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Self-consistent solution of magnetic and friction energy losses of a magnetic nanoparticle
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We present a simple simulation model for analyzing magnetic and frictional losses of magnetic nanoparticles
in viscous fluids subject to alternating magnetic fields. Assuming a particle size below the single-domain limit,
we use a macrospin approach and solve the Landau-Lifshitz-Gilbert equation coupled to the mechanical torque
equation. Despite its simplicity the presented model exhibits surprisingly rich physics and enables a detailed
analysis of the different loss processes depending on field parameters and initial arrangement of the particle and
the field. Depending on those parameters regions of different steady states emerge: a region with dominating
magnetic relaxation and high magnetic losses and another region region with high frictional losses at low fields
or low frequencies. The energy increases continuously even across regime boundaries up to frequencies above
the viscous relaxation limit. At those higher frequencies the steady state can also depend on the initial orientation
of the particle in the external field. The general behavior and special cases and their specific absorption rates are
compared and discussed.
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I. INTRODUCTION

The versatile properties of magnetic fluids are very attrac-
tive for applications in biomedicine, for example as contrast
agents, in drug targeting or for hyperthermia [1–6]. The mag-
netic characteristics of the fluid stem from the suspended
single-domain magnetic nanoparticles (MNP). Depending on
the requirements for an application the material properties
have to be chosen carefully and the field parameters need to
be tuned for optimal control and efficiency. For magnetically
induced hyperthermia in cancer treatment the requirement is
to generate as much heat as necessary to destroy cancer tissue.
For this procedure, a magnetic fluid suspension is injected
intratumoral or close to the cancer cells. Then an alternating
magnetic field (AMF) can be used to induce heat in the mag-
netic fluid by stimulating the MNPs and locally destroy the
cancer cells [5,7].

The heat induced inside an MNP by a magnetic AC field is
explained by two processes, the Brownian relaxation [8] and
Néel relaxation [9], and is generated by surface friction and
internal switching of the magnetization. Both processes occur
simultaneously and by analyzing the energy losses due to fric-
tion and magnetic hysteresis, the heating of the single-domain
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MNP in a viscous fluid can each be individually quantified
with the simulation model presented in this paper.

Studying the heating properties of MNPs with experiments
[10–12] and simulations [13–19] is a very active field of
research. Usov et al. [13] and Usadel et al. [14] developed
numerical approaches with a system of coupled kinetic equa-
tions. They found that the behavior of a particle depends on
the field parameters and found two steady states in the zero-
temperature case. Furthermore, the influence of temperature
on the system is a major point in their paper.

In contrast, in our paper the energy dissipation of a mag-
netic particle under athermal conditions is studied. Although
the thermal fluctuations of the system have been omitted,
the self-consistent solution of the coupled magnetization and
mechanical dynamics exhibit rich physics. A large param-
eter study of the field is conducted and dependencies are
discussed in a comprehensive fashion. The influences and
individual contributions of magnetic and viscous relaxation
are analyzed in detail. The emerging two steady states depend
on the dominating relaxation process and lead to turning of
the particle or allow for the switching of the magnetization.
Moreover, while the two steady states can be separated into
two regions in the parameter space of field strength and fre-
quency, we also observed a third region depending on the
initial orientation of the particle’s easy axis relative to the
field axis.

In Sec. II the model and methods to calculate the energy
losses as well as other comparison models are introduced.
The results of the different models and interpretation of such
will be discussed in Sec. III. A conclusion is drawn in the last
Sec. IV.
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II. MODEL

Our system consists of a single-domain MNP in a viscous
carrier fluid. The particle is assumed to be spherical with
an uniaxial crystalline anisotropy. This effectively gives the
particle, although spherically symmetrical, a preferred axis
of the magnetic moment, which is also referred to as the
anisotropy axis or easy axis. In the absence of any external
influence, the magnetization is relaxed and resides in the easy
axis of the particle. When applying an external magnetic field
that is not aligned with the easy axis, the magnetic moment
of the particle will decouple from the easy axis in a manner
that is defined by the Landau-Lifshitz-Gilbert (LLG) equa-
tion [20,21]. The misalignment of the magnetization and the
easy axis exerts a mechanical torque rotating the particle. This
effect is called Brownian relaxation and will lead, again, to
an alignment of the magnetic moment and easy axis with the
external field after some transient time.

Néel and Brownian relaxation together with their respec-
tive time scales are defined for nonzero temperatures. In this
paper the effects of temperature on the system are omitted
and are thus instead called magnetic and viscous relaxation
respectively.

The equation of motion of the magnetization is defined by
the Landau-Lifshitz-Gilbert equation

ṁ = − μ0γ

1 + α2
m × Heff − αμ0γ

1 + α2
m × (m × Heff ), (1)

where m denotes the unit vector in direction of the mag-
netization, α is the Gilbert damping constant, μ0 denotes
the vacuum permeability, γ denotes the gyromagnetic ratio
of the electron γ ≈ 1.76 × 1011 [s−1T−1], and the effective
field Heff. The effective field can be derived from the energy
differential of the total magnetic energy density. The main
contributions to the total magnetic energy density are the Zee-
man, exchange, demagnetization, and crystalline anisotropy
energy. In the macrospin-model only the anisotropy field Hani

and external field Hext are considered in the effective field

Heff = Hani + Hext, (2)

where the external field Hext is an alternating sinusoidal field,
and the uniaxial crystalline anisotropy field is given by

Hani = 2Ku

μ0Ms
(m · n)n, (3)

with the anisotropy constant Ku, the material specific satu-
ration magnetization Ms, and the unit vector n assigned to a
direction of the easy axis of the particle.

