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A numerical analysis on the computational capability of physical reservoir computing utilizing a spin-torque
oscillator with two free layers is reported. Conventional spintronics devices usually consist of two ferromagnets,
where the direction of magnetization in one layer, called the free layer, can move while that of the other, the
reference layer, is fixed. Recently, however, devices with two free layers, where the reference layer is replaced by
another free layer, have been developed for various practical applications. Adding another free layer drastically
changes the dynamical response of the device through the couplings via the spin-transfer effect and the dipole
magnetic field. A numerical simulation of the Landau-Lifshitz-Gilbert equation and a statistical analyses of the
Lyapunov exponent and the synchronization index reveal the appearance of an amplitude-modulated oscillation
and chaos in the oscillators with two free layers. Such complex dynamics qualitatively change the computational
capability of physical reservoir computing because the computational resource is dynamics of the physical
system. An evaluation of the short-term memory capacity clarifies that oscillators with two free layers have
a larger capacity than those of conventional oscillators. An enhancement in capacity near the edge of echo state
property, i.e., the boundary between zero and finite synchronization index, is also found.
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I. INTRODUCTION

Recent developments in spintronics applications, such
as brain-inspired computing [1], have led to a variety of
device structures and materials [2]. For example, giant-
magnetoresistive (GMR) [3–5] and tunnel-magnetoresistive
(TMR) [6–12] structures that include ferromagnets, called
free and reference layers, have been used in magnetic sensors
and memories [13]. The magnetization in the free layer can
change its direction when a magnetic field and/or electric
current is applied to it [14,15]. On the other hand, the ref-
erence layer often consists of two ferromagnets separated by
a thin nonmagnetic spacer, and the antiferromagnetic inter-
layer exchange coupling between them strongly fixes their
magnetization directions. Moreover, GMR and TMR devices
with two free layers, where the reference layer is replaced
by another ferromagnet without pinning effects, have recently
been investigated for new applications such as high-density
magnetic recording [16], probabilistic computing [17], and
millimeter-wave generator [18]. In such devices, the coupled
dynamics of the magnetizations of the two free layers that
arise through the via spin-transfer effect and magnetic dipole
field provide new functionalities.
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A critical difference in the magnetization dynamics be-
tween a GMR/TMR device with a single free layer and a
device with two free layers is the appearance of chaos in the
latter structure because of the increased dynamical degrees of
freedom [19–22]. In particular, devices with two free layers
might be applicable to physical reservoir computing [23–27],
which is another new application of spintronics technology.
Physical reservoir computing is a kind of recurrent neural
network in which a reservoir, which is a physical nonlinear
system, performs a computational task; for example, a spin-
torque oscillator (STO) has been applied to the task of human
voice recognition [28]. Since physical reservoir computing
utilizes dynamical output signals from a physical system as
a computational resource, the recent research has viewed the
relation between the computational capability and the dynam-
ical state of the physical system to be of central importance
[27]. Such investigations in spintronics [29,30] have recently
focused on computing near the chaotic state because the edge
of chaos sometimes provides a boundary of high computa-
tional capability [31,32]. Therefore, due to the appearance of
chaos, the computational performance of physical reservoir
computing by using an STO with two free layers might be
also different from that of an STO with single free layer.

In this paper, we evaluate the computational performance
of STOs with two free layers by performing numerical sim-
ulations of the Landau-Lifshitz-Gilbert (LLG) equation. We
consider the three structures, schematically shown in Fig. 1.
The first one, in Fig. 1(a), is a conventional GMR or TMR
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FIG. 1. Schematic illustrations of the device structures studied in this paper. The unit vectors pointing in the magnetization directions of
the free and reference layers are denoted as m and p. A suffix i = 1, 2 is added to m when the device includes two free layers. (a) Conventional
GMR/TMR structure consisting of one free and one reference layer. The output signal through the GMR/TMR effect is proportional to
m · p = mx . (b) Device consisting of two free layers, F1 and F2. The output signal is proportional to m1 · m2. (c) Device consisting of two free
layers, F1 and F2, and one reference layer. The output signal is proportional to m1 · p, assuming that the GMR/TMR effect between F1 and
reference layer is dominant. The directions of positive current density and the external magnetic field are indicated by arrows.

