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Frustrated magnetic cycloidal structure and emergent Potts nematicity in CaMn2P2
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We report neutron-diffraction results on single-crystal CaMn2P2 containing corrugated Mn honeycomb layers,
and we determine its ground-state magnetic structure. The diffraction patterns consist of prominent (1/6,1/6,L)
reciprocal-lattice unit (r.l.u.; L = integer) magnetic Bragg reflections, whose temperature-dependent intensities
are consistent with a first-order antiferromagnetic phase transition at the Néel temperature TN = 70(1) K. Our
analysis of the diffraction patterns reveals an in-plane 6 × 6 magnetic unit cell with ordered spins that in
the principal-axis directions rotate by 60◦ steps between nearest neighbors on each sublattice that forms the
honeycomb structure, consistent with the PAc magnetic space group. We find that a few other magnetic subgroup
symmetries (PA2/c, PC2/m, PS 1̄, PC2, PCm, PS1) of the paramagnetic P3̄m11′ crystal symmetry are consistent
with the observed diffraction pattern. We relate our findings to frustrated J1-J2-J3 Heisenberg honeycomb
antiferromagnets with single-ion anisotropy and the emergence of Potts nematicity.
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I. INTRODUCTION

Magnetic materials with local moments arranged on a
honeycomb lattice are known to exhibit a variety of com-
plex magnetic states in the presence of frustrated spin
exchange interactions. Recent examples are the honeycomb
iridates [1,2], the nickelate Ni2Mo3O8 [3], transition-metal
oxides InCu2/3V1/3O3 [4,5], Bi3Mn4O12(NO3) [6], and
verdazyl-based salts [7]. Often the complex behavior of these
systems can be rationalized using quantum spin models such
as the Kitaev-Heisenberg honeycomb model [8–11] or the
J1-J2-J3 Heisenberg honeycomb model [12–23]. The for-
mer exhibits various complex magnetically ordered phases
and a quantum-spin-liquid ground state when Kitaev interac-
tions are dominant and the local moments a low spin, S =
1/2, 1, 3/2 [8,24,25]. The latter hosts different collinear and
noncollinear magnetic states, including complex spirals, al-
ready in the classical limit, and its phase diagram also includes
magnetically disordered regions with intriguing valence-
bond correlations for S = 1/2 [16]. Specifically, for J3 = 0,
the classical J1-J2 Heisenberg honeycomb antiferromagnet
exhibits a Néel-ordered ground state for J2 < J1/6 and degen-
erate single-Q spiral states for J2 > J1/6 [12–15]. Nonzero
J3 or, alternatively, quantum and thermal fluctuations [15] lift
this continuous degeneracy and select six symmetry-related
wavevectors out of the degenerate manifold.

Another rich experimental platform for frustrated honey-
comb magnets consists of the trigonal compounds CaMn2P2,
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CaMn2As2, CaMn2Sb2, CaMn2Bi2, SrMn2P2, SrMn2As2, and
SrMn2As2 with space group P3̄m1 (no. 164) [26–32] and
associated point group D3d . As shown in Fig. 1, these systems
contain the transition-metal element Mn in a corrugated hon-
eycomb structure, which is formed by two adjacent trigonal
layers (or sublattices) that are stacked in an A-B type fashion.
The Mn atoms occupy Wyckoff positions 2d with site symme-
try 3m. There are two Mn atoms per unit cell, which form the
A,B sublattice sites of the honeycomb lattice. The transition-
metal bilayer magnetic moments have no intervening binding
atoms, as shown in Fig. 1(a), so that the major magnetic
coupling between nearest neighbors is likely a direct Mn-
Mn coupling, and couplings among next-nearest neighbors
(NNNs) are likely due to Mn-Pn-Mn superexchange. Neutron
diffraction measurements of Mn compounds with Pn = As,
Sb, or Bi have revealed a simple Néel-type magnetic structure
in SrMn2As2, CaMn2Sb2, and CaMn2Bi2 [28,30,32,33]. This
Néel magnetic structure is shown schematically in Fig. 1(b).
For CaMn2Sb2, it has been suggested that the moments are
slightly canted towards the c-axis [31]. These observations are
consistent with a dominant NN interaction J1 � J2 for these
materials.

It has recently been concluded that the superexchange
within an Mn-Pn-Mn moiety increases as the atomic number
of Pn is reduced, thereby increasing the magnetic frustration
in the system. Thus, NNN interactions are expected to be
stronger for Pn = P than for Pn = Bi for similar bond configu-
rations [34]. We thus expect CaMn2P2 to experience a sizable
NNN coupling J2 and thus substantial magnetic frustration,
which is one of the main motivations for this work.

Here, we report neutron-diffraction results on single crys-
tals of CaMn2P2, and we determine its ground-state magnetic
structure. Recent 31P NMR measurements [26] indicate that
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FIG. 1. (a) Chemical structure of AMn2Pn2 (A = Sr, Ca; Pn =
P, As, Sb, Bi) showing the Mn trigonal bilayer without intervening
elements. (b) Projection of the two trigonal Mn sublattices onto the
ab-plane, shown with red and green shades. The A and B layers
are stacked with two atoms per unit cell (the dotted rhombus shows
the basal unit cell). The Mn bilayer forms a corrugated honeycomb
lattice, where the nearest-neighbor (NN) interactions (J1), the next-
nearest-neighbor (NNN) interactions (J2), and the third-neighbor
interactions (J3) are indicated. The magnetic structure shown is typ-
ical for the AMn2Pn2 compounds with Pn = As, Sb, Bi, for which
the first-neighbor interactions are dominant and antiferromagnetic:
J1 � J2, J3. In contrast, here we report that CaMn2P2 exhibits a
different magnetic structure that emerges mainly due to frustrated
couplings J1/2 ≈ J2. (Although implied in the figure, SrMn2Bi2 has
not yet been synthesized or discussed in the literature.)

the magnetic structure of CaMn2P2 is commensurate with
the lattice. This is in contrast to SrMn2P2, which is found to
possess an incommensurate magnetic order [26]. These obser-
vations are consistent with neutron-diffraction measurements
of SrMn2P2 that indicate a complex and as yet undeter-
mined magnetic structure [35]. Interestingly, CaMn2P2 and
SrMn2P2 have recently been reported to undergo an unusual
first-order antiferromagnetic (AFM) transition at TN = 70(3)
and 53(1) K, respectively [26]. By contrast, the isostructural
CaMn2As2 and SrMn2As2 compounds undergo second-order
AFM transitions [27]. Below, we relate the observed first-
order magnetic transition in CaMn2P2 with its more complex
spiral magnetic order that breaks threefold rotational sym-
metry and promotes the emergence of a Potts-nematic order
parameter [15,36,37].

