
nected correlators

GSc (r∈P ) = 1

L3

∑
{i}

〈
Sc

i Sc
i+r∈P

〉
, (15)

GSc (rc) = 1

L3

∑
{i}

〈
Sc

i Sc
i+rc

〉
, (16)

GQ(rc) = 1

L

∑
ic

〈(
mc

P,i

)2(
mc

P,i+rc

)2〉
. (17)

Here the ordered spin component Sc varies over samples but
is easily identified by selecting an arbitrary site i = (ix, iy, iz )
and comparing mP for all three intersecting planes. These cor-
relators relate to the order parameters as lim

|r∈P |→∞
GSc (r∈P ) →

〈mc
P〉2 and lim

|rc|→∞
GQ(rc) → 〈Qcc〉2, while GSc (rc) is intro-

duced for reference. We measure the three correlators for
several temperatures around Tc at a lattice L = 30. As shown
in Fig. 2, the spin correlators GSc only exhibit a long-range
correlation along directions r∈P. In the perpendicular direc-
tion rc ⊥ P, the spin-spin correlation vanishes but the planar
nematic correlator GQ is long ranged. This confirms the hybrid
symmetry breaking, as one will observe distinct symmetry-
breaking patterns when looking at different submanifolds of
the system.

To further understand the associated phase transition, we
examine behaviors of the energy histogram P(E ), specific heat
CV , susceptibility χ , and Binder cumulants B, where

P(E ) = 〈δ(E − E ′)〉, (18)

χO = LD

T
(〈O 2〉 − 〈O〉2), (19)

BO = 1 − 〈O 4〉
3〈O 2〉2

, (20)

FIG. 3. Binder cumulant BQ (a) and reweighted energy den-
sity histogram P(E ) (b) near the phase transition of Hanti-K. The
pronounced Binder dips and double histogram peaks confirm a
first-order transition. Equal peak heights are found by attaching an
additional weight e−(β−βeqh )EV to a raw histogram at inverse tempera-
ture β. P(E ) is renormalized and shifted by its mean energy density.
The minima between peaks fall slightly away from zero, indicating
low- and high-temperature peaks in general have different weights at
finite lattice sizes.

andO = mc
P, Qcc. Since there is only a single phase transition,

both order parameters can detect Tc and its scaling. Nonethe-
less, we observe a slightly weaker finite-size effect in Qcc and
hence use it as the major order parameter. It may also be useful
to mention that ifO contains a finite trace, namely, if the factor
1
3 L was not subtracted in Eq. (4), the Binder cumulant would
approach 2

3 in both the low- and high-temperature limits,
instead of vanishing as T → ∞.

These quantities reliably determine the order of a phase
transition. In particular, near a first-order transition, the his-
togram P(E ) will show two peaks representing the weights,
Wo and Wd , of the ordered and disordered phases [36,37].
Correspondingly, the curve of BO(T ) nonmonotonically de-
pends on temperatures with a minimum dipping at an effective
transition point [38]. Such behaviors are observed for Hanti-K,
as we plot in Fig. 3. The double P(E ) peaks and Binder dip
become evident from L ∼ 30 and evolve towards δ functions
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TABLE I. Comparison between the standard (1/L3) and nonstan-
dard (1/L2) first-order scaling. The largest five lattice sizes in Figs. 3
and 4 are considered for fitting. The validity of the fits is evaluated
by the χ -square test, where smaller values of χ2

dof in general indicate
better goodness. The best fits compatible with a 95% confidence
interval are in bold.

1/L2 1/L3

Fit β∞ χ 2
dof=3 β∞ χ 2

dof=3

βCmax
V

1.566532(33) 5.28 1.563882(15) 11.03
βχmax 1.566685(21) 6.30 1.563987(10) 13.84
βBmin 1.566883(91) 1.60 1.563073(34) 5.18
βHeqh 1.566609(31) 5.52 1.563968(15) 11.29
βHeqw 1.566787(61) 2.29 1.563927(25) 6.38

when increasing system sizes, which unambiguously confirms
the first-order nature of the transition.

Effective transition temperatures Tc(L) at a given L can be
estimated from locations of the CV and χ peaks and that of
the Binder dip. The energy histogram provides two additional
estimators: T eqw

c (L) and T eqh
c (L), where P(E )’s two peaks

have the same weight (eqw) and height (eqh), respectively.
The equal-weight criterion, Wo = Wd , is understood by its
relation to the CV maximum as discussed in Sec. III and can
be found by minimizing

[�W (T )]2 = [Wo(T ) − Wd (T )]2

=
⎡
⎣ ∑

E<Emin

P(E , T ) −
∑

E>Emin

P(E , T )

⎤
⎦

2

, (21)

with Emin being the valley minimum between the two peaks.
The estimator of T eqh

c (L) is more empirical; its common use
in the literature may be because an equal-height behavior can
be easily found through reweighting methods. These effective
temperatures typically suffer different degrees of finite-size
effects but shall converge when approaching L → ∞.