system, which consists of one free layer and one reference
layer. The second structure, in Fig. 1(b), consists of two
free layers, where the magnetizations of both layers can
change their directions through the spin-transfer effect and
the dipole coupling. The third structure, in Fig. 1(c), includes
three ferromagnets; two are free layers and one is a reference
layer. We find that the first structure shows a saturation to
a fixed point, while the second and third structures show
a wide variety of dynamics, such as amplitude-modulated
oscillation and chaos. These dynamical states are classi-
fied systematically by measuring the Lyapunov exponent
and synchronization index, which are measures for iden-
tifying chaotic dynamics and the echo state property. In
addition, the short-term memory capacity is evaluated as a
figure of merit of the computational capability. It is found
that the STOs with two free layers have larger capaci-
ties than that of the STO with a single free layer. An
enhancement in capacity near the edge of the echo state
property, i.e., the boundary between zero and finite syn-
chronization index, is also observed in the STOs with two
free layers.

The paper is organized as follow. Section II examines the
dynamical state of the magnetization, short-term memory ca-
pacity, Lyapunov exponent, and synchronization index of an
STO with a single free layer is studied, while Secs. III and
IV examine those features of an STO consisting of two free
layers and an STO with two free layers and one reference
layer. Section V is the conclusion.

II. STO WITH SINGLE FREE LAYER

Here, we analyze the dynamics of a conventional STO con-
sisting of a free and reference layer by the LLG equation and
summarize the methods of evaluating the short-term mem-
ory capacity, Lyapunov exponent, and synchronization index.
We use the macrospin LLG equation based on the model in
Ref. [20], where the accuracy of the macrospin model was
verified by the comparison with the experiment [16]. The
results will be compared to those of STOs with two free layers
in Secs. III and IV.

A. LLG equation of STO with single free layer

The STO is schematically shown in Fig. 1(a). The unit
vectors pointing in the magnetization direction of these lay-
ers are denoted as m and p, respectively. The magnetization
dynamics in the free layer are described by the LLG equation,

dm
dt

= −γ m × H + γ Hsm × (p × m) + αm × dm
dt

, (1)

where the magnetic field H consists of the shape magnetic
anisotropy field and an external magnetic field Happl applied
along the perpendicular (z) direction,

H =
⎛
⎝ −4πMNxmx

−4πMNymy

Happl − 4πMNzmz

⎞
⎠. (2)

The demagnetization coefficients are denoted as N� (Nx +
Ny + Nz = 1). The spin-transfer torque strength is

Hs = h̄η j

2e(1 + λm · p)Md
, (3)

where M and d are the saturation magnetization and the
thickness of the free layer. The spin polarization of the cur-
rent density j is η, while λ provides the spin-transfer torque
asymmetry [14]. A positive current corresponds to a flow
of electrons from the reference to the free layer. The values
of the parameters are M = 1300 emu/cm3, η = 0.30, λ =
η2, d = 2 nm, γ = 1.764 × 107 rad/(Oe s), α = 0.010, and
Happl = 1.0 kOe. The demagnetization coefficients are [33,34]

Nz = 1

τ

{
3

4π
− 3

4π

√
1 + τ 2

[
τ 2K

(
1√

1 + τ 2

)

+ (1 − τ 2)E
(

1√
1 + τ 2

)]
+ τ

}
, (4)

and Nx = Ny = (1 − Nz )/2, where τ = d/(2r) and r = 50 nm
is the radius of the free layer. Here, we assume that the
layer has a cylinder shape. The first and second kinds of
complete elliptic integral with the modulus k are K(k) =∫ π/2

0 dφ/
√

1 − k2 sin2 φ and E(k) = ∫ π/2
0 dφ

√
1 − k2 sin2 φ.