We note that AMn2Pn2 (A = Ca or Sr and Pn = P, As,
Sb) compounds display strong two-dimensional (2D) mag-
netic fluctuations as manifested in magnetic susceptibility (χ )
measurements that do not show Curie-Weiss behavior at tem-
peratures much higher than TN [26,30–33]. In addition, the
χ (T ) with applied magnetic field along the ab-plane for all

these compounds hardly shows any anomaly at TN. This 2D
behavior also manifests in the magnetic order parameter in
neutron-diffraction measurements of SrMn2As2 [30]. These
characteristics indicate that the dominant in-plane NN cou-
pling J1 is AFM and is likely much larger than the interlayer
couplings between honeycomb planes, leading to sizable 2D
AFM correlations above TN. Interestingly, inelastic neutron-
scattering measurements that were analyzed using spin-wave
theory for the J1-J2 Heisenberg model determined a ratio of
J2/J1 ≈ 1/6 for CaMn2Sb2. This places the system in prox-
imity to a tricritical point that separates a Néel-ordered phase
and two different spiral magnetic phases [14,18,38].

II. EXPERIMENTAL DETAILS AND METHODS

Single crystals of CaMn2P2 were grown in Sn flux,
as described previously [26], and the crystal used in this
study is from the same growth batch. Single-crystal neutron-
diffraction experiments were performed in zero applied
magnetic field using the TRIAX triple-axis spectrometer at
the University of Missouri Research Reactor (MURR). An
incident neutron beam of energy 14.7 meV was directed at
the sample using a pyrolytic-graphite (PG) monochromator.
A PG analyzer was used to reduce the background. Shorter
neutron wavelengths were removed from the primary beam
using PG filters placed before the monochromator and in
between the sample and analyzer. Beam divergence was lim-
ited using collimators before the monochromator; between
the monochromator and sample; sample and analyzer; and
analyzer and detector of 60′ − 60′ − 40′ − 40′, respectively.
A 40 mg CaMn2P2 crystal was mounted on the cold tip
of an Advanced Research Systems closed-cycle refrigerator
with a base temperature of approximately 5 K. The crystal
was mounted in the (H, 0, L) and (H, H, L) scattering planes.
We measured the lattice parameters to be a = 4.096(1) and
c = 6.848(2) Å at base temperature. We also note that our
sample consists of at least two twins that are disoriented with
respect to each other, as indicated in Fig. 2. Our diffraction
patterns here and below also show Bragg reflections from the
polycrystalline Al sample holder.

III. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experimental results

Diffraction scans along the (H, H, 1) direction at T = 6
and 100 K in Fig. 2(a) show the emergence of a promi-
nent peak at H = 1/6 r.l.u. (reciprocal-lattice units) at low
temperatures. As shown in Fig. 2(b), the difference be-
tween these scans at 6 and 100 K displays magnetic Bragg
peaks at (η, η, 1) and (1 − η, 1 − η, 1), where η = 1/6. Fig-
ure 3(a) shows the difference between scans at 6 and 100 K
along (−η,−η, L), indicating magnetic Bragg peaks at L =
−3,−2,−1, 1, 2, and 3. Figure 3(b) shows similar observa-
tions of magnetic Bragg peaks at L = 1, 2, and 3 in the
direction of (η, η, L). Scans along (H, H, 0) do not show any
newly emerging peaks at low temperatures (not shown). Fig-
ure 3(c) shows the difference of scans along (H, 0, 0) at 6 and
100 K with a weak peak at the nuclear (1,0,0) reflection and
possibly another very weak one at (2,0,0). The other signals
that have a negative intensity originate from the Al sample
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FIG. 2. (a) Diffraction patterns along (H, H, 1) at T = 6 and
100 K showing the emergence of a prominent peak at H = 1/6 r.l.u.
(b) The difference between the (H, H, 1) patterns at 6 and 100 K
showing that the observed magnetic Bragg reflections in this direc-
tion are (η, η, 1) and (1 − η, 1 − η, 1), where η = 1/6. Al peaks
(originating from the sample holder) in the difference pattern show
both positive and negative signals due to the thermal shift in peak
positions. The peaks with asterisks originate from a twin of CaMn2P2

oriented in a different direction.

holder. Also, magnetic peaks from a small amount of MnP in
the crystal are present in the scan, as indicated. The tempera-
ture dependence of (1,0,0) does not exhibit a transition at TN.
This implies that the splitting is not significantly related to the
observed magnetic structure.

The temperature dependence of the integrated intensity of
the (η, η,1) reflections in Fig. 4 shows a very sharp transition
at T = 70(1) K that coincides with a previous report indi-
cating a strong first-order magnetic phase transition at this
temperature [26]. The fact that the peak intensities of the
(±η,±η, L) reflections fall off for larger L, as expected from
the magnetic form factor of Mn2+, is further evidence that
these newly observed Bragg peaks are magnetic in origin.
Below, we propose various related magnetic structures that
are consistent with the experimental observations assuming
the magnetic propagation vector is τ = (η, η, 0) r.l.u. with
η = 1/6.

B. Analysis of experimental results

The observed (η, η, 0) propagation vector indicates that
the magnetic structure consists of a 6 × 6 nuclear basal unit
cell. Figure 5(a) is a compilation of the magnetic reflec-
tions observed in the (H, H, L) plane, where the sizes of
the circles (i.e., peaks) approximate the observed intensities.
A systematic analysis reveals that there are seven magnetic
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FIG. 3. Difference between scans at low and high temperature,
as indicated, along (a) (−1/6, −1/6, L) showing peaks at integer
values of L between −3 and 3 (except for L = 0); (b) (1/6, 1/6, L)
showing peaks at the integer values of L between 1 and 3 (scans
with negative L were not accessible due to the experimental setup);
and (c) (H, 0, 0) showing a weak peak at the nuclear (1,0,0) position
and possibly another at (2,0,0). Signals from the Al sample holder
are marked in the figures. As indicated in (c), a minute inclusion of
ferromagnetic MnP crystals gives rise to weak peaks.

space groups (MSGs) that are consistent with the observed
magnetic-diffraction patterns. These are PA2/c, PC2/m, PAc,
PS 1̄, PC2, PCm, and PS1 (see Fig. 6). The first two have higher
symmetry, and PAc, PC2 are descendants of PA2/c, while PS 1̄,
PC2, and PCm are descendants of PC2/m, and the group PS1
has the lowest symmetry (see Fig. 3 and Appendix B for
details).