Additionally, the Barnett field HB has to be included in the
effective field Heff in the damping term of Eq. (1) to account
for the rotation of the particle and expand the equation to suit
low viscosity fluids [22]

HB = − φ̇

μ0γ
. (4)

φ̇ denotes the angular velocity vector of the particle. Due to
high viscosity the magnetization dynamics are much faster
than the rotation of the particle resulting in a very low effect
of the Barnett field, such that it can be omitted for this paper.

The mechanical equation of motion of the particle, defined
by the rotation of its easy axis n, can be derived from the
conservation of angular momentum and Newton’s laws. The
total angular momentum of the particle consists of the inertial
angular momentum and the angular momentum related to the
magnetization [22]

J = Linert + Lspin. (5)

The angular momentum of the magnetic moment reads

Lspin = −MsVm

γ
m, (6)

where Vm denotes the magnetic volume.
The angular momentum of inertia of a sphere rotating

around its axis is given by

Linert = 2

5
m� r2φ̇ = 2

5
ρ V r2φ̇. (7)

In this equation m� refers to the mass of the particle and the
radius of the particle r. It is denoted with a star and rewritten
as the product of density ρ and volume V in order to highlight
the dependence on the volume and to avoid any confusion with
the magnetic moment m.

An external field applies a driving torque to the system and
simultaneously a viscous torque decelerates the rotation of the
particle leading to changes in the angular momenta that have
to be compensated to conserve the total angular momentum
J̇ = 0. The torque from the external field reads

τmag = μ0MsVmm × Hext. (8)

The standard hydrodynamic result for the viscous torque τvisc

of a spherical object is given by

τvisc = −8πr3η φ̇ = −6V η φ̇, (9)

with the dynamic viscosity of the carrier fluid η.
This results in a balance of external torques and changes of

the internal angular momenta

L̇spin + L̇inert = τmag + τvisc (10)

−MsVm

γ
ṁ + 2

5
ρ V r2φ̈ = μ0MsVmm × Hext − 6V η φ̇,

with the angular acceleration vector φ̈. Note that the LLG can
be inserted in ṁ.

After rearrangement of the terms, an expression for φ̈ can
be found that results in the mechanical equation of motion of
the particle

φ̈ = 5

2

τmag + τvisc − L̇spin

ρV r2
, (11)

φ̈ = 5

2

μ0MsVmm × Hext − 6V η φ̇ + MsVm
γ

ṁ

ρV r2
. (12)

The mixed notation of angular velocity φ̇ and changing rate
of vector ṁ is useful for determining the energy losses in the
next section.

When inserting the LLG into Eq. (12) the magnetic
torque cancels partially in the precession term such that the
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FIG. 1. The Stoner-Wohlfarth astroid. The orange horizontal line
indicates the orientation of the easy axis. The black arrow H indicates
the applied field, with an angle φ relative to the easy axis, while the
long blue arrow M draws a tangent on the astroid to the tip of the field
vector H , which gives the orientation of the magnetic moment of the
particle. It is indicated by the short blue arrow, with angle θ relative
to the field, drawn parallel to the long blue arrow at the center.

expression can be rewritten as

φ̈ = 5

2ρV r2

[
μ0MsVm

1 + α2
(−m × Hani − α m × (m × Heff )

+ α2m × Hext ) − 6V η φ̇

]
. (13)

For α � 1 the damping term and precession due to the
external field vanish. The remaining torque exerted by the
anisotropy field on the magnetic moment can be derived
from the internal energy of the system [13,23]. Alternatively,
omitting the angular momentum of the macrospin leads to a
simplified expression of the mechanical equation of motion
that does not conserve angular momentum but is faster to
compute. But crucially all different expressions are equivalent
when in equilibrium such as at low frequencies and when
the magnetization is not switching. Furthermore, the viscous
torque is overdamping the system justifying those simpler
approaches in some cases.

Unless another torque is acting on the particle, the rotation
of the particle is more or less confined to a two-dimensional
plane apart from the small precession of the magnetization.
This plane is spanned by the initial direction of the easy axis
and the field axis. The behavior of the particle is symmetric
around the field axis.

For the simulations the coordinate system is build such that
the field is aligned with the x axis of the coordinate system and
the easy axis is located in the x-z plane with some initial angle
φ relative to the field (see Fig. 1).

For the numerical time integration of the system the fol-
lowing nine-dimensional state vector x and its time derivative
d
dt x are used

x =
⎡
⎣m

n
φ̇

⎤
⎦ d

dt
x =

⎡
⎣ RHS of Eq. 1

φ̇ × n
RHS of Eq. 12

⎤
⎦, (14)

where the update of the direction of the easy axis can be
calculated by ṅ = φ̇ × n.

