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Recently, honeycomb cobaltates with 3d7 were proposed to display Kitaev physics despite weak spin-orbit
coupling. However, other theoretical and experimental works found leading XXZ Heisenberg and negligible
Kitaev interactions in BaCo2(AsO4)2 (BCAO), which calls for further study to clarify the origin of the discrep-
ancies. Here we derive the analytical expressions of the spin model using strong-coupling perturbation theory.
With tight-binding parameters obtained with ab initio calculations for idealized honeycomb BCAO, we find
that the largest intraorbital t2g-t2g exchange path, which was assumed to be small in the earlier theory proposal,
leads to a ferromagnetic (FM) Heisenberg interaction. This becomes the dominant interaction, as other t2g-eg and
eg-eg contributions almost cancel each other. Exactly the same assumed-to-be-small channel also generates an
antiferromagnetic Kitaev interaction, which then cancels the FM Kitaev interaction from t2g-eg paths, resulting
in a small Kitaev interaction. Under the trigonal distortion, the preeminent isotropic Heisenberg becomes an
anisotropic XXZ model, as expected, which is the case in BCAO. However, when t2g-eg and intraorbital t2g-t2g

hoppings are similar in size such as in Na3Co2SbO6, the Kitaev interaction may become comparable to the
Heisenberg interaction. A way to achieve the Kitaev cobaltates is also discussed.
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I. INTRODUCTION

The Kitaev model, which consists of bond-dependent Ising
interactions on the honeycomb lattice, is exactly solvable,
and its ground state is the Kitaev spin liquid (KSL) with
unusual excitations [1]. Due to the bond-dependent interaction
character, its materialization requires angular momentum and
spin degrees of freedom and their couplings, i.e., spin-orbit
coupling (SOC) [2]. There has been a surge of studies on
Kitaev candidate materials which may exhibit the KSL. The
first proposed candidate was a group of 5d5 iridium oxides
[2–4]. Later, α-RuCl3 [5–8] with 4d5 was suggested to host
the dominant Kitaev interaction despite the reduced SOC
compared to iridates [7]. The single hole on t2g orbitals has
spin S = 1/2 and pseudoangular momentum Leff = 1, giving
rise to the Jeff = 1/2 doublet under strong SOC. The indirect
exchange processes of Jeff = 1/2 via p orbitals lead to the
Kitaev interaction [2].

However, these candidate materials are magnetically or-
dered at low temperatures [3,4,9–14]. This suggests that
additional exchange interactions other than the Kitaev in-
teraction are present. In particular, the Heisenberg inter-
action arising from direct hopping between d orbitals is
non-negligible [15,16]. In addition, another bond-dependent
interaction known as the � interaction [17] is significant in
4d and 5d materials. In real materials further interactions
may appear, such as the �′ interaction, which is generated by
trigonal distortions [18].

Thus, a battle among the symmetry-allowed Kitaev (K),
Heisenberg (J), �, and �′ interactions determines the Kitaev
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materials in which the Kitaev interaction dominates. To build
the Kitaev-dominant systems, Liu and Khaliullin [19] and
Sano et al. [20] proposed to use materials with less extended
3d orbitals, as they may have a smaller d-d hopping integral.
They suggested 3d7 cobaltates would be good candidates de-
spite small SOC in 3d systems. The 3d7 systems have one
hole in t2g (t5

2g) and two holes in eg (e2
g), leading to a total spin

S = 3/2 and total angular momentum L = 1. With SOC, the
lowest state is Jeff = 1/2. It was shown that the t2g-eg channels
generate large antiferromagnetic (AFM) J and ferromagnetic
(FM) K interactions. After taking the eg-eg exchange contri-
bution, a cancellation of the Heisenberg interaction occurs,
which makes the Kitaev interaction dominant. The t2g-t2g con-
tributions to J and K were negligible; see Fig. 2 in Ref. [21].

Motivated by the proposal above, several theoretical and
experimental works have been carried out on various rhom-
bohedral cobaltates [22–32]. Theoretical studies found that
BaCo2(AsO4)2 (BCAO) is better described by the XXZ model
with significant third nearest neighbor (NN) Heisenberg (J3)
interactions but negligible Kitaev interactions [33–36], simi-
lar to an earlier study on BaCo2(PO4)2 (BCPO) [37]. More
recently, a combined experimental and theoretical work [36]
compared the two scenarios, XXZ-J-J3 and JK��′ models, in
detail for BCAO. Using these models, the authors fit high-field
magnon dispersion obtained by inelastic neutron scattering
measurement and showed that the former model fits the exper-
imental data well rather than the latter. These works together
question whether cobaltates fall into the Kitaev candidates and
call for a closer inspection of how the exchange processes add
up or cancel out each other.

