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Variational optimization of tensor-network states with the honeycomb-lattice corner transfer matrix
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We develop a method of variational optimization of the infinite projected entangled pair states on the
honeycomb lattice. The method is based on the automatic differentiation of the honeycomb-lattice cor-
ner transfer matrix renormalization group. We apply the approach to the antiferromagnetic Heisenberg
spin-1/2 and ferromagnetic Kitaev models on the honeycomb lattice. The developed formalism gives quan-
titatively accurate results for the main physical observables and has a necessary potential for further
extensions.
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I. INTRODUCTION

The most difficult part of any two- or three-dimensional
tensor-network algorithm, especially the infinite projected en-
tangled pair states (iPEPS) optimization and calculation of
observables with it, is the tensor-network contraction [1].
Exact contraction of the PEPS norm is exponentially hard
in general. Therefore, in two-dimensional tensor-network
calculations, one requires to contract a tensor network ap-
proximately. There are three main methods to contract
two-dimensional tensor networks with certain translational
invariance: transfer matrix methods, also called the bound-
ary matrix product states [2], tensor renormalization group
(TRG) [3,4] including its modifications, and methods based
on the corner transfer matrix (CTM) [5]. There are also
several mixed versions, e.g., the channel environments
[6], which are similar to both CTM and transfer matrix
methods.

All the mentioned approaches are most naturally de-
fined for a square-lattice geometry, though transfer matrices
were also used for kagome and honeycomb lattices [7],
while TRG was applied to the honeycomb lattice [4]. At the
same time, CTM methods, at least in the iPEPS calculations,
were mainly applied to the square lattice. The strategy to deal
with other lattices was to map it onto the square lattice and
then to employ already developed algorithms. This strategy
was successfully applied to star- [8], ruby- [9], kagome- [10],
triangular- [11], and honeycomb-lattice geometries [12] with
the simple or full update as an optimization method for iPEPS.

Still, the most accurate iPEPS optimization method is
the variational update. Originally, it was proposed for the
square lattice [13,14], where the gradients were derived in
terms of the CTM tensors or channel environments. Later,
it was observed that the gradients can be derived with the
help of automatic differentiation [15], originally developed in
the machine-learning community. In this approach, one needs
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only to calculate the energy with an approximate contraction
scheme by using only differentiable procedures. In particular,
it can be applied to the lattices other than square with the
help of special mappings of these to the square one [16].
The variational approach enables studies of the next-nearest-
neighbor (NNN) frustrated systems [17] and chiral spin
liquids [18].

In this paper, we aim to establish whether other efficient
contraction methods on other lattices can lead to a stable
variational update with gradients derived by the automatic
differentiation. We focus on a generalization of the corner
transfer matrix renormalization group (CTMRG) approach
to the honeycomb-lattice tensor network. We describe the
contraction scheme and employ it for the ground-state anal-
ysis of the antiferromagnetic Heisenberg model on the
honeycomb lattice. We employ the ZYGOTE autodifferen-
tiation package [19] to compute gradients and optimize
the iPEPS wave function by using the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) algorithm.

It should be noted that CTMRG on lattices other than
square, in particular, on hyperbolic lattices [20,21], were used
in the variational calculations with the interaction-round-a-
face (IRF)-type tensor network as a variational ansatz [22].
These optimizations were conducted by using the Nelder-
Mead method.

II. METHOD AND RESULTS

A. Honeycomb CTMRG

CTM was originally developed by Baxter as a method
of exact solution of certain integrable models on the square
lattice [23,24]. Later, it was generalized to a triangular lattice
[25,26]. Nishino and Okunishi developed CTM into the nu-
merical renormalization group method (CTMRG) [27], which
was further generalized to the classical statistical mechan-
ics systems on triangular and hyperbolic lattices [28–32].
Still, their scheme on the triangular lattice was tailored for
the IRF-like models, while we are interested in the vertex-
like model, since the PEPS norm can be represented as a
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(a) (b)

(c)