Due to the high stiffness of this system the implicit Runge-
Kutta scheme, the Radau solver from the scipy-library, with
adaptive time steps is used in the simulations. The absolute
and relative error tolerance was chosen to be 10−5 and 10−8

respectively. The adaptive time steps are important to join
together the two different time scales of the mechanical and
magnetic dynamics especially the switching of the magneti-
zation. The data is returned at 100 000 equally-spaced time
steps per period for integration of the hysteresis loops.

A. Energy losses

For magnetic systems the dissipated energy of the system
can be calculated with help of the hysteresis loop. In the
steady state the hysteresis loops will be closed and the area of
the hysteresis loop over a cycle c times the magnetic volume
Vm of the particle results in the dissipated energy per period
[8],

Etot = −μ0Vm

∮
c

M(Hext ) dHext. (15)

This is equal to the total work performed on the magnetic
particle.

The magnetic losses can be determined from the energy
dissipation of the magnetization dynamics [24]

Emag = Vm

∮
c

∂E

∂m
ṁ dt . (16)

By using the reciprocity theorem this equation and identifying
the ∂E

∂m = −μ0MsHeff, the effective field, the equation can then
be rewritten to match Eq. (15) but considering the effective
field instead of only the external field

Emag = −μ0Vm

∮
c

M dHeff. (17)

As a consequence of Eq. (2), the friction losses can then be
calculated by considering only the anisotropy field

Efric = μ0Vm

∮
c

M dHani. (18)

Additionally, the angular velocity can be determined from
the state of the particle, which allows for the calculation of the
viscous torque and an alternative calculation of the dissipated
friction energy per cycle

Efric = −
∮

c
τvisc φ̇ dt . (19)

A constant high angular velocity thus maximizes the friction.
Due to the symmetry of the anisotropy and the nature of the
AMF, the arc of the rotation is not a full circle but a half
circle with acceleration and deceleration as the field alternates.
Thus, the particle cannot maintain a constant angular velocity
throughout a cycle of the field. For an AMF the optimal
conditions occur when the particle is close to the viscous
relaxation limit and the particle can remain in motion with
short acceleration and deceleration phases.

We will also use the power dissipation per mass m�, the
specific absorption rate SAR, which is an important measure
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of heating efficiency for magnetic hyperthermia

PSAR = Etotal
f

m�

. (20)

Here, f denotes the frequency of the AMF and m� denotes the
mass of the particle.

B. Comparison models

The hybrid method, which has been developed in this pa-
per, merges two other methods, the immobilized and rigid
method. The hybrid solution is simulated with a nonmagnetic
surfactant layer, which is necessary for bio-compatibility in
medical applications and to prevent aggregation of the parti-
cles, additionally the bulk solution, where the whole particle
volume is magnetized, is also shown. This leads to a stronger
magnetic torque and thus higher angular velocities. For the
hybrid solutions the magnetization is not strictly bound to
the easy axis, but at small field strengths the decoupling of
the magnetization from the easy axis is seemingly minuscule.
Still, this small deviation is expected to represent a more
realistic scenario.

The immobilized method refers to the immobilization of
the easy axis, for example, by increasing the viscosity or en-
closing the particle in a solid material, which then only allows
for motion of the magnetization and thus is a solely magnetic
system. This can be described exactly by the Stoner-Wohlfarth
model for frequencies much smaller than the gyromagnetic
ratio. The particle’s easy axis is fixated in its position and only
the magnetization moves relative to the easy axis. The solution
of the Stoner-Wohlfarth model has to match the results of the
simulated magnetic relaxation.

On the other hand, the rigid solution is a mechanical sys-
tem, where the magnetic moment is strictly bound to the easy
axis. Thus the whole particle rotates like a compass needle
to align with the magnetic field. The full equation of motion
of the hybrid model can only be solved by means of numer-
ical simulations. However, in the limiting case of very high
magnetic anisotropy and omitting inertial effects the system
reduces to the mechanical equation of motion, which allows
for an analytical solution.

We assume the magnetic and viscous torques scale equally
with the size of the particle while the inertial torque at this
scale is many magnitudes smaller and can be neglected [25].
This means that inertial effects stop immediately once a force
or torque stops acting on the body. When the complete particle
can be magnetized then Vm = V , omitting the surfactant layer,
the system of equations can be further simplified to a size- and
mass-independent model with only the scalar magnetic Eq. (8)
and viscous torque Eq. (9),

φ̇ (t ) = −μ0MsH sin (φ) sin (2π f t )

6 η
, (21)

where φ̇ denotes the angular velocity and φ the angle of
the easy axis and the magnetization relative to the field.
The cross product in Eq. (8) has been replaced by sin φ

for the scalar magnetic torque. H is the maximum field ampli-
tude of the external applied field and η is the viscosity of the
fluid. This first order ODE can be analytically solved, which

results in

φ(t ) = 2 cot−1(ek−μ0MsH cos(2π f t )/(12ηπ f ) ). (22)

Because the magnetic moment of the particle cannot decouple
from its easy axis, one angle φ is enough to describe the
orientation of both easy axis and magnetic moment. The in-
tegration constant k can be determined by the initial condition
for φ.

k(φ0) = ln

(
tan

(
π − φ0

2

))
+ μ0HMs

6η

1

2π f
. (23)

In order to compare different calculation methods the initial
angle is chosen to be φ0 = φ(t = 0) = π/2. This leads to the
integration constant

k = μ0MsH/(12ηπ f ). (24)

The five different models, the hybrid model with and with-
out a surfactant layer, the rigid model and its analytic solution
and the immobilized model will be discussed in the next
section.