To determine the infinite volume T ∞
c , or equivalently, its

inverse β∞
c and the leading-order finite-size correction, we fit

βc(L) obtained from different estimators against single-term
powers L−2 and L−3. The five largest sizes (L � 36) are used
to ensure L sufficiently exceed the correlation length. As
summarized in Table I, we observe that the L−2 fitting leads
to noticeably more consistent values of β∞

c , consolidating the
nonstandard scaling relation Eq. (14). Fits with the best good-
ness are plotted in Fig. 4, and we extrapolate β∞

c ≈ 1.5667(2).
We expect including L−3 as a subleading term can further
improve the results, while such a two-term fitting also requires
more data points.

It is interesting to know whether the accidental sym-
metry and its entropic lifting play a critical role in the
nature of the phase transition. For this purpose we replace
the O3 spins in Eq. (2) with discrete spin variables S̃i =
(±1, 0, 0), (0,±1, 0), (0, 0,±1) that are transformed by the
point group C3i. By doing so, accidental symmetries and
soft modes become irrelevant, and the resulting Hamiltonian
H̃anti-K formally has the same symmetries and order parame-
ters as Hanti-K. It turns out H̃anti-K shows even stronger jumps

FIG. 4. Fits of Hanti-K using the nonstandard first-order scaling
equation βc(L) = β∞

c − a/L2. The finite-size inverse transition tem-
peratures βc(L) are estimated from the extrema of χ and BQ and the
equal-weight peaks of P(E ). The largest five sizes are considered for
the fits to reduce finite-size effects.

in energy and order parameters. This may imply that the
observed first-order nature of the phase transitions in the two
Hamiltonians may relate to the presence of the planar subsys-
tem symmetry.

V. PHASE TRANSITION IN THE KITAEV LIMIT

We now discuss the hybrid symmetry breaking in the HK

limit. This Hamiltonian was also studied in Ref. [39] based
on energy related quantities and mostly under a screw PBC
that explicitly breaks line-flip symmetries and modifies the
ground-state manifold. In this section we consider a regular
PBC preserving the subsystem symmetry and characterize
its phase transition from the viewpoints of order parameters.
Simulations are performed utilizing the same Monte Carlo
methods as in Sec. IV, with system sizes up to L = 40.

As analyzed in Sec. II B, the robust ground states of
HK comprise decoupled magnetic chains. Normally, a one-
dimensional (1D) long-range order is prohibited for classical
spins at finite temperature due to the Mermin-Wagner theorem
[40]. The chain magnetization here is nevertheless possible
thanks to order-by-disorder and entropic lifting of the acciden-
tal O3 degeneracy. A similar entropy-driven 1D magnetization
was also reported in a two-dimensional (2D) classical com-
pass model [41,42]. For a consistency check, we also verified
with separate Monte Carlo simulations the absence of a phase
transition when replacing the O3 spins with discrete C3i spins.

The in-chain magnetization mL, line nematicity QL,
and interplane higher-rank nematic order Q4 defined in
Eqs. (6)–(8) lead to a rich set of (high-rank) disconnected
correlators:

GSa (ra) = 1

L3

∑
i

〈
Sa

i Sa
i+ra êa

〉
, (22)

GmL (rb) = 1

L2

∑
(ib,ic )

〈(
ma

L,(ib,ic )

)2(
ma

L,(ib,ic )+rbêb

)2〉
, (23)
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FIG. 5. Correlation functions in the Kitaev limit for L = 30 system below (blue) and above (red) the phase transition. The intrachain spin
correlation GS , interline nematic correlation GmL , and interplane rank-4 correlation GQ4 are measured along their respective ordering directions.
Each of them shows a long-range order at low temperatures. The simulated temperature interval is indicated by Tmax and Tmin.

GQ4 (rc) = 1

L

∑
ic

〈(
Qaa

L,ic − Qbb
L,ic

)2(
Qaa

L,ic+rc
− Qbb

L,ic+rc

)2〉
,

(24)

along their respective ordering directions. To probe these di-
rections in a given sample, one can arbitrarily choose a site
i = (ix, iy, iz ) and compute the three possible line magnetiza-
tions passing through it. The one with the largest magnitude
determines the relevant ma

L,(ib,ic ) for this site. One next com-
pares the potential Qaa

L,ic along the two remaining directions
êb and êc, whose result then fixes the common orientation
of ordered planes. Nevertheless, since planes are decoupled
in ground states, the line magnetizations in different planes
remain to be determined individually (see Fig. 1). In Fig. 5
we measure the three correlators around the phase transition
for a lattice L = 30. At temperatures below Tc, they all lead
to long-range order. The faster convergence of GQ and GmL

with distance can be understood from their higher ranks. We
also verified no long-range correlations if the correlators were
measured in a wrong direction, as in Fig. 2 for the anti-Kitaev
limit. This hence confirms three distinct symmetry-breaking
patterns in different submanifolds of the system.