In this work we investigate the exchange processes for a
3d7 electron configuration using the strong-coupling pertur-
bation theory and ab initio calculations to address the origin
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FIG. 1. (a) Crystal structure for an edge-sharing honeycomb oc-
tahedral lattice, where M and X represent the transition metal (Co)
and ligand (such as AsO4), respectively. The local octahedral coor-
dinates (xyz) and the global basis (XY Z) are shown. (b) Splittings of
3d7 orbitals under cubic (�c) and trigonal (δ) crystal fields. (c) En-
ergy level splittings of L = 1, S = 3

2 states under SOC ξ .

of the discrepancies among the previous works on BCAO.
Starting from the ideal honeycomb lattice, we find that an
intraorbital hopping channel (denoted by t3) among the t2g-t2g

exchange paths, assumed to be negligible in Refs. [19,20],
is significant. Taking into account this exchange path to-
gether with Hund’s coupling, the FM Heisenberg interaction
is greatly boosted. This becomes the major Heisenberg inter-
action because other contributions from the t2g-eg and eg-eg

paths almost cancel each other. Exactly the same assumed-to-
be-small channel also generates the AFM Kitaev interaction,
which then cancels the proposed FM Kitaev interaction from
the t2g-eg path, resulting in a small Kitaev interaction. We con-
firm a dominant FM Heisenberg interaction in BCAO. Under
the trigonal distortion, the isotropic Heisenberg interaction
becomes an anisotropic XXZ interaction which dominates
over other interactions. On the other hand, in Na3Co2SbO6

(NCSO), the t2g-eg hopping becomes comparable to t3 [31],
which makes the FM Kitaev interaction approximately as
large as the Heisenberg interaction.

The rest of this paper is organized as follows. In Sec. II
we review the on-site Hamiltonian of the Co honeycomb. In
Sec. III we introduce the various direct and indirect hoppings
considered in our model. Section IV introduces the derivation
of the spin Hamiltonian and gives analytical expressions for
various exchange interactions. We present ab initio parameters
and results for BCAO as an example in Sec. V. The effect of
the trigonal distortions is discussed in Sec. VI, and finally, the
discussion and conclusion are given in Sec. VII.

II. ON-SITE HAMILTONIAN

The structure of honeycomb cobaltates is similar to other
edge-sharing octahedral honeycomb materials [see Fig. 1(a)].
For these materials, the on-site Hamiltonian for multiorbital

d7 is expressed by

Honsite = HCoulomb + HCFS + HSOC, (1)

where HCoulomb, HCFS, and HSOC represent the electron-
electron interactions, the crystal field splitting (CFS), and
the SOC, respectively. The total Hamiltonian of the system
includes both Honsite and the tight-binding Hamiltonians dis-
cussed in Sec. III. For simplicity, the isotropic Kanamori
interaction [38] is used and is a good approximation of the
full Coulomb interaction with three- and four-orbital effects
[39–42]. Within this approximation, the HCoulomb is written as

HCoulomb = U
∑

a

na↑na↓ + U ′

2

∑
a �=b,σ,σ ′

naσ nbσ ′

− JH

2

∑
a �=b,σσ ′

c†
aσ c†

bσ ′cbσ caσ ′

+ JH

∑
a �=b

c†
a↑c†

a↓cb↓cb↑, (2)

where a and b represent the orbitals and σ and σ ′ are the
spin ↑ and ↓. U and U ′ are intra- and interorbital Coulomb
interactions, respectively, and JH is the Hund’s coupling.

There are two kinds of CFSs in edge-sharing octahedral
honeycomb lattices. One is the cubic CFS due to the octahe-
dral cage formed by oxygen atoms [see Fig. 1(b)]. It is usually
around 1 eV and is comparable to the Hund’s coupling JH

for 3d orbitals. The other is the trigonal CFS induced by the
trigonal distortion of the two-dimensional (2D) honeycomb
lattice [compression or elongation of the octahedral cages
along Z direction shown in Fig. 1(a)]. This is usually small
(from several meV to several tens of meV). Combining the
two crystal field effects, HCFS is given by

HCFS = Hcubic + Htrig

=

⎛
⎜⎜⎜⎜⎝

�c 0 0 0 0
0 �c 0 0 0
0 0 0 δ δ

0 0 δ 0 δ

0 0 δ δ 0

⎞
⎟⎟⎟⎟⎠ (3)

in the basis of (dx2−y2 , d3z2−r2 , dyz, dxz, dxy). �c is the splitting
between t2g and eg orbitals by the cubic CFS, and δ is the
trigonal distortion.