FIG. 1. Illustration of the definitions of CTMRG on a honey-
comb lattice. (a) A honeycomb lattice can be divided into six corners.
Any trivalent vertex of the lattice corresponds to the tensor T .
(b) Definitions of corner matrix C and two column tensors L, R.
In the real calculations we assume that these corners and columns
contain an infinite number of sites, but the finite equivalents, shown
in the figure, can be used as initialization. (Note that the initialization
of the matrix C is Hermitian but not diagonal. One can gauge it to
the diagonal form, but since we do not introduce any truncations in
the initialization, this additional gauge choice has no impact on any
further calculations.) (c) Illustration of the update procedure for the
matrix C and the tensors L and R. This update is repeated until the
convergence.

contraction of the vertex model partition function. For this
purpose, we dualize the construction from Ref. [31] by ob-
taining CTMRG for a honeycomb-lattice tensor network from
the CTMRG of the IRF classical model on the triangular
lattice. Let us start with a honeycomb lattice characterized
by a single trivalent tensor T , symmetric under rotations and
reflection conjugations, with the bond dimension D on all
of its vertices. This lattice can be divided into six corners,
which are shown in Fig. 1(a). Contraction of all tensors in
the corner can be represented as a matrix C [see Fig. 1(b)].
If the individual tensors are symmetric under rotations and
homogeneous around the lattice, then all the corner matrices
C are identical and the tensor-network contraction Z can be
represented as

Z = Tr C6. (1)

Additionally, following Ref. [31], we can introduce two
row tensors L and R, which are also shown in Fig. 1(b).
In the infinite system, the tensors C, L, and R are infinite
dimensional, but in the numerical procedure we can truncate
them to a finite dimension by using the spectrum of C as a
guide for truncation. We initialize C, L, and R with their small
lattice analogs and increase the lattice by adding lattice sites.

(a) (b)

(c)

(a) (b)

(c) (d)

FIG. 2. Illustration of computation of different observables with
the CTMRG environments on the honeycomb lattice. (a) Calcula-
tion of the one-site correlator with the impurity tensor Timp, which
characterizes a local observable (e.g., the magnetization). (b) Cal-
culation of the two-point correlator with CTMRG environments.
(c) Observables can be computed with either L or R tensors and the
environments must be equivalent for consistency of the results. (In
practice, this equivalence is ensured by the condition shown in the
figure. This condition holds to high accuracy for the converged CTM
environments.) (d) Definition of the transfer matrix E .

In each step of this increase we perform the updates, which
are illustrated in Fig. 1(c) and can be expressed as

C → LCRT 2, (2)

L → LT 2, (3)

R → RT 2. (4)

The updated matrix C has a dimension χD, where χ is a
dimension of the original matrix C. Next, we need to truncate
the matrix C back to the original dimension χ . To this end, we
diagonalize the matrix C = W DW † and truncate it by using its
eigenspectum (note that here the eigenvalues can be negative
and must be sorted by the absolute value). The Hermiticity
of the matrix C is ensured by the reflection-conjugation sym-
metry of the original tensors T . Alternatively, we can use the
singular value decomposition (SVD). After this decomposi-
tion, the new matrix C is set as C = D, while the matrices
W and W † are absorbed into the updated L and R [see also
Fig. 1(c)]. Finally, we repeat the lattice increasing process un-
til the convergence. The update of the CTM tensors includes
only χ largest eigenvalues of the decomposition, which can be
computed with iterative eigensolvers (or a randomized SVD in
case of the SVD decomposition) to reduce the complexity. In
the case of the randomized SVD decomposition, the compu-
tational complexity scales as O(D4χ3 + D6χ2).

The converged CTM environments enable computation of
both local observables and nonlocal correlation functions.
Figures 1(a) and 1(b) show tensor contractions, which are used
in calculations of the one- and two-site observables. Timp in
Fig. 2 corresponds to the impurity tensor similar to the iPEPS
double-layer site tensor with a spin operator. To obtain the
expectation value of these one- and two-site observables, the
tensor contractions in Fig. 2 must be additionally normalized
by the same contractions with tensors Timp replaced by T .
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Note that the one-site observable is computed only with the
L-type tensors. But from the definitions of L and R tensors
it follows that these quantities can also be computed only
with the R-type tensors (or with some combination of L and
R). For consistency, all these definitions of observables must
agree. In practical calculations, this agreement is enforced by
the equality schematically depicted in Fig. 2(c). This equality
holds to a high accuracy for the converged CTM tensors (the
detailed accuracy slightly depends on the choice of parameters
in the randomized SVD algorithm). Finally, in our iPEPS
calculations we use extrapolation of the results based on the
correlation length scaling. Figure 2(d) defines the transfer
matrix E with the honeycomb-lattice CTM tensors. The cor-
relation length ξ can be computed from the eigenvalues λi of
the transfer matrix E as ξ = −1/log |λ2/λ1|.