III. RESULTS

For simplicity we consider the limit of infinite dilution
of the magnetic fluid and simulate one spherical uniaxial
single-domain MNP suspended in a viscous fluid. The par-
ticle is made out of a magnetite-like metal with a saturation
magnetization Ms = 400000 A/m, a density ρ = 5170 kg/m3

and an anisotropy constant Ku = 30000 J/m3. This yields a
anisotropy field of Hani ≈ 120 kA/m. The particle is spherical
with a radius r = 9 nm and an additional surfactant layer
hs = 1 nm. The surfactant layer is considered nonmagnetic
and mass-less (much less dense than the magnetic core of
the particle) and therefore only contributes to the viscous
torque by increasing the surface friction and damping the
movement of the particle. The surrounding carrier fluid has
the dynamic viscosity parameter η = 0.89 mPa, which corre-
sponds to the viscosity of water at 20 ◦C. The dimensionless
Gilbert damping parameter is chosen to be α = 0.08. For
the simulations the parameters are kept mostly consistent and
any deviations from our standard values will be highlighted.
The simulations are run for 100 cycles of the AMF, which
should be enough time for the particle to settle in a steady
state even at frequencies above the viscous relaxation limit.
The particle settles in fewer cycles in its steady state for lower
frequencies.

Concerning the characteristic time scales, at body tempera-
ture of 37 ◦C ≈ 310 K and for a radius of 10 nm the Brownian
relaxation time is about τB ≈ 2.6 µs. This means that the
Brownian relaxation limit is reached at ≈400 kHz. This value
is close to the viscous relaxation limit. The viscous limit τR

varies stronger because it is field strength dependent but it is
of a similar magnitude as the Brownian relaxation limit τB

with a limit between 10 µs and 0.6 µs. The switching time τS in
our model is about a thousand times shorter than the viscous
relaxation time of the particle. The Néel relaxation time for
the magnetic core of radius 9 nm for a temperature of 310 K
is τn ≈ 4 s. This suggests high stability of the magnetic state
and the prevention of the superparamagnetic behavior [26].
In a first comparison of the five different calculation models,
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FIG. 2. Plot of the oscillation of θ in time. Taken for different
initial configurations for a particle with 10 nm radius, a field strength
of 5 kA/m and a frequency of 100 kHz, the trajectories are com-
pared. Here shown: with decoupled magnetization and a surfactant
layer (hybrid), when completely magnetized and no surfactant layer
(hybridbulk ), for the magnetic system (immobilized easy axis), for
the mechanical system (rigid) and the analytic solution. The dashed
light-gray line indicates the amplitude of the field. The initial angle
for all systems was φ0 = 90◦.

the behavior of the orientation of magnetization is shown in
Fig. 2.

A. Dynamics of a mechanical system

Reducing our model to a system of mechanical equa-
tions leads to the rigid method. For the rigidanalytic and rigid
solution the results show periodic behavior, but the particle’s
rotation is very stiff. The particle’s movement is only rotating
into the direction of the initial extension of the field and then
back to its initial position, see Fig. 2. For high frequencies,
much higher than the viscous relaxation limit, and low field
strengths the hybrid method and analytical solution match
well due to the limited rotation of the magnetization and easy
axis and the reduced magnetic torque. The particle in the
hybrid model for field strengths lower than half the anisotropy
field strength will usually oscillate perpendicular to the
field axis.

At low frequencies, when the particle aligns with the field,
it does so in an exponential fashion [see Eq. (22)]. A close
alignment of the particle with the field leads to very small
values for φ and can lead to mismatches of the analytic
solution and in the time evolution of the rigid model due
to numerical inaccuracies. Thus, the results match better at
low fields when the particle is unable to completely relax via
viscous relaxation and align with the field. On the other hand,
especially at higher frequencies and strong fields the magnetic
relaxation dominates for finite anisotropy and the results of the
analytic solution would no longer suffice as an approximation.

Unsurprisingly, this approach cannot exhibit any magnetic
losses and all the losses have to be due to friction. But in this
case the anisotropy field Hani is always zero and the effective
field Heff is always equal to the external field Hext. Equations
(15) and (17) are thus identical while Eq. (18) is always zero.
Therefore, Eq. (19) can be used to calculate the friction losses
and verify the result of the total losses Eq. (15).

FIG. 3. Showing the region of magnetic reversal in the parameter
space of field strength and frequency. In the dark region (switching)
the particle always settles into a switching steady state. This means
the magnetization will continuously switch in the steady state ac-
cording to the oscillation of the AMF. In the transient region the
steady state depends on the initial angle between easy axis and field.
The particle rotates without the switching of the magnetization in the
light region (nonswitching). The horizontal dashed lines indicate half
(≈60 kA/m) and the full anisotropy field (≈120 kA/m).