Due to a large Hund’s coupling, 3d7 forms a high spin state
with total angular momentum L = 1 and total spin S = 3/2.
Under HSOC = λL · S, the lowest states form a J̃ = 1

2 doublet
[see Fig. 1(b)]. Using the basis of |Sz, Lz〉, |J̃z〉 = ±| 1

2 〉 are
given by [19–21,35,43]∣∣∣∣+ 1̃

2

〉
= 1√

2

∣∣∣∣3

2
,−1

〉
− 1√

3

∣∣∣∣1

2
, 0

〉
+ 1√

6

∣∣∣∣−1

2
, 1

〉
,

∣∣∣∣− 1̃

2

〉
= 1√

2

∣∣∣∣−3

2
, 1

〉
− 1√

3

∣∣∣∣−1

2
, 0

〉
+ 1√

6

∣∣∣∣1

2
,−1

〉
. (4)

In this work, we use HSOC = ξ
∑3

i=1 li · si, where ξ is the
atomic SOC strength and i = 1–3 counts the number of holes.
The relation to λL · S, where L = ∑

i li and S = ∑
i si, is
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λ = ξ/3 because there are three holes [44]. The SOC-induced
energy splittings are shown in Fig. 1(c).

III. EXCHANGE PATHS

Having set the on-site Hamiltonian, we now consider the
hopping paths to determine exchange processes. As shown
in Fig. 1(a), bond M1-M2 has C2v local symmetry, and the
symmetry-allowed hopping integrals for the ideal honeycomb
lattice are given by

T dd
i j =

⎛
⎜⎜⎜⎜⎝

t5 0 0 0 0
0 t4 0 0 t6
0 0 t1 t2 0
0 0 t2 t1 0
0 t6 0 0 t3

⎞
⎟⎟⎟⎟⎠ (5)

in the basis of (dx2−y2 , d3z2−r2 , dyz, dxz, dxy). Here dd refers to
the hopping integral between d and d orbitals, and i and j are
nearest neighbor Co sites. t1, t3, t4, and t5 are intraorbital direct
hoppings between dyz/xz, dxy, d3z2−r2 , and dx2−y2 , respectively.
t2 is the hopping between dyz and dxz, which includes both
direct and indirect hoppings. t6 is the hopping between t2g

and eg manifolds and also includes both direct and indirect
hoppings. Hoppings of other bonds are related to the z bond
by C3 symmetry.

The symmetry- allowed p-d hopping integrals between d
orbitals at site i and p orbitals in anions at site j are parame-
terized as [take bond M1-X1 as an example; see Fig. 1(a)]

T d p
i j =

⎛
⎜⎜⎜⎜⎝

√
3

2 tpdσ 0 0
− 1

2 tpdσ 0 0
0 0 0
0 0 tpdπ

0 tpdπ 0

⎞
⎟⎟⎟⎟⎠ (6)

in the basis of (px, py, pz) and (dx2−y2 , d3z2−r2 , dyz, dxz, dxy)†.
The other bond, M1-X2, is related by C2 symmetry about the X
axis. These hopping parameters can be obtained from density
functional theory (DFT) calculations once a target system is
chosen, as we will discuss in Sec. V.

IV. SPIN MODEL

With both the on-site and intersite Hamiltonians, we derive
the spin model using the strong-coupling perturbation theory.
For the edge-sharing ideal honeycomb octahedral lattice, the
generic NN spin model is given by [17]

Hspin =
∑

〈i j〉∈αβ(γ )

JSi · S j + KSγ
i Sγ

j + �
(
Sα

i Sβ
j + Sβ

i Sα
j

)
. (7)

For a bond connecting the nearest neighbor sites i and j, we
distinguish one spin direction γ , labeling the bond αβ(γ ),
where α and β are the two remaining directions. For example,
for the z bond, γ = z, while α and β take x and y. J , K ,
and � are the isotropic Heisenberg, bond-dependent Kitaev,
and bond-dependent off-diagonal terms, respectively. Other
bond-dependent off-diagonal terms such as �′ are forbidden
in ideal circumstances. To determine the relative strength
among them, we present three different types of exchange
processes and show which combinations determine the major
interaction.

FIG. 2. The dominant second-order intersite U process is the
direct hopping between neighboring dxy orbitals.