B. Heisenberg model

Our variational ansatz for the Heisenberg model is the
iPEPS wave function consisting of uniform and C3v-invariant
tensors A on all sites of the lattice. For the computation of
observables, first, we map the tensor A onto the double-layer
tensor T and then compute the corresponding environments
with the above-specified prescription. Since the tensor is
invariant under rotations and translations, for the energy com-
putation we need only to compute the single-bond interaction
energy, which is mapped onto the two-site correlation function
as described above. We compute this correlation function us-
ing only differentiable operations and then apply backwards
differentiation to obtain the energy gradients in the space
spanned by the original tensor A. These gradients serve for
optimization of the iPEPS tensor A using the limited-memory
BFGS (L-BFGS) method. The implementation also relies on a
set of JULIA numerical packages ZYGOTE, BACKWARDSLINALG,
and OPTIM [19,33].

The gradients are computed using the backward differen-
tiation through the full CTM iteration procedure. This is in
contrast with the more involved but less memory-consuming
differentiation of the fixed-point equations proposed in
Ref. [15]. The CTM iterations consist only of tensor contrac-
tions and SVD or eigenvalue decompositions. For the tensor
contractions, gradients can be defined as for usual multipli-
cations and summations, while for the SVD and eigenvalue
decompositions the gradients can be found in Ref. [34] (gra-
dients for iterative eigensolvers were derived more recently
in Ref. [35]). Note that here the gradients are additionally
symmetrized to prevent the loss of C3v invariance of the iPEPS
tensor A.

We focus on the antiferromagnetic Heisenberg model on
the honeycomb lattice with the Hamiltonian

h =
∑
〈i j〉

Sx
i Sx

j + Sy
i Sy

j + Sz
i Sz

j, (5)

where 〈i j〉 denotes summation over the nearest-neighbor sites
i and j. This model was already studied by means of the
simple update iPEPS [4,36], quantum Monte Carlo simula-
tions [37–40], Schwinger boson mean-field theory [41], series
expansion [42], spin-wave analysis [43], and coupled cluster
method [44].

Energy

10-4

10-3

10-2

1.0 2.00.0 0.3 0.4 0.5

Magnetization
0.38

0.34

0.30

0.26
0.0 0.20.1 0.3 0.4 0.5

FIG. 3. Results of the variational calculations with iPEPS for
the antiferromagnetic Heisenberg model. The energy is plotted with
respect to the extrapolated ξ → ∞ value and demonstrates fast
convergence. The staggered magnetization converges significantly
slower, which is typical for the iPEPS calculations of gapless
systems.

Due to the bipartite structure of the honeycomb lattice, the
ground state is characterized by the antiferromagnetic order
with a two-site unit cell. The model can be mapped into the
model with the single-site unit cell by acting with a unitary
transformation σy on all sites of the one sublattice. Below,
we also restrict ourselves to the real-valued tensors, but do
not use an additional U(1) symmetry. The generalization to
U(1)-symmetric iPEPS can be conducted along the lines of
Ref. [17], where U(1) charges were found from the unre-
stricted optimization.

We perform the iPEPS optimization for the bond dimen-
sions D ∈ [2, 7] and the CTMRG-environment dimensions
χ ∈ [20, 120]. After that, we calculate the observables in
the framework of the honeycomb-lattice CTMRG with the
increased dimension χ of the environment. In particular, we
increase χ up to 200 for the energy and magnetization and up
to 300 in the analysis of the correlation length ξ . The latter
exhibits very slow convergence to its infinite-χ value. For the
extrapolation of ξ to this limit, we use the scaling formula
[45,46]

1

ξ (χ )
= 1

ξ (∞)
+ a log

(
λ2(χ )

λ4(χ )

)
, (6)

where λ2 and λ4 are the second and the fourth largest eigen-
values of the transfer matrix E , respectively [47].