B. Dynamics of a solely magnetic system

This system only accounts for magnetic losses and is rep-
resented by the immobilized solution, where the easy axis
is unable to rotate. In Fig. 2, the magnetization is highly
restricted in its motion because of the immobilized easy axis
and the magnetization cannot deviate too much from the easy
axis due to the high anisotropy constant. In contrast to the
Stoner-Wohlfarth-model, the angular velocity of the magnetic
moment is finite and does not relax instantaneously. A mis-
match of the results at high frequencies can be expected.

For an immobilized particle the magnetic losses are com-
pletely independent of the frequency until it starts to approach
the magnetization switching limit τS . The energy output is
the same as the particle will always switch at the same field
strength leading to the same hysteresis losses. This system is
not adjustable as it either dissipates no energy or it always
outputs the same energy.

C. Dynamics of the fully-coupled hybrid system

The two prior models show the behavior in the limit of
no friction and high friction to the point of immobilization of
the particle. Friction depends on the viscosity of the medium,
which determines the viscous relaxation time. Thus, the two
models also represent the limits for frequencies well below
and far above the viscous relaxation time. Depending on the
choice of material parameters and field strength, this leads to
two distinct regions and a transient region of steady states, see
Fig. 3.

The variety of steady states can be fundamentally subdi-
vided into two categories: switching and nonswitching. The
regions indicate for which field parameters the magnetic mo-
ment flips or the particle rotates to accommodate for the
change in field intensity. The parameter space can be further
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divided by the anisotropy field strength, half the anisotropy
field strength and the viscous relaxation limit for frequencies.

For an immobilized particle, the dissipated energy depends
highly on the initial angle as predicted by the Stoner-
Wohlfarth model but is generally independent of the fre-
quency. Magnetic relaxation can also be influenced by the
rotation of the particle. A rigid particle, on the other hand,
gets limited strongly by the viscous relaxation limit and thus
has a lower energy output for higher frequencies. Character-
istics of both models will still appear in the hybrid method.
Such as its two possible steady states that are quite similar
to both previously mentioned models and their steady states.
The magnetization-switching behavior of the hybrid method is
similar to the solely magnetic system, while the nonswitching
steady case is reminiscent of the rigid model.

In order to observe the particle transitioning to a steady
state, where it reliably switches the orientation of magneti-
zation, the Stoner-Wohlfarth model [27] can be utilized. The
Stoner-Wohlfarth astroid (see Fig. 1) indicates that, depending
on the alignment of field and easy axis, between half and
the full anisotropy field Hani [see Eq. (3)] strength has to be
at least applied in order to switch the magnetization. The
minimum switching field can switch the magnetization at an
angle of exactly 45◦ between the field and easy axis. Since the
particle is also simultaneously rotating, this strict angle cannot
be maintained. Thus, the particle starts switching its magne-
tization at a slightly higher critical field strength than half
the anisotropy field strength. Above 100 kHz the conditions
are optimal for the magnetization to switch at the weakest
field strength, which is about 65 kA/m or about 0.54 Hani.
Upon reaching the viscous relaxation limit the rotation of the
easy axis is slowed down by the increasing viscous torque.
A similar critical field strength for the transition has also
been found by Usadel et al. [14] and Coene et al. [28]. The
transition to the switching phenomena can thus be generally
observed between 65 kA/m and 120 kA/m. In order to cover
this transition region and also study the low field strength
regime, a range from 1 kA/m to 140 kA/m is chosen.

As a side note, if easy axis and magnetization are perfectly
aligned with the field, the magnetization will actually not
start switching, because at that point the system is perfectly
balanced. Due to thermal fluctuations this situation should
not occur in experiments. In the simulations the symmetry
needs to be broken by very small perturbations to the initial
angle. As previously mentioned, the hysteresis curve for the
external field represents the total energetic losses due to mag-
netic and viscous relaxation during a cycle of the AMF. For
field strengths below half the anisotropy field strength Hani it
is impossible for the magnetization to switch and thus only
allows the particle to relax via viscous relaxation. For inter-
mediate field strengths, between half and the full anisotropy
field, it depends on the field frequency. The hysteresis area
seems to increase monotonically with the field strength at low
frequencies but its shape seems to change as well. If the mag-
netization does not switch, the shape is more rounded while
at higher field strengths, due to the switching of the magneti-
zation, the corners become sharp, see Fig. 4. The switching
leads to a sudden change in magnetization. Afterwards the
particle continues to relax slightly via viscous relaxation as
well. Although time is not resolved in the hysteresis loop, the

FIG. 4. The hysteresis curve in the global frame of reference of
an MNP during a steady state cycle of the AMF for four different
field strengths (50 kA/m to 80 kA/m from the inside to the outside)
at 500 kHz. The particle is simulated with the default parameters. The
simulation includes mechanical rotation and therefore the curve cap-
tures both mechanical and magnetic processes. M/Ms corresponds
to the alignment of the magnetization with the field. Full saturation
is reached when the magnetization is completely aligned with the
field.

difference in time scale for rotation [Eq. (A2)] and magne-
tization switching [Eq. (A3)] means that the particle spends
significantly more time relaxing with viscous relaxation, even
though the switching of the magnetization is mostly respon-
sible for the energy dissipation. The area of the hysteresis
loops in Fig. 4 increases abruptly at high frequencies when
increasing the field strength and transitioning from viscous to
mostly magnetic relaxation. For the lower field strengths the
particle does not reach saturation M/Ms, which means that it
is not able to fully relax via viscous relaxation and the field
is too weak to cause the magnetization to switch via magnetic
relaxation. For stronger fields the magnetic relaxation might
also not lead to a relaxed state at very high frequencies that
approach the magnetization switching limit 1/τS . No matter
the field parameters, the hysteresis loops as seen in Fig. 4 are
always closed.