Furthermore, we assume that the magnetization in the ref-
erence layer points to an in-plane (x) direction, i.e., p = êx,
where ê� is the unit vector in the � (� = x, y, z) direction.
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FIG. 2. Examples of dynamics of the in-plane (mx) and out-of-
plane (mz) components of magnetization for current densities of
(a) 100 and (b) 450 MA/cm2 in an STO with a single free layer.

Figures 2(a) and 2(b) show typical magnetization dynamics
for low ( j0 = 100 MA/cm2) and high ( j0 = 450 MA/cm2)
current densities. Starting from the steady state in the absence
of a current, where mz = Happl/(4πMNz ), the magnetization
eventually saturates to fixed points. When the magnitude of
the current is small, the magnetization points to the direc-
tion orthogonal to the x axis, i.e., mx becomes zero, for
the following reason. The steady point is determined by the
condition dm/dt = 0, which, in the present case, means that
H − Hsp × m = 0. Since Nz � 1, Nx, Ny � 1 and 4πMNz �
Happl, the magnetic field H mainly points in the z direction.
Then, because p points to the x direction, the magnetization m
should point in the y direction in order to satisfy H − Hsp ×
m = 0. Thus, the magnetization saturates to a fixed point of
|my| � 1, as shown in Fig. 2(a). When the current magnitude
becomes large, the magnetization moves to different fixed
points, where, because of the strong spin-transfer torque, the
magnetization becomes close to parallel or antiparallel to the
magnetization in the reference layer, depending on the sign of
the current. In the present system, a positive current prefers
the parallel alignment of m and p, and therefore, the mag-
netization saturates to a fixed point with mx > 0 for the case
shown in Fig. 2(b).

In the next section, we study magnetization dynamics in the
presence of a series of random input signals. The dynamical
response to such input signals was used in a recognition task in
physical reservoir computing [35,36]. There, it is necessary to
specify the quantity to be used as the output signal. The output
signal from the present STO depends on the magnetization
direction in the free layer along the direction of the magneti-
zation in the reference layer, i.e., m · p, due to the GMR/TMR
effect. Therefore, we will choose to use m · p = mx as the
output signal used for computing.

B. Short-term memory capacity

We will quantify the computational capability of the STO
by its short-term memory capacity. The short-term memory
capacity corresponds to, roughly speaking, the number of
input data a physical reservoir can recognize. Therefore, a
large short-term memory capacity corresponds to a high com-
putational performance; see also Sec. V, where the relation
between the short-term memory capacity and the total compu-
tational capability is briefly explained. In the present paper, we
suppose a binary pulse-input signal bk = 0, 1 (k = 1, 2, · · · )
[35–37] with a pulse width of tp, which is added to the current
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FIG. 3. Dependence of short-term memory capacity on current
density for an STO with a single free layer.

density as

j = j0(1 + νbk ), (5)

where the dimensionless parameter ν quantifies the strength of
the input signal, while j0 is the current density for bk = 0. In
the following, we refer j0 as the current density for simplicity,
while j is referred as the total current density. The suffix k
distinguishes the order of the input data. The values of ν and
tp are assumed to be 0.2 and 1.0 ns. The input signal to the
current changes the magnetization dynamics through modula-
tion of the spin-transfer torque. The details of the evaluation
method are summarized in Appendix A (see also, for example,
Ref. [36]).

Figure 3 summarizes the current dependence of the short-
term memory capacity. High performance is obtained when
the magnitude of the current is relatively small and the mag-
netization points in a direction orthogonal to the x axis; see
also Fig. 2. The maximum value of the short-term memory
capacity is 4.02 at j0 = −168 MA/cm2. The step-like behav-
ior in the large current region is similar to that observed in
a different STO [38]. When the current density j0 is zero,
the short-term memory capacity is zero because, according to
Eq. (5), the total current is zero even if bk is finite, and thus, the
input signal does not cause any change in the magnetization
state. In the following, we evaluate the Lyapunov exponent
of the STO and show that such a current dependence of the
short-term memory capacity relates to a relaxation time of the
magnetization to the fixed point.