The two main observables are the energy per site
e = 〈h〉/N and the staggered magnetization m ≡ |mi| =√〈Sx

i 〉2 + 〈Sy
i 〉2 + 〈Sz

i 〉2. In Fig. 3 we show results for these
observables depending on the bond dimension D of the op-
timized iPEPS. To extrapolate the results to the infinite-D
limit, we use the dependencies of the magnetization m and the
energy e on the correlation length χ determined in Ref. [45]:

m2(ξ ) = m2(∞) + a

ξ
, (7)

e(ξ ) = e(∞) + b

ξ 3
. (8)

The dependence of the staggered magnetization on the
correlation length ξ is shown in Fig. 4. It clearly shows a
linear behavior in accordance with the scaling formula (7).
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FIG. 4. Dependence of the square of magnetization m2(ξ ) for
D ∈ [3, 7] on the inverse of the correlation length ξ and the result
of the linear fit.

The linear fit yields the value of the magnetization m(∞) =
0.2705(25), which can be compared to m = 0.27 from the
series expansion [42], m = 0.24 from the spin-wave analysis
[43], and to the (seemingly) most accurate Monte Carlo (MC)
result mMC = 0.268 82(3) [38]. The error was estimated from
both the error of the least-squares fit and from partial fits
with the reduced number of points. Note that the values of
magnetization, obtained directly from the optimized iPEPS
wave functions, are noticeably higher (m > 0.28) that par-
tially explains the higher error.

In Fig. 5 we show the dependence of the energy per site
e on 1/ξ 3 for D ∈ [4, 6], which also demonstrates a clear
linear behavior in agreement with Eq. (8). At smaller D (not
shown in the figure), there are deviations from the 1/ξ 3 de-
pendence. For D = 6 we obtain the energy e = −0.544 536,
while the energy extrapolation using the scaling formula (8)
yields e(∞) = −0.544 563(11). The quantum Monte Carlo
prediction is eMC = −0.544 553(20) [37], hence, both the en-
ergy e(ξ ) for D = 6 and the extrapolated e(∞) are within the
MC error bars.

-0.5438

-0.5440

0.60.0
-0.5446

-0.5444

-0.5442

0.80.2 0.4

FIG. 5. Dependence of the energy per site e(ξ ) for D ∈ [4, 6] on
the the third power of the inverse of the correlation length 1

ξ3 and the
result of the linear fit.

(a)

(b)

FIG. 6. (a) The symmetry properties of the tensor A representing
the iPEPS wave function in the Kitaev model. (b) Spatial arrange-
ment of the bonds xb, yb, and zb in the Kitaev model and the definition
of the flux W .

C. Kitaev model

Our CTMRG approach cannot be directly applied to
Hamiltonians with a more general anisotropic structure of
couplings, since it requires a more involved truncation proce-
dure. We leave the development of this truncation procedure
(and also the generalization to the larger unit cells) to future
research. Still, there exists an important class of anisotropic
Hamiltonians, which can be directly simulated with the gen-
eralization of our method. These are Hamiltonians of the
Kitaev model and the corresponding generalizations known
as the Kitaev-Heisenberg and K-� models. The ferromagnetic
Kitaev model has the following Hamiltonian,

H = −J
∑
xb,i j

Sx
i Sx

j − J
∑
yb,i j

Sy
i Sy

j − J
∑
zb,i j

Sz
i Sz

j, (9)

where the sums are taken over certain types of bonds rb =
{xb, yb, zb} on the lattice [see also Fig. 6(b)]. We hereafter fix
J = 1. The model is exactly solvable by the fermionization
procedure [48]. Its ground state at these values of parameters
is a gapless spin liquid with the vanishing magnetization and
the integral of motion W = 1, which is schematically shown
in Fig. 6(b).