We now describe an intuitive approach to the magnetic
model structure (corresponding to PAc), which is constructed
by creating a 6 × 6 in-plane nuclear unit cell that spans the
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FIG. 4. Integrated intensity as a function of temperature T of the
(1/6, 1/6, 1) magnetic peak showing a sharp transition at T = 70 K,
consistent with specific-heat measurements in Ref. [26], which reveal
a first-order transition at TN = 70 K. This indicates that the first-order
transition in the heat capacity is associated with the magnetic transi-
tion. The dashed line is a guide to the eye. The data near TN = 70 K
also indicate a first-order magnetic transition. The inset shows the
(1/6, 1/6, 1) peak at T = 5 and 100 K. The weak minimum below
TN at ≈50 K does not appear in the specific-heat measurements and
is currently not understood.

corrugated honeycomb structure, i.e., the bilayer magnetic
structure stacked along the c-axis [Fig. 5(b)]. Throughout, the
red sites correspond to one trigonal magnetic sublattice, and
the green sites correspond to the other magnetic sublattice. A
magnetic model is constructed by assigning a moment along
a high-symmetry direction at an origin, for instance, at the
lower-left corner, and then successively rotating the spin on
the nearest neighbors on the same sublattice clockwise by
60◦. The other sublattice is constructed similarly and stacked
with antiparallel spins with respect to the first sublattice. See
more details on the construction of the magnetic structure in
Appendix A. Note that along the [1,0,0] and [0,1,0] directions,
the magnetic structure of each sublattice is a cycloid with a
60◦ turn angle. Thus, for each sublattice, the overall structure
is a cycloid with propagation vector (η, η, 0), with η = 1/6.
Inspection of Fig. 5(b) shows that each hexagon consists of
two NN antiparallel pairs and one antiparallel NNN pair, such
that the net magnetic moment in each hexagon is zero. Also,
note that in this model, all NN spins along the long diagonal
are antiparallel.

To model the intensities of the magnetic peaks, I , we use
the following equation:

I = C| f (Q)|2
∣∣∣∣∣∣

k∑
j=1

eiQ·rj Q̂ × (m̂j × Q̂)

∣∣∣∣∣∣
2

, (1)

where C is a scale factor, Q is the scattering vector, and r j

and m̂ j are the position of the Mn moment and the unit vector
of the magnetic moment, respectively. f (Q) is the magnetic
form factor of Mn2+. Using Eq. (1), the calculated magnetic

intensities shown in Fig. 5(c) are in good agreement with the
experimental results shown in Fig. 5(a).

The intensity calculations [Eq. (1)] allow us to estimate
the average ordered magnetic moment, 〈gS〉, where g = 2
is the spectroscopic-splitting factor, S is the spin quantum
number, and μB is the Bohr magneton. By comparing nuclear-
peak intensities and their structure factors to the observed
magnetic-peak intensities, we estimate 〈gS〉μB = 4.2(5)μB,
typical for Mn2+ moments.

IV. THEORETICAL DISCUSSION

A. Modeling in terms of a Heisenberg Hamiltonian

We interpret the experimental results in the framework of
a two-dimensional J1-J2-J3 Heisenberg model including local
anisotropy terms on the honeycomb lattice. We find that this
model adequately describes the moments on the puckered-
honeycomb Mn2+ ions in a single layer of CaMn2P2. Since
moments in different layers order ferromagnetically in the
three-dimensional crystal, we focus on a single honeycomb
layer in the following. The coupling between the layers could
be simply modeled by a ferromagnetic nearest-neighbor ex-
change Jz, which sets the ordering temperature for weakly
coupled layers. Our model of a single honeycomb layer
includes NN interactions J1, NNN J2, and third-neighbor in-
teractions J3. We also include single-ion anisotropies Dz and
Dxy that force the moments to lie within the lattice xy plane
(Dz > 0), and we introduce a sixfold in-plane anisotropy
(Dxy), in agreement with the crystalline (point group 3̄m or
D3d ) and time-reversal symmetries. Since the orbital moment
of Mn2+ vanishes according to Hund’s rules, the sixfold
anisotropy Dxy in CaMn2P2 is expected to be small. Since the
second-neighbor exchange J2 is expected to be significant in
the material [34], and we find that the third-neighbor exchange
J3 affects the required anisotropy Dxy for the experimentally
observed spiral phase to occur, we include a J3 term in the
Hamiltonian. We find that the most likely range for J3 is
J3/J1 � 0.1. We model the spins classically, which is well
justified given our experimental observation that 〈gS〉 ≈ 4.3.
The Hamiltonian reads

H = J1

∑
〈n,m〉1

Sn · Sm + J2

∑
〈n,m〉2

Sn · Sm

+ J3

∑
〈n,m〉3

Sn · Sm + Dz

∑
n

(Sz
n)2

+ Dxy

2

∑
n

[(
Sx

n + iSy
n

)6 + c.c.
]
, (2)

where Si are vectors normalized to |Si| = S, and n, m de-
note lattice sites of the honeycomb lattice. The summation
over 〈n, m〉ν runs over each νth-neighbor bond once. The
honeycomb lattice is generated by the triangular Bravais lat-
tice vectors Ri = i1a1 + i2a2 with i1, i2 ∈ Z, a1 = (1, 0), and
a2 = (− 1

2 ,
√

3
2 ). Here, we set the Bravais lattice constant aL =

1. The basis sites are δA = (0, 0) and δB = (0, 1/
√

3) such that
the composite index in Eq. (2) reads n = (i, α) with α = A, B.
The reciprocal-lattice vectors are given by G1 = (2π, 2π√

3
)

and G2 = (0, 4π√
3

), and the first Brillouin zone is depicted in
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FIG. 5. (a) A compilation of the magnetic reflections observed in the (H, H, L) planes, where the sizes of the spheres roughly reflect
observed intensities. Solid black lines show the regions in which the neutron-diffraction experiment was performed. (b) PAc magnetic model
structures [39]. The model structures are constructed by creating a 6 × 6 in-plane unit cell consisting of the corrugated honeycomb structure.
The sites in green correspond to one trigonal layer (magnetic sublattice) and those in red to the other sublattice. More details on the construction
of the magnetic structure are provided in Appendix A. (c) Color map of the calculated structure factor based on the magnetic structure shown
in (b), which is consistent with the experimental results shown in (a).