The nature of the phase transition is again detected by the
energy density histogram P(E ) and Binder cumulant BO. As
shown in Fig. 6, HK also experiences a first-order transition.

We further crosscheck the behaviors of CV , P(E ), χO, and
BO, with O = ma

L, Qaa
L , Qaabb

4 , to find the thermodynamical
transition temperature and its scaling. According to the non-
standard scaling relation Eq. (14), the leading contribution
here should be given by L−1 instead of L−3. Nevertheless, we
observe very strong finite-size effects, and with system sizes
L � 40, none of the single-term scaling L−d ′

with d ′ = 1, 2, 3
can give satisfying goodness of fits, as shown in Fig. 7. A
significantly improved fit is achieved when considering a two-
term scaling βc(L) = β∞

c + aL−1 + bL−2, whereas, given the
limited data points, this could also be an artifact of over-
fitting. Combining the standard L−3 scaling under a screw
PBC reported in Ref. [39], a most likely scenario is that the
line-flip subsystem symmetry indeed has deflected HK from
the standard first-order scaling relation, and L−1 may still be
the leading-order correction. Nevertheless, a subleading L−2

term is suppressed very slowly, which makes the single-term
scaling not a good approximation for accessible system sizes.

VI. SUMMARY AND OUTLOOK

Subsystem symmetries provide new possibilities to explore
novel states of matter beyond existing frameworks of global
and gauge symmetries. In this work we showed that breaking
them can lead to unconventional phases where the system
breaks various symmetries in different submanifolds. We re-
ferred to this phenomenon as hybrid symmetry breaking and
demonstrated it with the compass-model limits of a classical
cubic Heisenberg-Kitaev Hamiltonian (Sec. II). Because of a

FIG. 6. Binder cumulant BQL (a) and reweighted energy density
histogram P(E ) (b), detecting a first-order phase transition in HK.
The in-line magnetization mL and rank-4 order Q4 give consistent
results.
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FIG. 7. Comparison of the fits at the Kitaev limit using the scaling equation βc(L) = β∞
c − aL−d ′

, with d ′ = 1, 2, 3 and 24 � L � 40. The
inverse finite-size transition temperatures βc(L) are estimated from the extrema of χQ4 and BQL and the equal-weight peaks of P(E ). The largest
five sizes are considered for the fitting. Single-term scaling cannot be established with accessible system sizes. Nevertheless, the extrapolations
confirm a finite-temperature phase transition around T ∞ ∼ 0.1 and justify the deviation to the standard L−3 scaling.

planar subsystem symmetry, the low-temperature phase in the
anti-Kitaev limit of this model is magnetic within a plane but
nematiclike between planes. Similarly, its Kitaev limit simul-
taneously possesses an in-chain magnetic order, an interchain
nematic order, and an interplane higher-rank nematic order
due to a line-flip symmetry.

We further investigated their phase transitions compre-
hensively utilizing large-scale Monte Carlo simulations. Our
results consolidated the nonstandard first-order scaling that
takes subextensive degeneracies into account. We found
strong evidence that the leading finite-size correction for the
anti-Kitaev limit follows an L−2 scaling instead of a con-
ventional L−3 behavior (Sec. IV). We also observed a strong
violation of the conventional scaling in the Kitaev limit and
argued that single-term fits are not favored due to a prolonged
subleading correction (Sec. V).

Our work enriches the scenarios of conventional spon-
taneous symmetry breaking and sheds light on the in-
fluences of subsystem symmetries in phase transitions.
The results are also useful for distinguishing the gen-
uine effects of fractons, which require additional geo-
metrical constraints besides the presence of a subsystem
symmetry [9].

Several interesting issues deserve future studies. The first
question is if this hybrid symmetry breaking is relevant for
quantum systems. This is promising, as its occurrence in clas-
sical models essentially originates from symmetries. Another
exciting direction is investigating its impact on dynamical
and transport behaviors of a system. It was recently shown
that a U(1) subsystem symmetry can lead to anomalous

subdiffusion and new hydrodynamical universality classes
[43,44]. Those subdimensional orders arising from a hybrid
symmetry breaking naturally support different quasiparticles
and can potentially have distinct diffusion properties. More-
over, it is also important to understand if there is a generic
symmetry reason why known 3D subsystem symmetrical
models commonly undergo a first-order phase transition. Ex-
amples aside from the two cases studied here include the two
dual-spin models of the X-cube code [27,45], dual models of
the checkerboard and Haah’s codes [8,9,46], and a breathing
pyrochlore magnet [47]. The answer to this question can be
crucial for the future development of field theories of subsys-
tem symmetry breaking.

The data and simulation parameters used in this work are
available in Ref. [51].
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