A. Intersite U process

A virtual hopping of one d electron between neighboring
Co atoms through a second-order process (d7d7-d6d8-d7d7

or d7d7-d8d6-d7d7) can lower the total energy and thus con-
tributes to the spin Hamiltonian. The analytical expressions of
spin interactions from all second-order processes are listed in
Table IV in Appendix B.

The major difference between our finding and the con-
clusion from Refs. [19,21] is the strength of the t3 hopping
integral. In Refs. [19,21], it was assumed that t3 (t ′ in their
notation) is negligible based on less extended 3d orbitals.
However, since 3d systems have a smaller lattice constant, we
expect a large t3 compared to other hopping integrals. Indeed,
the large t3 hopping integral was also reported in a previous
work [35] on BCAO. In the same study, the dependence of the
large t3 hopping integral on the Co-Co bond length in various
other cobaltates was also examined [35].

The t3 associated exchange process shown in Fig. 2 can be
summarized by the following Heisenberg and Kitaev interac-
tions:

J = 2

243

(
− 27

U − 3JH
+ 43

U + JH
+ 8

U + 4JH

)
t2
3 ,

K = 2

81

(
3

U − 3JH
− 7

U + JH
− 2

U + 4JH

)
t2
3 . (8)

Hund’s coupling enters into these expressions explicitly due
to the energy differences between intermediate state d6d8 (or
d8d6) and the initial state (d7d7). When JH approaches zero,

the above equations reduce to J = 16t2
3

81U and K = − 3
4 J , respec-

tively, consistent with Eq. (7) in Ref. [19]. When JH/U >

0.15, the sign of J changes, and it grows quickly due to the
large t2

3 , implying a dominant FM Heisenberg interaction.
This precise path leads to the AFM Kitaev interaction. How-
ever, as we will show below, this weakens the FM Kitaev
interaction from the t2g-eg paths. The combination of these two
results, i.e., incomplete cancellation of J and almost complete
cancellation of K , is a key reason why some cobaltates do not
fall into the Kitaev materials.

As we will show later, the Heisenberg terms from other
exchange paths together further enhance the FM character.
Our work implies that a realization of Kitaev materials in 3d
transition metals is unlikely, as it requires fine tuning to reduce
the intraorbital hopping integral t3.

Our spin interactions from the t2 and t6 processes are con-
sistent with the results reported in Ref. [20]. These channels
play a minor role in the second-order processes. The Kitaev
interaction has both FM and AFM contributions from different
second-order processes. The � interaction involves two cross
terms inside t2g manifolds. The expression for � and the full
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FIG. 3. The dominant two-hole processes with two holes in
(a) the same orbital and (b) different orbital.

expressions for J and K from other hopping paths are listed in
Table IV in Appendix B.

B. Two-hole process

Due to the strong p-d hybridization, contributions from p
orbitals are also important. The processes involving p orbitals
start at fourth order to introduce coupling between neighbor-
ing Co atoms. The single-hole p orbital mediated hopping
processes are already included in the effective d-d hopping
integral, i.e., the intersite U process. The leftover fourth-order
processes are the two-hole and cyclic exchange processes,
which require 34 orbitals, as discussed below.

The two-hole processes include intermediate states when
the two holes are located at one ligand atom simultaneously.
The two holes can be in either the same orbital or different
orbitals. The former leads to AFM Heisenberg contributions,
and the latter prefers FM contributions due to Hund’s coupling
of the p orbitals JH p. The analytical expressions for two-hole
processes are listed in Appendix B. When expanded to the
linear order of JH p, our results are consistent with Ref. [19].
The contributions from the t2g-t2g, t2g-eg, and eg-eg groups
are indicated by their hopping integrals t4

pdπ , t2
pdπ t2

pdσ , and
t4
pdσ , respectively. The two dominant two-hole processes are

illustrated in Fig. 3. Figure 3(a) shows an intermediate state
configuration that is capable of accommodating two holes in
the same orbital. It requires one of the holes to come from the
t2g orbitals and the other to come from the eg orbitals, and the
two holes have opposite spins, leading to an AFM Heisenberg
term. The resulting form of the exchange interaction captures
this process. For example, the Heisenberg and Kitaev interac-
tions from the two-hole contribution denoted by J2h and K2h

contain t2
pdπ t2

pdσ ( 1
�pd

+ 1
�pd +�c

)2. Here the numerator t2
pdπ t2

pdσ

indicates the hoppings between t2g(eg) and p orbitals, while
the denominator shows the energy costs of such intermediate
states, �pd for an electron hopping from t2g to p orbitals and
�pd + �c for hopping from eg to p orbitals. Figure 3(b) shows
a configuration with two holes in different orbitals. A FM
contribution is expected as the two holes prefer to align the
spins parallel due to Hund’s coupling. Notice that the eg-eg

processes do not have Kitaev contributions. This is due to the
cubic CFS that quenches the orbital angular momentum of the
eg orbitals. As analyzed above, the two processes shown in
Fig. 3 have opposite signs and partially cancel each other.