From the Hamiltonian (9) it is clear that the model is not
invariant under regular rotations and reflections. However, it
remains invariant under transformations that belong to the
modified symmetry group consisting of rotations and reflec-
tions followed by the unitary transformations on the physical
Hilbert space UC3 R and Up,i pi, where R is the lattice rotation,
and pi is the lattice reflection with respect to the axis i. UC3 and
Up,i are the unitary matrices, which act on the physical Hilbert
space in the way to complete lattice rotations and reflections
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FIG. 7. Dependence of the energy per site e of the Kitaev model
on the inverse of the bond dimension D. The energy is plotted with
respect to the exact value e0 = −0.196 82.

into the model symmetries. These matrices are defined as
follows,

UC3 = − exp

[
i
2π

3

]
(I + iσx + iσy + iσz )/2, (10)

Up,z = − (σx − σy)/
√

2, (11)

where I and σi are the standard 2 × 2 identity and Pauli
matrices, respectively. The matrices Up,y = − exp [i 2π

3 ](σz −
σx )/

√
2 and Up,x = − exp [−i 2π

3 ](σy − σz )/
√

2 are defined
analogously. The model is additionally invariant under the
time reversal, τ = iσyK , where K is the complex conjuga-
tion. It is then natural to require the iPEPS tensor A to be
invariant under the modified Cv3 symmetry consisting of the
simultaneous rotation with the unitary transformation and
reflection conjugation modified to sequential application of
the modified reflection and time reversal τ . This rotation
and rotation-conjugation symmetry fixes the magnetization of
iPEPS to be oriented along the direction (1,1,1) in the spin
space. Note that tensors with the same symmetry properties
were also used in Ref. [49]. The symmetric tensor can be ob-
tained by the application of a projector P of the form P = I +
UC3 R + U 2

C3
R2 + iσ yK (Up,x px + Up,y py + Up,z pz ) on the ini-

tially arbitrary iPEPS tensor As
i jk , where UC3 RAs

i jk = U ss′
C3

As′
ki j

and Up,x pxAs
i jk = U ss′

p,xAs
ik j . The action of this symmetry trans-

formation is shown in Fig. 6(a).
Next, we should mention the following property of the

double-layer tensor T = ∑
s As

i jkA†,s
i′ j′k′ , which enters the CTM

transform: It is invariant under rotations and reflection con-
jugations due to cancellation of the unitary matrices UC3 and
Uσ,i in the double-layer contraction, thus one can apply the
above-specified CTMRG approach to the given iPEPS ansatz,
even if the iPEPS tensors A are not rotationally invariant and
the model Hamiltonian is anisotropic.

The ground-state energy of the Kitaev model (9) is de-
termined with the exact diagonalization in the original paper

[48], where the energy per site is equal to e0 = −0.196 82.
Our results for the energy per site for different values of
the bond dimension D are shown in Fig. 7. In particular, at
D = 6 the energy per site is equal to e = −0.196 807. Other
observables are also comparable to the exact diagonalization
predictions: For D � 4 the magnetization m < 3 × 10−4 and
|1 − W | < 1.5 × 10−4. The correlation length ξ becomes ex-
tremely large, in particular, ξ = 368 at D = 4, meaning that
the iPEPS wave function is nearly critical. Note that our re-
sults at D = 4 are only marginally better than the ones from
Ref. [49], which confirms the efficiency of their loop gas
ansatz.

For more general anisotropic Hamiltonians, it is typically
impossible to use the iPEPS ansatz with the rotationally
invariant two-layer tensor T . Therefore, a more general
CTMRG scheme must be introduced for the anisotropic ten-
sor T , which should include several corner matrices C for
different directions and a new iteration procedure. The same
procedure should be introduced to deal with the enlarged unit
cells. It looks promising to develop the modified CTMRG
scheme for these cases along the lines of Ref. [50].

III. CONCLUSION AND OUTLOOK

In this paper we have realized the iPEPS variational
optimization within the automatic differentiation of the
honeycomb-lattice corner transfer matrix renormalization
group. We tested the method on the corresponding antiferro-
magnetic Heisenberg and ferromagnetic Kitaev models and
obtained the results comparable to the ones from the state-
of-the-art quantum Monte Carlo simulations and the exact
diagonalization approach.

This work opens several future research directions. The al-
gorithm can be naturally applied to the frustrated Heisenberg
antiferromagnets with NNN and even longer-range interac-
tions [51–57]. Upon certain technical modifications, it can
also be employed for the star-lattice geometry [8]. Further-
more, it would be interesting to generalize the method to
larger unit cells [58]. Another possible research direction is
the application of the variational iPEPS to hyperbolic lattice
geometries [20,21], which were recently realized in experi-
ments [59,60].

Finally, the automatic differentiation can be effectively
applied to TRG and its modifications [15,61]. This opens a
way for the variational optimization of iPEPS with the tensor
renormalization.
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