Fig. 7(a). To connect to our experimental notation, we write
a vector in momentum space as k = HG1 + KG2 such that
the K-point is located at (H, K ) = ( 1

3 , 1
3 ) (corners of the BZ)

and one of the M-points is located at (H, K ) = (0, 1
2 ) (at the

center of the BZ edges).
Next, we analyze the classical ground states of Eq. (2)

assuming coplanar magnetic order. The ground-state phase
diagram of the J1-J2-J3 Heisenberg model was derived in
Refs. [12–14]. A coplanar ground state is in agreement with
our experimental data and findings in the literature for the
J1-J2-J3 model [12–14]. It can always be favored by a suffi-
ciently large single-ion anisotropy Dz. In the following, we
assume Dz > 0, corresponding to easy-plane anisotropy, forc-
ing the spins to lie in the ab plane. Following Ref. [15],
we parametrize the coplanar spin configuration on the two
sublattices as

SA(Ri ) = S(sin(Q · Ri ), cos(Q · Ri )), (3a)

SB(Ri ) = −S(sin(Q · Ri + φ), cos(Q · Ri + φ)). (3b)

FIG. 6. Allowed magnetic space groups under the crystallo-
graphic space group P3̄m11′. Magnetic space groups shaded in green
are the ones that are consistent with our experimentally observed
diffraction patterns [39].

Here, φ + π describes the phase difference between the
spins on the A and B sublattices in the same unit cell Ri. Note
that Eq. (3b) contains an explicit minus sign such that φ = 0
corresponds to an antiferromagnetic arrangement of A and B
spins in the same unit cell. Using this spin parametrization,
the classical energy per spin (N = number of spins) reads

E

NS2
= −J1

2
[cos(Qb − φ) + cos(Qa + Qb − φ) − cos(φ)]

+ J2[cos(Qa) + cos(Qb) + cos(Qa + Qb)]

− J3

2
[cos(Qa + 2Qb − φ) + cos(Qa) cos(φ)]. (4)

Here, Qa = Q · a1 and Qb = Q · a2 such that Q = HG1 +
KG2 = Qa

2π
G1 + Qb

2π
G2. We can analytically find the classical

ground-state energy from the conditions

∂E

∂Qa
= ∂E

∂Qb
= ∂E

∂φ
= 0. (5)

Let us first discuss the case of J3 = Dxy = 0. Then, the ground
state exhibits a continuous degeneracy of spiral states with
wavevectors Q = (Qa, Qb) that fulfill [15]

cos(Qa) + cos(Qb) + cos(Qa + Qb) = 1

2

(
J2

1

4J2
2

− 3

)
. (6)

The phase difference φ is determined by

sin(φ) = 2J2[sin(Qb) + sin(Qa + Qb)]. (7)

For 1
6 < J2/J1 < 1

2 , the manifold of degenerate wavevectors
forms a circle around the 
 point, as shown in Fig. 7(a) for
J2/J1 = 0.25. The radius of the circle increases continuously
with increasing J2. For J2/J1 > 0.5, the degenerate states are
located around the K and K ′ points, which they approach
in the large-J2 limit [15]. We refer to Appendix C for a
detailed derivation of these results. In CaMn2P2 we find the
propagation vector (H, K ) = ( 1

6 , 1
6 ), which lies along the 
-K

direction and corresponds to one of the degenerate states for
J2/J1 = 0.25. This regime of large frustration is thus relevant
for CaMn2P2 and will be our focus in the following.
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FIG. 7. (a) Manifold of wavevectors (kx, ky ) of spiral magnetic ground states in the J1-J2-J3 Heisenberg model for J2/J1 = 0.25. Different
colors correspond to different values of J3: J3 = 0 (yellow), AFM J3/J1 = 0.05 (red hexagons), and FM J3/J1 = −0.05 (blue dots). Sixfold
anisotropy Dxy favors wavevectors shown as purple squares (as well as symmetry-related ones). (b) The upper panel shows sixfold anisotropy
energy EDxy of single-Q magnetic spirals with H = K along a path from the origin to K [shown in panel (a)]. Anisotropy favors spirals with
H = K = 0 (Néel order), H = K = 1

6 , and H = K = 1
3 . The lower panel shows EDxy of single-Q magnetic spirals along the yellow circle in

(a) as a function of polar angle. Anisotropy favors H = K = 1
6 and symmetry-related wavevectors obtained by 60◦ rotations. (c) Magnetic

ground-state phase diagram of the J1-J2-Dxy Heisenberg model as a function of J2 and Dxy for fixed J1 = 1 and J3 = 0. The solid and dashed
lines denote critical Dcrit

xy that favor commensurate states with (H, K ) = (0, 0) (blue), (H, K ) = ( 1
6 , 1

6 ) (yellow), and (H, K ) = (1/3, 1/3) (red)
over spirals with other wavevectors. The experimentally observed (H, K ) = ( 1

6 , 1
6 ) spiral phase extends from 0.2 � J2/J1 � 0.5, and the critical

value of Dxy exhibits a minimum of zero at J2/J1 = 0.25. (d) The critical value of the sixfold anisotropy Dcrit
xy as a function of J3 required to

favor commensurate spirals with (H, K ) = ( 1
6 , 1

6 ) (solid) or (H, K ) = (0, 0) (dashed). Nonzero J3 moves the ground-state wavevector Q closer
to the origin, resulting in monotonously decreasing dashed lines. Dcrit

xy for (H, K ) = ( 1
6 , 1

6 ) (solid) decreases if J3 moves Q closer to ( 1
6 , 1

6 ) (see
J2/J1 = 1/3), and it increases otherwise (see J2/J1 = 0, 1/4).

Nonzero J3 selects a discrete subset of six wavevectors for
the ground-state spin configuration. For AFM J3 > 0 these
lie along the 
-K (and symmetry-related) directions in the
Brillouin zone [see the red hexagons in Fig. 7(a)]. In con-
trast, for FM J3 < 0 these lie along the 
-M direction for
J2/J1 < 1/2 [see the blue dots in Fig. 7(a)] and along the
K-M line for 1/2 < J2/J1 < 1 (not shown). The wavevectors
shown in Fig. 7(a) are for AFM J3/J1 = 0.05 (red hexagons)
and for FM J3/J1 = −0.05 (blue circles). Since AFM J3 fa-
vors Néel order, which is described by (H, K ) = (0, 0) and
φ = 0, the red wavevectors move towards the 
 point with
increasing AFM J3. In contrast, with increasing FM J3 < 0
(i.e., more negative values), they move towards the M point.
We note that quantum and thermal fluctuations also select six

discrete wavevectors, which correspond to the ones favored
by FM J3 [15]. We therefore conclude that the experimentally
observed wavevector (H, K ) = ( 1

6 , 1
6 ) is consistent with AFM

J3 > 0. In contrast, it is not favored by FM J3 and it is also not
selected via an order-by-disorder mechanism.