C. Edges of chaos and echo state property

Since we aim to reveal the relation between the com-
putational capability and dynamical state and quantify this
capability by the short-term memory capacity, it becomes
necessary to introduce quantities distinguishing the dynamical
state. We will use the Lyapunov exponent [21,39,40] and
the synchronization index [29] for this purpose. While their
evaluation methods are described in Secs. II D and II E, here,
let us briefly explain their roles and differences.
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The Lyapunov exponent is the inverse of the time scale of
the expansion of the distance between two solutions to the
LLG equation with slightly different initial conditions [41].
While the number of the Lyapunov exponents is the same
with that of the dynamical degree of freedom, the Lyapunov
exponent focused in this paper corresponds to the largest Lya-
punov exponent; see also Appendix B. When the Lyapunov
exponent is negative (positive), the difference between the
states decreases (increases) relative to that of the initial state as
time increases. Therefore, a system with a positive Lyapunov
exponent has a high sensitivity to its initial state. Typical
dynamics for negative, zero, and positive Lyapunov exponents
are a saturation to a fixed point, a limit-cycle oscillation, and
chaos, respectively [41].

The Lyapunov exponent often changes value and even sign
when the system parameters are changed [41]. The boundary
between a zero and positive Lyapunov exponents is called the
edge of chaos. There are methods to evaluate the Lyapunov
exponent from numerical simulations of the equation of mo-
tion [42–46]. There are also statistical methods that evaluate
the Lyapunov exponent from time-series data [47–50]. While
statistical analyses have frequently been used for analyzing
experimental data, they have restrictions; for example, some
[49,50] can only evaluate positive Lyapunov exponents, i.e.,
only the edge of chaos can be identified, while the boundary
between negative and zero Lyapunov exponent cannot be es-
timated. The present paper quantifies the Lyapunov exponent
through numerical simulations; thus, it identifies all possible
values of the exponents, i.e., negative, zero, and positive.

The synchronization index [29] is a long-time average of
the distance between two independent samples of the magne-
tization, which obey the same LLG equation but have slightly
different initial conditions. The synchronization index be-
comes zero when the dynamical state becomes independent
of the initial state as time goes on. In an autonomous system,
the synchronization index tends to be zero when the dynamics
saturate to a fixed point. An example is magnetization switch-
ing, where the magnetization eventually points in a certain
direction. On the other hand, when the magnetization is, for
example, in an auto-oscillation state, the difference between
the states in the oscillation phases will never decrease below
the initial difference because the two magnetizations oscillate
with the same frequency. In such a case, the synchronization
index remains finite.

The situation changes when a time-dependent signal is in-
jected. For example, in the case of a periodic input signal, e.g.,
as in forced synchronization [51], the phase of the magnetiza-
tion is fixed with respect to that of the periodic input signal. In
this case, the synchronization index becomes zero even if the
magnetizations are in an oscillating state. Another example
of a time-dependent input signal is a random signal, which
is used in physical reservoir computing, as mentioned in
Sec. II B. In this case, nonlinear oscillators often show noise-
induced synchronization [52–57], and the oscillating state
of the magnetization eventually becomes independent of the
initial state. Then, the synchronization index becomes zero.
In particular, noise-induced synchronization is of interest in
physical reservoir computing because this synchronization
behavior in at physical system guarantees the echo state prop-
erty [58]. The echo state property is a necessary condition

guaranteeing the computational reproducibility, wherein the
dynamical state of the physical reservoir becomes indepen-
dent of the initial state by injecting random input signals as
washout (see also Appendix A); therefore, the physical reser-
voir always provides the same answer for the same task. The
boundary between zero and finite synchronization indexes
will be called the edge of the echo state property.