C. Cyclic exchange process

Another fourth-order perturbation process is the cyclic ex-
change process, as shown in Fig 4(a). It has an intermediate
state when each of the two ligand atoms have one hole. Due
to the property of identical particles, we cannot distinguish

FIG. 4. (a) The paths for cyclic exchange processes. The related
paths are obtained by interchanging 12 and/or 3↔4, as well as
reversing the cycle direction. (b) The dominant cyclic exchange
process.

the two holes, and thus, this is a purely quantum mechanical
process. The dominant process is illustrated in Fig 4(b) and
involves both t2g and eg orbitals. As seen in Fig. 4(b), the
geometric effects lead to opposite signs for the hopping in-
tegrals involved in the π process between the px/py and
t2gdxy orbitals. As a result, the Heisenberg interaction in cyclic
exchange processes always has a negative sign, indicating
ferromagnetic behavior.

Combining all the significant processes up to fourth or-
der, only one process [Fig. 3(a)] can give rise to the AFM
Heisenberg interaction. Usually, this process has a magnitude
comparable to that of other paths shown in Fig. 3(b) and/or
Fig. 4(b). Thus, the perfect cancellation of the Heisenberg
interaction cannot be expected generally.

V. APPLICATION TO BCAO

To apply the above theory, we obtain tight-binding pa-
rameters for BCAO using DFT calculations. The calculation
is performed with the Vienna Ab initio Simulation Package
(VASP) [45] with the projector augmented wave [46] potential
and Perdew-Burke-Ernzerhof [47] exchange-correlation func-
tional. The cutoff energy of the plane wave basis is set to
400 eV. The k-point mesh is 5 × 5 × 5. The hopping param-
eters are obtained with spin-unpolarized calculations without
SOC. The WANNIER90 code [48] is used to build tight-binding
models out of the DFT calculation. To discuss both second-
and fourth-order perturbation processes, we build two Wan-
nier models from purely d orbitals and from both p and d
orbitals. The tight-binding parameters are provided in Ap-
pendix A, where hoppings in Tdd and Td p are read out.

We confirm that t3 is the largest hopping integral. We
also note that the indirect hopping between dxz and dyz or-
bitals through p orbitals, i.e., some part of t2 channels (t in
Ref. [19]), cancels the direct hopping channel and is thus
much smaller than t3.

Using the tight-binding parameters and the exchange in-
teractions obtained above, a set of exchange parameters for
an idealized honeycomb BCAO is listed in Table I. Here we
classify the various second- and fourth-order processes into
three groups, depending on whether hoppings are between t2g-
t2g orbitals, t2g-eg orbitals, or eg-eg orbitals. They are denoted
by A, B, and C, respectively; 1, 2, and 3 represent second-
order, two-hole, and cyclic exchange processes, respectively,
following the same notation used in Ref. [19]. Note the domi-
nant Heisenberg interaction but the almost cancellation of the
Kitaev interaction from A1, B2, and B3.
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TABLE I. Exchange interactions for the idealized honeycomb BCAO. We set U = 6 eV, J = 0.2U , Up = 4 eV JH p = 1 eV, �c = 0.9 eV,
and �pd = 3.5 eV. The SOC for Co atoms is 60 meV. Here 1, 2, and 3 are intersite, two-hole, and cyclic exchange processes, respectively. A,
B, and C denote contributions from t2g-t2g, t2g-eg, and eg-eg processes, respectively.

A1 B1 C1 A2 B2 C2 A3 B3 C3 Total

J −5.79 0.04 0.45 0.17 14.37 −6.3 0.1 −11.75 0 −8.7
K 2.47 −0.2 0 0.71 −8.38 0 −1.03 5.87 0 −0.55
� −0.56 0 0 0 0 0 0 0 0 −0.56

As expected from our analysis, the second-order intersite
U process gives rise to a FM Heisenberg interaction. The only
significant AFM Heisenberg interaction comes from the two-
hole processes (B2) with two holes in the same orbital. The
cancellation of Heisenberg interactions is incomplete. Tuning
the local interaction parameters such as U and JH can alter
the numbers but does not affect the qualitative result that the
Heisenberg interaction is dominant.