We now analyze the effect of a local sixfold single-ion
anisotropy term whose strength is parametrized by Dxy [see
Eq. (2)]. As shown in Fig. 7(b), nonzero Dxy favors a dis-
crete number of spiral states, which are consistent with an
alignment of spins along one of the six high-symmetry di-
rections on every site. Moving along the direction H = K
in the Brillouin zone, we find that Dxy equally favors Néel
order (H = K = 0), the experimentally observed spiral or-
der with H = K = 1

6 , and a shorter spiral with wavevector
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H = K = 1
3 (K-point). These three wavevectors are also high-

lighted in Fig. 7(a) as purple squares. In addition to these three
wavevectors, Dxy also favors symmetry-related wavevectors
as shown in the lower panel of Fig. 7(b), which are obtained
by 60◦ rotations. In Fig. 7(c), we show that a magnetic spi-
ral with the experimentally observed wavevector (H, K ) =
( 1

6 , 1
6 ) is stabilized over a wide region of J2/J1 and Dxy.

Specifically, for 0.2 < J2/J1 < 0.5 and J3 = 0, the system
enters a magnetic spiral with H = K = 1

6 at a critical value
of Dcrit

xy (yellow region). The critical value Dcrit
xy is a con-

vex function of J2/J1 and exhibits a minimum of zero at
J2/J1 = 0.25. For smaller values of J2/J1 < 0.2, the sixfold
anisotropy drives the system into a Néel-ordered phase in-
stead (gray region), while for larger values of J2/J1 > 0.5, it
will transition into a magnetic spiral with H = K = 1

3 (red
region). For nonzero AFM J3 the Néel phase extends until
larger values of J2/J1, which sets a limit to the size of J3/J1

in CaMn2P2.
To study the dependence on J3/J1 more systematically, we

plot in Fig. 7(d) the evolution of Dcrit
xy as a function of AFM

J3/J1 for several fixed values of J2/J1. We focus on the re-
gion of J2/J1 < 0.5, where the Néel-ordered phase competes
with the H = K = 1

6 phase. First, we find that the behavior
of Dcrit,1/6

xy (solid lines) depends on the value of J2/J1. Since
increasing J3 moves the minimum-energy spiral wavevector
towards the 
 point, J3 reduces Dcrit,1/6

xy for J2/J1 > 1/4, but
increases it for J2/J1 < 1/4. Second, since J3 favors the Néel
ordered state over the spiral, we observe that increasing J3

generally reduces the critical value Dcrit,Néel
xy needed to stabi-

lize the Néel phase (dashed lines). The dashed lines are thus
monotonously decreasing as a function of J3. For a given value
of J2/J1, we thus find that Dcrit,Néel

xy < Dcrit,1/6
xy for sufficiently

large J3 such that the sixfold anisotropy drives the system into
the Néel phase. The position of the crossing point between
solid and dashed lines in Fig. 7(d) increases with increasing
J2/J1, which is a result of the minimum-energy wavevector
lying closer to H = K = 1

6 than to the origin [see Fig. 7(a)].
We conclude from this analysis that when 0.2 < J2/J1 <

0.5, the presence of a sixfold anisotropy Dxy is sufficient to
stabilize the H = K = 1

6 spiral order even without a third-
neighbor interaction term J3. The required value of Dxy to
drive the system from an incommensurate spiral into the com-
mensurate H = K = 1

6 spiral phase vanishes at J2/J1 = 0.25
and remains small in the vicinity of this point. Regarding the
effect of nonzero J3, we find that AFM J3 selects a wavevector
along the observed H = K direction, while FM J3 selects
different wavevectors that are at 30◦-rotated directions in the
Brillouin zone. An AFM third-neighbor interaction is thus
more consistent with our experimental findings than a FM
one. Since AFM J3 also favors the Néel state, the minimum-
energy spiral wavevector Q moves towards the origin with
increasing J3. For large J2/J1 > 0.5, where the wavevector
lies between the ( 1

6 , 1
6 ) and the K point, this moves Q closer

to ( 1
6 , 1

6 ) and thus reduces the value of Dxy necessary to enter
the commensurate H = K = 1

6 spiral phase [see the blue line
in Fig. 7(d)]. For smaller values of J2/J1, a larger value of J3

drives the system into the Néel phase and can thus be excluded
for CaMn2P2. To summarize, the most likely parameter range
describing CaMn2P2 is J2/J1 ≈ 0.25–0.4, J3/J1 � 0.1, and

Dxy > Dcrit
xy ≈ 0–0.1J1. Further experimental work, such as,

e.g., inelastic neutron scattering results, is needed to deter-
mine the values of the exchange and anisotropy parameters
more precisely.

B. Emergent Potts-nematic order and first-order
phase transition

The frustration-induced spiral magnetic order that we ob-
serve in CaMn2P2 leads to the emergence of a Potts-nematic
order parameter. This composite order parameter is bilinear in
the spins and involves their scalar product on nearest-neighbor
sites:

ψ (R) = SA(R) · SB(R) + e− 2π i
3 SA(R) · SB(R − a2)

+ e− 4π i
3 SA(R) · SB(R − a1 − a2). (8)

This complex bond order parameter is finite and translation-
ally invariant in any of the three spiral magnetic states with
(H, K ) = {Q1, Q2, Q3} = ( 1

6 , 1
6 ), (− 1

3 , 1
6 ), ( 1

6 ,− 1
3 ). In Fig. 8,

we show the three degenerate ground states of the J1-J2-
J3-Dxy Heisenberg model in the regime where Dxy > Dxy,crit

and 0.2 < J2/J1 < 0.5 [see Fig. 7(c)]. When placed on the
Mn ions in CaMn2P2, this magnetic structure corresponds
to magnetic space group (MSG) PS1, which is one of the
MSGs that are consistent with experiment (see Fig. 6). The
related magnetic structure for Dxy < 0, for which the spin
at the origin (yellow circle) is rotated by π

2 , lies in the
MSG PCm that is also consistent with the experimental
data. The three panels in Fig. 8 depict the symmetry-related
states with propagation vectors Qi, and the insets show the
value of the spatially homogeneous complex Potts-nematic
order parameter, whose argument follows the direction of
the ordering wavevector. It is a generalization of the Ising
nematic bond order parameter known to underlie the tetrag-
onal to orthorhombic transition via magnetoelastic couplings
that is observed in tetragonal iron-based arsenides such
as CaFe2As2 [40,41].