While magnetic losses can mainly occur if the magne-
tization switches, friction, although very limited, is always
present. And even if no full relaxation is possible, rotation
of the easy axis, albeit marginal, still occurs. The particle will
settle in a steady state of the least energy losses and leads to
an oscillation with small amplitude perpendicular to the field
axis. For weak field strengths the magnetic moment does not
deviate too far from the easy axis, which results in a small
magnetic torque and an almost motionless easy axis. This will
be further discussed in Sec. III E.

The frequency of the AMF thus is also crucial in determin-
ing the behavior of the particle and relates to the time scales
of the viscous and magnetic relaxation. In the simulations
a range 1–10 MHz is chosen because for medical applica-
tions the frequencies are rather low [11] but this range also
shows the transition from viscous to a dominating magnetic
relaxation and at higher frequencies also the emergence of
a configuration that depends on the initial arrangement of
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easy axis and field (see “transient region” in Fig. 3). Low
frequencies allow for effective viscous relaxation, where the
easy axis can align with the field axis in positive and neg-
ative x direction as the field alternates. On rare occasion
the particles magnetization can switch for intermediate field
strengths (60 kA/m to 120 kA/m). These spontaneous switch-
ing events may stem from the length of the time-step and
could be avoided with a higher time resolution. Increasing
the frequency of the field closer to the viscous relaxation
limit, contrary to the previous case, sometimes the particle
is too well aligned with the field such that the magnetization
does not switch at all and remains motionless for one or
more cycles of the field. For slightly higher frequencies the
previous inconsistencies vanish completely and for stronger
field strengths the magnetic relaxation becomes the preferred
relaxation mechanism.

As the viscous relaxation limit is approached, the frictional
losses reach their maximum. Although energy dissipation in
the switching region is mainly dominated by magnetic re-
laxation, at these frequencies there is also still a noticeable
effect of viscous relaxation. Energy losses due to magneti-
zation switching are independent of the frequency, thus the
additional friction contribution leads to the maximum in total
energy losses per cycle. Above the viscous relaxation limit the
losses due to friction drop off and for frequencies, for which
the inverse approaches the magnetization switching time, the
magnetization will be unable to completely relax but the fre-
quencies in our simulations are lower than this threshold.

Figure 5 shows that the friction losses persist even at high
frequencies where magnetic losses dominate, but shrink as
the frequency increases. In the limit of high frequencies the
system approaches the state of a solely magnetic system for
which the surrounding fluid acts as a solid matrix at such
high frequencies. Still, the deflection of the magnetic moment
from the easy axis leads to a nonzero torque on the easy
axis due to the anisotropy and a rotation of the particle and
thus to nonzero friction losses at all frequencies and field
strengths.

These influences of frequency and field are depicted in
Fig. 6. In three plots of the space of field parameters, the
magnetic (a), friction (b), and combined losses (c) are shown.

Even when computing the friction losses by integrating the
viscous torque and the angular velocity [see Eq. (19)], the
sum of viscous and magnetic losses calculated with Eq. (17)
matches the total losses Eq. (15) up to a small difference.
Because of this mutual agreement we concluded that the hys-
teresis loops are closed and correctly describe the total losses.
The difference shown in Fig. 7 is calculated by

�E = 100

Etotal
(Etotal − Emag + Efric ). (25)

The difference is very small (<0.2%). The simulation results
are evaluated for 100 000 equidistant time steps per period in
order to obtain high numerical accuracy.

Including the inertia in the equation of motion Eq. (12) is
important and leads to a different energy landscape although
inertial effects should be negligible at such high viscosity.
But without the inertial term and the spin angular momentum
the particle has lower energy dissipation at lower frequencies
where viscous relaxation dominates and the particle starts to

FIG. 5. The energy loss contributions of magnetic and friction
processes for some sample of frequencies (increasing frequencies
from top to bottom). The losses for calculations without inertia are
also included in a paler shade and with dashed lines.

prefer magnetic switching at higher frequencies, see Fig. 5.
Thus we conclude that the dynamic equilibrium of the coupled
system is more susceptible to inertial effects. Only omitting
the spin angular momentum does not have the same impact.

The behavior of the particle is also influenced by other pa-
rameters such as the saturation magnetization, the anisotropy
and the shape and size of the particle. The anisotropy field
strength is defined by the anisotropy constant and the satura-
tion magnetization, see Eq. (3). The saturation magnetization
and the field strength equally contribute to the calculation
of Hani and thus the results for varying the field strength
can be analogously applied to variation of the saturation
magnetization.