VI. TRIGONAL DISTORTION

The above results are limited to the ideal system where the
Jeff = 1

2 picture is intact. In materials like BCAO, the trigonal
distortion is present, which modifies the ideal Jeff = 1

2 picture.
In this section, we present how the trigonal distortion alters
the spin Hamiltonian and the relative strength of exchange
interactions.

The trigonal distortion Htrig = δ(3L2
Z − 2) [21] breaks the

Jeff = 1
2 picture, but the lowest states are still doubly degen-

erate and isolated from other energy states for some ranges
of the trigonal-distortion strength δ [35,43]. Since Htrig com-
mutes with the Z component of the total angular momentum
JZ , where Z = [111] in xyz coordinates [see Fig. 1 (a)], JZ is
preserved for a finite δ. It is useful to write the spin model in
the XY Z coordinates.

The spin Hamiltonian in the global XY Z coordinates is
written as (for the z bond)

Hz
spin =

⎛
⎝JXY + D E F

E JXY − D G
F G JZ

⎞
⎠. (9)

Here we use the notation introduced in Ref. [33] where D and
F correspond to A and −√

2B in Ref. [49], respectively, which
are equivalent to Jab and −√

2Jac in Ref. [50]. When the C2v

symmetry along the Y axis is intact, E = G = 0.
Rotating the above Hamiltonian to the xyz coordinates, the

model is given by the familiar JK��′ with a small deviation
if the C2v symmetry is broken:

Hz
spin =

⎛
⎝J + η � �′

1
� J − η �′

2
�′

1 �′
2 J + K

⎞
⎠. (10)

Since the analytical expressions of the exchange inter-
actions including the trigonal distortion are hard to derive,
we present the numerical results in Tables II and III. From
Table II we find the dominant FM XXZ Heisenberg terms
(JXY and JZ ) as expected. D, E , and F serve as additional
anisotropic terms and are negligible. We also find that the
contributions from fourth-order processes (process 2 and 3)

are non-negligible compared with the intersite U second-order
contribution (process 1). Converting to xyz coordinates, we
find the FM Kitaev interactions are overall negligible, as
shown in Table III. Here we ignore the distortion-induced
hopping for simplicity [42,51], which we do not expect to
change the main finding. The result is consistent with the
analysis from the ideal case. Apart from the cancellation of
the Kitaev term between different processes, the inclusion of
the trigonal distortion further weakens the Kitaev term in each
process. Since C2v symmetry is intact, η = 0 and �′

1 = �′
2.

Depending on how the layers are stacked, C2v can be broken,
leading to finite η and different �′ (and a finite E and G),
which are ignored in this study. Other bonds are related to the
z bond by C3 rotation.

VII. SUMMARY AND DISCUSSION

Kitaev materials refer to materials in which the Kitaev
interaction dominates over other symmetry-allowed inter-
actions. Recently, it was suggested that 3d7 honeycomb
cobaltates are Kitaev candidates [19–21], which has extended
our search for the KSL. However, the application of the pro-
posal was questioned by other theoretical and experimental
works on BCAO and BCPO [33–36]. We investigated a possi-
ble origin of the two different proposals, non-Kitaev vs Kitaev
cobaltates.

The original proposal made by Liu and Khaliullin and Sano
et al. [19,20] is based on the idea that the AFM Heisenberg
interaction from the t2g-eg path and the FM Heisenberg in-
teraction from the eg-eg path almost cancel out each other,
while the t2g-eg channel generates a FM Kitaev interaction,
resulting in the dominant Kitaev interaction. These theories
assumed a negligible intraorbital t3 hopping integral. Within
our DFT calculations we found that t3 is the largest hopping

TABLE II. Exchange interactions (in meV) under the trigonal
distortion. Here 1, 2, and 3 are intersite, two-hole, and cyclic ex-
change processes, respectively. We use the same parameters as in the
caption of Table I with the SOC of the Co atom equal to 60 meV and
the trigonal field δ = 40 meV.

1 2 3 Total

JXY −6.91 7.66 −11.88 −11.13
JZ −1.59 2 −3.06 −2.65
D −0.17 0.81 −0.28 0.35
E 0 0 0 0
F 0.01 −0.55 0.55 0.02
G 0 0 0 0
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TABLE III. Exchange interactions (in meV) under the trigonal
distortion in the xyz basis, converted from Table II.