Under a threefold rotation around an A site, the Potts-

nematic order parameter transforms as ψ
C3−→ exp( 2π i

3 )ψ .
Under a mirror operation myz that sends x → −x, it trans-

forms as ψ
myz−→ ψ∗. Its finite-temperature behavior is thus

described by the Landau-Ginzburg free-energy functional of
a three-state Potts model [15]. In three dimensions this anal-
ysis predicts a first-order phase transition into a state with
long-range Potts order due to a symmetry-allowed third-order
term. This is also in agreement with Monte Carlo simula-
tions [42]. The emergence of long-range Potts-nematic order
can therefore naturally account for the experimentally ob-
served first-order magnetic phase transition in CaMn2P2. Note
that different honeycomb layers are ordered ferromagnetically
along the c direction in CaMn2P2, corresponding to an order-
ing wavevector with integer L, where Q = (H, K, L). Since
ψ is a composite magnetic order parameter, it is strongly
intertwined with magnetism, and the discontinuous develop-
ment of long-range Potts order at the first-order transition can
thus uplift the magnetic transition to occur as a joint first-
order transition. The system then simultaneously develops
long-range Potts-nematic and magnetic order. Such a behav-
ior is known to occur, for example, in the triangular lattice
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(a)

(b)

(c)

FIG. 8. Panels (a), (b), and (c) show the three degenerate ground
states (H, K ) = ( 1

6 , 1
6 ), (− 1

3 , 1
6 ), ( 1

6 , − 1
3 ) of the J1-J2-Dxy Heisen-

berg model for Dxy > 0. In each panel, the bond order parameter
ψ (R) is invariant under translations, but different panels describe dif-
ferent bond orders: the antiparallel nearest-neighbor spin pair occurs
along three different bonds in the three panels (a)–(c). The complex
argument of ψ is given by the polar angle of the corresponding
wavevector Qi in the Brillouin zone (see the red hexagons in Fig. 7).

antiferromagnet Fe1/3NbSe2 [36]. This can also explain why
the related compounds CaMn2Pn2 with Pn = Sb, Bi that
exhibit Néel order, for which such a three-state Potts-nematic
order is absent, develop magnetic order via a continuous phase
transition.

Since long-range Potts-nematic order breaks the threefold
rotational symmetry of the lattice, we predict the emer-
gence of three lattice distortion domains due to a finite
magnetoelastic coupling. The domains are characterized by
different values of the Potts-nematic order parameter ψ ,

as shown in Fig. 8. However, the coupling between mag-
netic and lattice degrees of freedom is expected to be small
in this system, since the orbital moment of the magnetic
ions Mn2+ vanishes according to Hund’s rules, and spin-
orbit coupling is therefore small. This could be the reason
why lattice distortion and crystal symmetry lowering could
not be detected in previous x-ray diffraction studies [26].
An alternative explanation is the emergence of a complex
multi-Q magnetic order that preserves all lattice symmetries.
It is worth noting, however, that Raman scattering studies
have reported the appearance of additional peaks when go-
ing from the paramagnetic phase at room temperature to
the magnetic phase at T < TN [43]. Further investigations
of the effects of magnetic ordering on the lattice and its
excitations are needed to address these open questions. We
emphasize that magnetic spiral-Q order with a single finite-
momentum wavevector breaks threefold rotation symmetry
via selection of one of the three symmetry-equivalent prop-
agation vectors Qi. In the single-Q spiral state, we thus expect
the appearance of three magnetic domains characterized by
different magnetic propagation vectors in the magnetically
ordered state.

V. CONCLUSIONS

Using neutron-diffraction measurements, we find that
CaMn2P2 undergoes a first-order antiferromagnetic transition
at TN = 70(1) K into a state with a 6 × 6 times enlarged
magnetic unit cell. The average ordered magnetic moment
is 〈gS〉μB = 4.2(5)μB. The integrated intensity of the ma-
jor (H, K, L) = ( 1

6 , 1
6 , 1) magnetic peak versus temperature

shows an abrupt decrease at TN that is a characteristic
of a first-order phase transition. Focusing on the experi-
mentally discovered ground state, we interpret these results
using a frustrated J1-J2-J3 Heisenberg model with easy-plane
anisotropy Dz and a sixfold in-plane anisotropy Dxy, and
we show that this propagation wavevector signals the pres-
ence of a substantial degree of frustration. We relate the
appearance of the first-order magnetic transition to a com-
posite three-state Potts-nematic bond order parameter that
simultaneously develops long-range order and drives the
magnetic transition to become first-order. Based on our anal-
ysis, we predict the emergence of three symmetry-related
magnetic and lattice distortion domains that deserve further
studies.
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APPENDIX A: CONSTRUCTING THE MAGNETIC
STRUCTURE

We describe the proposed magnetic structures with space
group PAc, shown in Fig. 5(b) in the main text. The
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(a) (b) (c)

FIG. 9. Parts (a) and (b) depict the 6 × 6 in-plane trigonal sublattices that form the honeycomb structure. In (a), we assign a spin along a
high-symmetry direction at the origin (lower-left corner), and the nearest neighbors along the a- and b-axes are successively rotated by a 60◦

angle in the clockwise direction to create the sublattice. The sublattice shown in (b) is constructed by flipping the spin direction at the origin
(lower-left corner) with respect to the one in the origin of (a), and the nearest neighbors along the a- and b-axes are successively rotated by
a 60◦ angle in the clockwise direction. (c) The corrugated honeycomb structure with magnetic spacegroup PAc is constructed by stacking the
sublattices shown in (a) and (b).

magnetic structure is constructed by generating two 6 × 6
in-plane trigonal sublattices that are stacked together to form
the honeycomb structure. In Fig. 9(a), the trigonal sublattice
is constructed by assigning a spin at the origin (lower-left
corner) pointed along one of the high-symmetry directions,
and successively rotating the nearest neighbors in the a- and
b-directions by a 60◦ angle in the counterclockwise direction.
In Fig. 9(b) we construct the other trigonal sublattice for
magnetic structure. The spin at the origin (lower-left corner)
is flipped with respect to the spin at the origin of the trigonal
sublattice depicted in Fig. 9(a). The nearest neighbors along
the a and b directions are rotated successively by a 60◦ angle
in the counterclockwise direction, the same way as before,
to construct the other sublattice. The magnetic structure with
spacegroup PAc is formed by stacking the trigonal sublattice
shown in Fig. 9(b) on the trigonal sublattice shown in Fig. 9(a)
to form the corrugated honeycomb lattice, as depicted in
Fig. 9(c).