The anisotropy energy is also a determining factor for
the stability of the magnetization when exposed to thermal
influences. Fortunately, the anisotropy energy of the particle
in the simulations is 30 kJ/m3 and thus rather high. Together
with the relatively large size of the particle this results in high
stability against thermal fluctuations and the superparamag-
netic behavior is avoided.
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FIG. 6. The energy losses as generated by magnetic processes (a), friction (b), and the total losses (c) in the space of the field parameters.
The data points are logarithmically scaled according to the frequency. The values are taken for an initial angle φ0 = 45◦. The indicator lines in
the color bars show the minimum and maximum energy value. The color gradients follow the same logarithmically scaling. Thin gray lines at
60 kA/m and 120 kA/m indicate half and full anisotropy field strength respectively.

Apart from the field and material parameters, the fluid
also influences the dynamic behavior of the particle. The
fluid is primarily defined by its viscosity, which limits the
angular rotation of the particle and is a determining factor
for friction and the viscous relaxation time. Increasing the
viscosity leads to switching of the magnetic moment at lower
frequencies, that is, it shifts the switching domain to lower
frequencies, while in the high viscosity limit it approaches the
solely magnetic model discussed in Sec. III B. The specific
absorption rate SAR (see Fig. 8) is the most important result

FIG. 7. The difference of calculating the total energy loss per
cycle directly via the hysteresis or as the sum of magnetic losses
and frictional losses from the angular velocity [see Eq. (19)] shown
as a color gradient. These results are taken from simulations with an
initial angle φ0 = 45◦.

for hyperthermia in order to quantify the heating properties
of the magnetic fluid and defined as the dissipated power per
unit mass, see Eq. (20). In general, the SAR increases with
field strength and frequency. Noticeably for low field strengths
(<30 kA/m) the SAR value drops off because of an insuffi-
cient magnetic torque and for frequencies above the viscous
relaxation limit the SAR value remains almost constant.

D. Initial angle dependency—The transient region

Because of the dependency of the anisotropy field strength
Hani on the angle φ between easy axis and field in the

FIG. 8. The specific absorption rate (SAR) in a phase space di-
agram with logarithmic color scaling. The values are taken for an
initial angle φ0 = 45◦.
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Stoner-Wohlfarth model (see Fig. 1) we were interested to
see if there are any differences in behavior of the particle
depending on the initial angle. In general, every initial angle
φ0 will result in the same steady state after a transient phase
of a few cycles of the AMF. Since the motion of the particle is
confined in a plane the results are also symmetric around the
field axis. During the cycles of the transient phase the particle
can also change its behavior from switching to nonswitching
or vice versa until it settles in the steady state.

If the field is slightly stronger than half the anisotropy
field strength Hani then, at frequencies exceeding the viscous
relaxation limit, two steady states can emerge for the same
combination of field strength and frequency. Depending on
the initial angle the particle can either switch its magneti-
zation or enter a niche steady state of oscillation shown in
Fig. 3 as “transient” region where the magnetization does not
switch and the particle oscillates perpendicular to the field
axis. In case of obtuse initial angles (90◦ − 180◦) the behavior
is similar to simulations with lower field strengths without
magnetization switching. This is unusual since at intermediate
field strengths 0.5Hani < Hext < Hani the steady state should
be a state of switching of the magnetization. This range of an-
gles inhibiting the magnetization switching widens at higher
frequencies.

Since these simulations do not consider interactions be-
tween particles or the temperature, and therefore thermal
activation of the magnetization switching, this nonswitching
steady state might be too fragile to occur in experiments.
Previously balanced states could become less stable if tem-
perature is included and the special case of steady states that
depend on the initial angle could vanish.

At 10 kHz and high field strengths the steady state is
not completely stable and relaxation can alternate in the
simulations between switching and nonswitching of the mag-
netization contrary to the “transient” region. Thus, at the
boundary of the two regimes the steady state is not clearly
defined and stands out in Figs. 3 and 7.

E. Amplitude and average angle of oscillation

At the nanoscale the inertial effects are generally small
such that the easy axis cannot overshoot or perform a full
rotation during one cycle of an AMF. The maximum ampli-
tude of the rotation of the easy axis is 180◦ aligning once in
positive and negative x direction with the field axis. For low
field strengths and frequencies above the viscous relaxation
limit the amplitude shrinks drastically (see Fig. 9). Although
the particle can rotate for small field strengths, it turns very
slowly and thus does not dissipate that much energy due to
friction.

In general, if the particle’s magnetization does not switch
then it oscillates from 0◦ to 180◦ resulting in an average angle
of 90◦, shown in numbers in Fig. 9) for low frequencies.
The average angle remains the same even as the amplitude of
oscillation decreases due to the viscous relaxation limit as the
frequency increases. For very weak fields at high frequencies
the magnetic torque is almost negligible and the easy axis will
remain close to its initial orientation, only oscillating slightly.

On the other hand, for fields exceeding the anisotropy field
strength the magnetization usually switches and the easy axis

FIG. 9. The amplitude of the rotation of the easy axis as a gra-
dient in degrees and the average angle of that oscillation written in
numbers during one cycle of the AMF both given in degrees. The
dashed curve indicates the viscous relaxation limit. The initial angle
in the simulations is φ0 = 45◦.

remains close to the field with a very small amplitude and an
average angle close to 0◦. This holds true in general for high
field strengths, except for frequencies well below the viscous
relaxation limit, where the particle usually does not switch.