1 2 3 Total

J −5.2 6.3 −9.24 −8.14
K 0.19 −1.58 0.91 −0.47
η 0 0 0 0
� 1.88 −2.17 2.92 2.63
�′

1 1.72 −1.75 2.88 2.85
�′

2 1.72 −1.75 2.88 2.85

integral in BCAO and BCPO, consistent with Ref. [35]. We
also showed that the exchange path associated with t3 turns
the story around. The t3 exchange channel generates FM
Heisenberg and AFM Kitaev interactions. Combined with
other contributions, the FM Heisenberg interaction from the
t3 path becomes the dominant interaction, while the Kitaev
interactions from the t3 and the t2g-eg paths almost cancel out
each other. Applying our theory to BCAO, we found that t3
is, indeed, the largest, consistent with [34], which seems to be
the case for other cobaltates [35]. However, despite the largest
t3 hopping, the t2g-eg (denoted by t6) hopping grows while t3
decreases in NCSO [31]. In this case, the Kitaev interaction
from the t3 channel becomes weaker and cannot compensate
the one from t6, making the Kitaev interaction comparable to
the Heisenberg interaction.

Under the trigonal distortion, the doublet is modified from
Jeff = 1

2 . This leads to additional anisotropic spin interactions.
Experimentally, BCAO exhibits strong anisotropic g factors
[33], implying that the trigonal distortion is relatively strong
compared with SOC for a Co atom. We find that the Heisen-
berg interaction becomes the XXZ type when the trigonal
distortion is introduced, which is rather expected since the
ideal limit has a dominant isotropic Heisenberg interaction.
We did not consider the third NN Heisenberg interaction J3,
as our motivation was to find the origin of the debate over the
dominant NN Kitaev vs Heisenberg interactions. The impor-
tance of J3 can be found in Refs. [34–37].

While a material-dependent analysis is required to take into
account the local environment such as bond lengths and bond
angles, we expect that the significant NN FM Heisenberg in-
teraction is common across the 3d7 cobaltates such as BCAO,
BCPO, NCSO, and Na2Co2TeO6 due to the large intraorbital
hopping integral t3 and Hund’s coupling. However, a target
Kitaev cobaltate can be engineered with effectively reduced
intraorbital t3 and enhanced p orbital mediated hoppings,
which will move the system towards the dominant Kitaev
regime, as proposed in Refs. [19,20]. Future theoretical and
experimental works are needed to discover Kitaev honeycomb
cobaltates.
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APPENDIX A: CRYSTAL STRUCTURE FOR BaCo2(AsO4)2

Honeycomb cobaltates are composed of stacking 2D
honeycomb lattices formed by edge-sharing octahedrons.
We show in Fig. 5 the structure of an example material,
BaCo2(AsO4)2. The most basic feature is the edge-sharing
twin octahedrons, which we emphasized in Fig. 1(a). It is
convenient that we choose d and p orbitals sitting at atom sites
and pointing towards the local basis (xyz) as the starting point
of our analysis.

APPENDIX B: TIGHT-BINDING PARAMETERS

We construct two tight-binding models for BCAO. One
includes only d orbitals of the Co atom. There are in total
10 d orbitals in one unit cell. The on-site Hamiltonian as well
as the hoppings between d-d orbitals obtained from DFT and
Wannier calculations are (in meV)

H10
d =

⎛
⎜⎜⎜⎜⎝

4850.77 0 7.75 8.45 −16.2
0 4850.77 14.24 −13.83 −0.4

7.75 14.24 3952.74 38.87 38.87
8.45 −13.83 38.87 3952.74 38.87

−16.2 −0.4 38.87 38.87 3952.74

⎞
⎟⎟⎟⎟⎠,

T 10
dd =

⎛
⎜⎜⎜⎜⎝
−40.89 0.4 −17.87 34.01 −14.28

0.4 −37.36 −0.43 14.32 45.74
−17.87 −0.43 66.18 −19.62 35.26
34.01 14.32 −19.62 66.49 26.71

−14.28 45.74 35.26 26.71 −295.49

⎞
⎟⎟⎟⎟⎠.
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Another tight-binding model includes both Co d atoms and O p orbitals. There are in total 34 orbitals. The on-site Hamiltonian
for both d orbitals and p orbitals, as well as the direct hopping between d-d orbitals and the hopping between p-d orbitals, are
given as

H34
d =

⎛
⎜⎜⎜⎜⎝

3721.77 0 1.01 3.83 −4.83
0 3721.77 5 −3.37 −1.63

1.01 5 3543.68 10.93 10.93
3.83 −3.37 10.93 3543.68 10.93

−4.83 −1.63 10.93 10.93 3543.68

⎞
⎟⎟⎟⎟⎠,

T 34
dd =

⎛
⎜⎜⎜⎜⎝

−28.31 −9.34 −5.14 5.08 −22.57
−9.34 −45.42 12.23 0.92 −104.37
−5.14 12.23 82.14 −108.02 14.97
5.08 0.92 −108.02 64.46 −9.19

−22.57 −104.37 14.97 −9.19 −249.37

⎞
⎟⎟⎟⎟⎠,

H34
p =

⎛
⎝ 43.28 −890.74 −890.74

−890.74 43.28 −890.74
−890.74 −890.74 43.28

⎞
⎠,

T 34
d p =

⎛
⎜⎜⎜⎜⎝

−1151.92 −61.22 175.07
653.14 36.17 −133.84
5.62 −40.96 1.85

163.59 32.32 625.23
11.17 691.32 28.09

⎞
⎟⎟⎟⎟⎠.