APPENDIX B: SYSTEMATICALLY SEARCHING OTHER
MAGNETIC STRUCTURES

We emphasize that the magnetic structure shown in
Fig. 5(b) of the main text with magnetic space group PAc [39]
is not unique with respect to the neutron-diffraction data.
Systematically searching through the Symmetry-Based Com-
putational Tools for Magnetic Crystallography [39] (Fig. 6
in the main text), we find a few more magnetic struc-
tures shown in Fig. 10 that are consistent with the peak
positions in the diffraction measurements. The Bilbao crys-
tallographic database allows for other magnetic structures
with the propagation vector of (1/6, 1/6, 0), as shown in
Fig. 11; however, the intensity calculations are inconsistent
with the experimental observations. In particular, these con-
figurations show intensities at (±1/6, ±1/6, 0), which are
not observed experimentally. We note that when construct-
ing the magnetic structure using the Bilbao database, we
assume that the spin direction at the origin is a high-symmetry
direction, and we rotate nearest-neighbor moments in the
same sublattice by 60◦. For simplicity, we divide the ro-
tation between the spin at the origin and the edge by 6,
i.e., 360◦/6.

APPENDIX C: DETAILS OF GROUND-STATE ANALYSIS
OF A SPIN HAMILTONIAN

The honeycomb lattice is generated by the Bravais lattice
vectors

a1 = (1, 0), (C1)

a2 =
(

cos
2π

3
, sin

2π

3

)
=

(
−1

2
,

√
3

2

)
. (C2)

A Bravais lattice vector is given by Ri = i1a1 + i2a2 with
i1, i2 ∈ Z. Here, we have set the Bravais lattice constant to 1.
The honeycomb model has two atoms (or spins) per unit cell.

The basis vectors are given by bA = (0, 0) and bB = (0, 1√
3

).
Our choice of ai leads to the reciprocal-lattice vectors

Gi · a j = 2πδi j being given by

G1 =
(

2π,
2π√

3

)
, (C3)

G2 =
(

0,
4π√

3

)
. (C4)

For later reference, we introduce the notation k = HG1 +
KG2. The K point in the Brillouin Zone is located at (H, K ) =
( 1

3 , 1
3 ) or k = ( 2π

3 , 2π√
3

) and the M point is located at (H, K ) =
(0, 1

2 ) or k = (0, 2π√
3

).
The Hamiltonian of the classical J1-J2-J3 Heisenberg

model on the honeycomb lattice then reads

H = J1

∑
Ri

δ
(1)
3∑

δ
(1)
i =δ

(1)
1

SA(Ri ) · SB
(
Ri + δ

(1)
i

)

+ J2

2

∑
Ri

δ
(2)
6∑

δ
(2)
i =δ

(2)
1

[
SA(Ri ) · SA

(
Ri + δ

(2)
i

)

+ SB(Ri ) · SB
(
Ri + δ

(2)
i

)]

+ J3

∑
Ri

δ
(3)
3∑

δ
(3)
i =δ

(3)
1

SA(Ri ) · SB
(
Ri + δ

(3)
i

)
. (C5)
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FIG. 10. Illustration of possible magnetic structures allowed by the Bilbao magnetic spacegroups [39] with calculated intensities consistent
with the experimental observation. Calculated intensities for these configurations are similar to the one shown in the main text for the PAc
magnetic space group.

The set of first, second, and third (Bravais) neighbors reads

{
δ

(1)
i

} = {(0, 0),−a1 − a2,−a2}, (C6){
δ

(2)
i

} = {a1, a1 + a2, a2,−a1,−a1 − a2,−a2}, (C7){
δ

(3)
i

} = {a1,−a1,−a1 − 2a2}. (C8)

Following Ref. [15], we parametrize the ground state in the
following way:

SA(Ri ) = S(sin(Q · Ri ), cos(Q · Ri )), (C9)

SB(Ri ) = −S(sin(Q · Ri + φ), cos(Q · Ri + φ)). (C10)

We often write

Q = HG1 + KG2 = Qa

2π
G1 + Qb

2π
G2, (C11)

where it also holds that Qa = Q · a1 and Qb = Q · a2.

The classical energy per spin (N = number of spins) using
this spin parametrization reads

E (Q, φ)

NS2
= −J1

2
[cos(Qb − φ)

+ cos(Qa + Qb − φ) − cos(φ)]

+ J2[cos(Qa) + cos(Qb) + cos(Qa + Qb)]

− J3

[
1

2
cos(Qa − φ)

+ cos(Qa + Qb) cos(Qb − φ)

]
. (C12)

The J3 term can also be written as

−J3

2
[cos(Qa + 2Qb − φ) + cos(Qa) cos(φ)]. (C13)

We can analytically find the minimum energy, which equals
the classical ground-state energy, via

∂E

∂Qa
= ∂E

∂Qb
= ∂E

∂φ
= 0. (C14)
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FIG. 11. Illustration of possible magnetic structures allowed by the Bilbao magnetic spacegroups [39] with calculated intensities incon-
sistent with the experimental observation. In particular, these configurations show intensities at (±1/6, ±1/6, 0), which are not observed
experimentally [see Figs. 3(b) and 3(c)].

Numerically, it is advantageous to directly minimize
E (Qa, Qb, φ) for different random starting points of 0 �
Qa, Qb < 2π and 0 � φ < 2π .

1. Case of J3 = 0

Let us first consider the case of J3 = 0. Here, we find from
∂E
∂Qa

= ∂E
∂Qb

= ∂E
∂φ

= 0 the set of equations

2J2[sin(Qa) + sin(Qa + Qb)] = sin(Qa + Qb − φ), (C15)

2J2[sin(Qb) + sin(Qa + Qb)]

= sin(Qb − φ) + sin(Qa + Qb − φ), (C16)

sin(Qb − φ) + sin(Qa + Qb − φ) = sin(φ). (C17)

Here, we have set J1 = 1 and thus J2 ≡ J2/J1. Inserting the
third equation into the second one yields

sin(φ) = 2J2[sin(Qb) + sin(Qa + Qb)]. (C18)

The first equation then becomes

2J2[sin(Qa) + sin(Qa + Qb)] = sin(Qa + Qb − φ) (C19)

= sin(Qq + Qb) cos(φ)

− cos(Qa + Qb) sin(φ)

(C20)

= sin(Qq + Qb) cos(φ)

− 2J2 cos(Qa + Qb)[sin(Qb)

+ sin(Qa + Qb)]. (C21)

Solving for cos(φ) and using that

sin(Qa) + cos(Qa + Qb) sin(Qb)

sin(Qa + Qb)
= cos(Qb), (C22)

we arrive at

cos(φ) = 2J2[1 + cos(Qb) + cos(Qa + Qb)]. (C23)
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FIG. 12. Manifold of wavevectors (kx, ky ) (in units of 1/aL) of
spiral magnetic ground states in the J1-J2-J3 Heisenberg model for
J2/J1 = 0.25 (left) and J2/J1 = 0.5 (right). Different colors cor-
respond to different values of J3. Specifically, J3 = 0 (yellow);
AFM J3/J1 = 10−3 (red); and FM J3/J1 = −10−3 (blue). The black
hexagon shows the first Brillouin zone. Note that nonzero J3 selects
six symmetry-related wavevectors, while there exists a continuous
manifold of degenerate states for J3 = 0.