IV. CONCLUSIONS

The framework developed in this paper provides the foun-
dation of an elaborate simulation model for magnetic fluids.
By understanding the inner mechanisms of the particles in the
fluid, more sophisticated predictions about the behavior of the
fluid can be derived. Moreover, our model can show various
interesting effects of a magnetic nanoparticle in a fluid, that
simpler models cannot capture. Although for specific cases
simpler models may suffice, better results are usually obtained
by the hybrid method, even though the computational cost
is slightly higher. With the mechanical motion derived from
the conservation of angular momentum and the LLG solving
the magnetization dynamics inside of the particle, it has been
shown for which configuration of field parameters the sim-
ulated particle settles in a switching or nonswitching steady
state. Another transient region in the space of field parameters
in which the steady state depends on the initial angle between
field and easy axis has also been observed and discussed.

Using the hysteresis curves to visualize the change and
the underlying calculations for the energy losses clearly in-
dicate the transition of the heating mechanisms and the total
energy losses. The total dissipated energy increases continu-
ously even as the system transitions from the nonswitching
to the switching steady state. At higher frequencies this tran-
sition is more abrupt due to the viscous relaxation limit and
the reduced frictional losses. The magnetic hysteresis losses
remain mostly independent of the frequency since they are
caused by the irreversible switching of the magnetization,
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which depends mostly on the field strength. For that reason,
the maximum energy losses are achieved when the viscous
relaxation can be maximized as viscous relaxation is always
present. This maximum total energy loss is reached shortly be-
fore reaching the viscous relaxation limit at around 100 kHz.
The behavior of the easy axis and the magnetization have been
thoroughly discussed and the results solidify this model as a
model to study the physics of a magnetic fluid.

The SAR value has been found to increase monotonously
with increasing field and frequency, however, for very low
field strengths and frequencies over the viscous relaxation
limit the SAR value remains almost constant.

Our future studies will focus on the further variation of the
material and fluid parameters. This includes the shape of the
particle, which could introduce an additional anisotropy factor
and would also change the viscous torque on the particle. And
although for the simulations the viscosity of water was chosen
in this paper, a more realistic fluid would be blood (at 37 ◦C),
which is more viscous. Furthermore, thermal fluctuations not
only influence the magnetization but can also change the
size of the particle and the viscosity of the fluid and will be
necessary to include in further studies.
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APPENDIX A: CHARACTERISTIC TIME SCALES

An important metric to estimate the influence of the me-
chanical and magnetic dynamics and their influence on the
power loss is given by the characteristic relaxation time con-
nected to the respective process. The Brownian relaxation
time τB is defined as the following:

τB = 3ηV

kBT
, (A1)

here η denotes the dynamic viscosity, V is the hydrodynamic
volume of the MNP, kB is the Boltzmann constant, and T is
the temperature of the system.

Due to the zero-temperature approach in this paper, an al-
ternative description for the rotation limit can be derived from
setting the magnetic torque Eq. (8) equal to the viscous torque

Eq. (9) and by rewriting φ̇ = ω = 2π/τR and maximizing it.
This yields the viscous relaxation time

τR = 12πV η

μ0MSVmH
, (A2)

which gives the limit for the rotation depending on the field
strength.

The time it takes for the magnetization to switch its orien-
tation via the LLG Eq. (1) is given by [29]

τS = 2

μ0γ H

1 + α2

α
. (A3)

The magnetization switching time is much shorter than the
viscous relaxation limit.

The Néel relaxation time τN is the average lifetime of the
magnetic state in absence of an external field and is derived
from the Néel-Arrhenius law [9]

τN = τ0 exp

(
KuVm

kBT

)
. (A4)

τ0 is the so-called attempt time and denotes the time frame
that the magnetization should remain stable. In this case, the
inverse of the frequency of the AMF marks the attempt time
since the particles magnetization should not switch due to
thermal fluctuations for the duration of at least one cycle. The
relaxation time is defined by the ratio of the anisotropy energy
of the particle KuVm and the thermal energy kBT .

APPENDIX B: MAGNETIZATION SWITCHING
FIELD STRENGTH

In the analysis of energy losses, the field strength neces-
sary to switch the magnetization has to be considered. The
astroid derived from the Stoner-Wohlfarth model [27] (see
Fig. 1) allows to geometrically determine the orientation of
the magnetic moment when an external magnetic field is ap-
plied. The astroid itself also indicates the field strength that
is necessary to switch the magnetization in the particle. The
required field strength to overcome the anisotropy barrier is
the anisotropy field Hani see Eq. (3). Sharrock [30] derived
an elaborate method to analyze the thermal influence on the
switching fields

HS = HSW

{
1 −

[(
kBT

KuVm

)
ln

t

τN

]n}
, (B1)

where n is a factor dependent on the angle between the field
and the easy axis. Setting the temperature T to zero yields a
coercive field same as the switching field of Stoner-Wohlfarth
HSW. Thus, in the limit of 0 K temperature our model holds
true. For finite temperatures the anisotropy field strength over-
estimates the critical switching field.
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