APPENDIX C: J, K, AND � INTERACTIONS FOR AN IDEAL OCTAHEDRAL CAGE

For the Heisenberg and Kitaev interactions the intersite exchange paths are listed in Table IV. There are several paths, and a
detailed balance among them may change the order of the dominant interactions. On the other hand, for the � interaction from
the intersite processes, there are only two contributions from t1t2 and t2t3.

TABLE IV. Intersite U exchange interactions for ideal case.

J K

t2
1

1

486

(
− 171

U − 3JH
+ 259

U + JH
+ 44

U + 4JH

)
1

243

(
45

U − 3JH
+ 11

U + JH
+ 28

U + 4JH

)

t2
2

1

54

(
− 21

U − 3JH
+ 29

U + JH
+ 4

U + 4JH

)
1

243

(
− 81

U − 3JH
+ 73

U + JH
− 4

U + 4JH

)

t2
3

2

243

(
− 27

U − 3JH
+ 43

U + JH
+ 8

U + 4JH

)
2

81

(
3

U − 3JH
− 7

U + JH
− 2

U + 4JH

)

t2
4

100

81(U + 2JH )
0

t2
5

100

81(U + 2JH )
0

t2
6

5

243

(
− 27

U − 3JH + �c
+ 43

U + JH + �c

5

243

(
− 9

U − 3JH + �c
+ 1

U + JH + �c

+ 8

U + 4JH + �c
+ 24

U + 2JH − �c

)
− 4

U + 4JH + �c
− 12

U + 2JH − �c

)

t1t3
4

243

(
18

U − 3JH
− 8

U + JH
+ 5

U + 4JH

)
1

243

(
− 63

U − 3JH
+ 31

U + JH
− 16

U + 4JH

)

� = 4t1t2

81

(
3

U − 3JH
− 7

U + JH
− 2

U + 4JH

)
+ t2t3

243

(
− 63

U − 3JH
+ 31

U + JH
− 16

U + 4JH

)
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The two-hole (denoted by the superscript 2h) and cyclic exchange (superscript cyclic) processes are

J2h =
[

− 80

81

1(
2�pd + Up − 3JH p

) + 304

243

1

(2�pd + Up − JH p)
+ 32

243

1

(2�pd + Up + 2JH p)

]
t4
pdπ

(
1

�2
pd

)

+
[

− 10

27

1

2�pd + Up − 3JH p + �c
+ 250

243

1

(2�pd + Up − JH p + �c)
+ 80

243

1

(2�pd + Up + 2JH p + �c)2

]

× t2
pdπ t2

pdσ

(
1

�pd
+ 1

�pd + �c

)2

+
[

− 200

81

1

(2�pd + Up − 3JH p + 2�c)
+ 200

81

1

(2�pd + Up − JH p + 2�c)

]
t4
pdσ

(
1

�pd + �c

)2

,

K2h =
[

40

81

1

(2�pd + Up − 3JH p)
− 56

243

1

(2�pd + Up − JH p)
+ 32

243

1

(2�pd + Up + 2JH p)

]
t4
pdπ

(
1

�2
pd

)

+
[

− 10

81

1

2�pd + Up − 3JH p + �c
− 50

243

1

(2�pd + Up − JH p + �c)
− 40

243

1

(2�pd + Up + 2JH p + �c)

]

× t2
pdπ t2

pdσ

(
1

�pd
+ 1

�pd + �c

)2

,

Jcyclic =
[

2

81�pd

]
t4
pdπ

(
1

�2
pd

)
+

[
−40

81

1

2�pd + �c

]
t2
pdπ t2

pdσ

(
1

�pd
+ 1

�pd + �c

)2

,

Kcyclic =
[
− 20

81�pd

]
t4
pdπ

(
1

�2
pd

)
+

[
20

81

1

2�pd + �c

]
t2
pdπ t2

pdσ

(
1

�pd
+ 1

�pd + �c

)2

.
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