Finally, using that cos2(φ) + sin2(φ) = 1, we derive

cos(Qa) + cos(Qb) + cos(Qa + Qb) = 1

2

(
1

4J2
2

− 3

)
.

(C24)

The last equation (C24) determines the set of degenerate
wavevectors (Qa, Qb) in the ground state, while the two equa-
tions (C18) and (C23) set the phase difference for a given
value of Q.

2. Case of nonzero J3

Let us now discuss the case of nonzero J3, where the set of
equations ∂E

∂Qa
= ∂E

∂Qb
= ∂E

∂φ
= 0 reads

sin(Qa + Qb − φ) = 2J2[sin(Qa) + sin(Qa + Qb)]

− J3[2 cos(Qb − φ) sin(Qa + Qb)

+ sin(Qa − φ)], (C25)

sin(Qb − φ) + sin(Qa + Qb − φ)

= J2[sin(Qb) + sin(Qa + Qb)] − 2J3 sin(Qa + 2Qb − φ),

(C26)

sin(φ) − sin(Qb − φ) − sin(Qa + Qb − φ)

= J3[sin(Qa − φ) + 2 cos(Qa + Qb) sin(Qb − φ)].

(C27)

We will restrict our attention to sufficiently small J3, where
we numerically find that a set of six symmetry-related wave
vectors are selected from the continuous manifold of wave
vectors defined by Eq. (C24). Numerically, we find that for
J3 > 0 one of them is given by Qa = Qb, while for J3 < 0
one of them is given by (Qa, Qb) = (Qa, 0). The other five
are obtained by C6 rotations. In Fig. 12 we show numerical
results for J3 = 0 and for small values of J3, which shows that
six discrete wavevectors are selected by nonzero J3, which are
of the form described above.

a. Antiferromagnetic J3 > 0

Numerically, we find that the wavevector solution is
given by Qa = Qb for J3 > 0. In this case, the three equa-
tions (C25)–(C27) simplify to

sin(2Qa − φ) = 2J2[sin(Qa) + sin(2Qa)]

− J3[2 cos(Qa − φ) sin(2Qa)

+ sin(Qa − φ)], (C28)

sin(Qa − φ) + sin(Qa + Qa − φ)

= J2[sin(Qa) + sin(2Qa)] − 2J3 sin(3Qa − φ), (C29)

sin(φ) − sin(Qa − φ) − sin(2Qa − φ)

= J3[sin(Qa − φ) + 2 cos(2Qa) sin(Qa − φ)]. (C30)

In the third equation (C30), we can use that sin(φ) −
sin(2Qa − φ) = −2 cos(Qa) sin(Qa − φ) to bring it into the
following form:

sin(Qa − φ)[1 + 2 cos(Qa) + J3[1 + 2 cos(2Qa)]] = 0.

(C31)

This equation can be fulfilled either by sin(Qa − φ) = 0 or
if the term in the square brackets vanishes, which is the
case when cos(Qa) = −1/2 (K-point) or when cos(Qa) =
(−1 + J3)/(2J3). Note that in the latter case, the wavevector
is independent of J2.

The first case sin(Qa − φ) = 0 is the case of interest to
us, as we know (e.g., from a numerical investigation) that
Qa depends on J2 in the region J2 > J3 > 0, in which we are
mostly interested. Therefore, Eq. (C30) gives a condition for φ

as a function of the wavevector Qa. In fact, the same condition
applies to the case J3 = 0, which means that the solution for
φ at the minimum is independent of J3 and identical to our
previous solution in Eqs. (C18) and (C23).

Assuming that sin(Qa − φ) = 0 in the following, we find
that the first and second equations (C28) and (C29) are identi-
cal and read

2J2[sin(Qa) + sin(2Qa)] − 2J3 cos(Qa − φ) sin(2Qa)

= sin(Qa) cos(Qa − φ). (C32)

Since sin(Qa − φ) = 0, it immediately follows that cos(Qa −
φ) = ±1. Solving the above equation in the two cases yields

cos(Qa) = 1 − 2J2

4(J2 − J3)
for cos(Qa − φ) = 1, (C33)

cos(Qa) = −1 − 2J2

4(J2 + J3)
for cos(Qa − φ) = −1. (C34)

It turns out that the first solution is the relevant one in the
regime J2 > 0. We thus find that

Qa = 2πH = arccos
1 − 2J2

4(J2 − J3)
. (C35)

Finally, the experimentally observed wavevector H = K =
1/6 is found for

J2(J1, J3) = 1
4 (J1 + 2J3). (C36)

Therefore, to observe H = K = 1/6, we need an antiferro-
magnetic J3 > 0, and the required second-neighbor exchange
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J2 increases with the value of J3. Note that this corresponds
to a highly frustrated set of coupling constants. In the next
section, we show that a finite sixfold single-ion anisotropy
significantly increases the phase space of the H = K = 1/6
solution in the model.

3. Effect of finite sixfold single-ion anisotropy Dxy

Let us now determine the effect of a sixfold in-plane single-
ion anisotropy term that is allowed by symmetry:

HDxy = Dxy

2

∑
Ri

∑
α=A,B

{[
Sx

α (Ri ) + iSy
α (Ri )

]6

+ [
Sx

α (Ri ) − iSy
α (Ri )

]6}
. (C37)

Inserting the spin ansatz in Eq. (C9) and focusing on the
solutions with H = K that we found for J3 > 0, we find that

[see also Fig. 7(b)]

EDxy

NS6
= −Dxy(δH,1/6 + δH,1/3). (C38)

Note that to determine EDxy for states with H 
= K , we would
first need to solve for the phase φ of those states analytically.
Instead, we have investigated the problem numerically for
general (H, K ) and φ [see Fig. 7(b)]. From Eq. (C38) we
observe that states with H = K = 1/3 and H = K = 1/6 are
favored by Dxy because they are compatible with the sixfold
anisotropy on every site. Spiral states with any other wave
vector yield an average energy of zero in the limit of large
system sizes as every angle occurs at some site, and the aver-
age anisotropy thus vanishes. To determine the region in the
phase diagram where spirals with H = 1/6 are stabilized as a
function of Dxy, we compare the energy of the spiral found for
Dxy = 0 with the energy of the spiral with H = 1/6 and finite
Dxy, and the results are given in Figs. 7(c) and 7(d).
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