One might imagine that the edge of the echo state property
can be identified from the boundary between negative and
zero Lyapunov exponent. Here, saturation to a fixed point
is an example of magnetization dynamics corresponding to
a negative Lyapunov exponent and auto-oscillation to a zero
Lyapunov exponents; according to the above discussion, sat-
uration to a fixed point should lead to a zero synchronization
index and auto-oscillation to a nonzero index. Therefore, one
might imagine that it is unnecessary to evaluate the syn-
chronization index. However, in other cases, knowing the
Lyapunov exponent is not sufficient to clarify the edge of
the echo state property for the following reasons. First, the
Lyapunov exponent in this study is, strictly speaking, the
maximum Lyapunov exponent, which corresponds to the ex-
pansion rate in a direction along which the difference between
the initial states grows the most. Second, in many cases, only
some of the dynamical variables are used for computing. For
example, the dynamical variable used for computing some-
times has the echo state property even though the maximum
Lyapunov exponent is zero. Such an example will be shown
in Sec. III below.

From the above it is clear that the Lyapunov exponent and
the synchronization index are similar but slightly different
quantities. The former determines the edge of chaos, while
the latter determines the edge of the echo state property. A
periodic oscillation state is an example of a dynamical state
separating these edges, which does not have the echo state
property and is nonchaotic. While the computational capabil-
ity of the optical physical reservoir computing presented in
Ref. [32] is maximized at the edge of chaos, Ref. [27] argues
that chaos is not necessary for the computational capability to
be enhanced; rather, the edge of the echo state property often
corresponds to an optimization condition. Moreover, although
these two edges might overlap in some cases [29], this is not
guaranteed to happen in all cases. In the present paper, there-
fore, we estimated these edges from the Lyapunov exponent
and the synchronization index, and studied their relation to
the computational capability.

D. Lyapunov exponent

Let us study the Lyapunov exponent of the present STO
(see also Appendix B). The Lyapunov exponent is defined as

Λ = lim
NΛ→∞

1

NΛ

NΛ∑
i=1

1

�t
ln

D (ti )

ε
, (6)

where �t is the time increment of the LLG equation. Here, ε

is the distance between two solutions of the LLG equation at
every time step, while D is the distance after the time incre-
ment (�t) passes. We will use the relative angle of the two
solutions as the distance D (t ); see Appendix B. Note that D/ε

is the expansion rate of the distance ε, while the Lyapunov
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FIG. 4. (a) Dependence of Lyapunov exponent on current density
for an STO with a single free layer. (b) Time evolution of synchro-
nization index at current density of 100 MA/cm2. The inset shows
that for 450 MA/cm2.

exponent describes an exponential evolution of the distance
between the two solutions, D ∼ εeΛt .

The dependence of the Lyapunov exponent on the current is
summarized in Fig. 4(a). The exponent is negative throughout
the entire current region because the magnetization moves
to a fixed point. Note that the past information can only
be recognized when the output of the system changes with
respect to the input signal; if the physical system does not
react to an input signal and thus, the output signal is constant,
we cannot identify the input signal from the output signal.
Thus, the short-term memory capacity is often large when
the magnitude (absolute value) of the Lyapunov exponent
is small. This is because a small Lyapunov exponent cor-
responds to a slow saturation to a fixed point, wherein the
history of the input signal is well reflected in the dynamics.
When the Lyapunov exponent is a large negative value, the
magnetization immediately saturates to a fixed point, and the
output signal immediately saturates to a constant. Therefore,
the short-term memory capacity is small when the exponent is
a large negative value. The Lyapunov exponent is zero when
the current density j0 is zero because, as mentioned above,
the input signal does not drive any dynamics in this case, and
thus, the magnetization stays at a fixed point.

As can be seen from the above, there is a correspondence
between the computational capability, quantified by the short-
term memory capacity, and the dynamical state, characterized
by the Lyapunov exponent. However, since the Lyapunov
exponent in this case is only negative, the above results re-
veal only part of the correspondence. Note that, according
to a mathematical principle, namely the Poincaré-Bendixon
theorem, the Lyapunov exponent of an STO with a single
free layer is negative or zero [59]. Adding an another free
layer breaks this mathematical restriction and leads to an
appearance of chaos. In so doing, a correspondence between
the computational capability and the dynamical state of the
magnetization will appear.

E. Synchronization index

Here, let us study the synchronization index of the STO
with a single free layer (see also Appendix C). The synchro-
nization index is defined as

S = lim
Ns→∞

1

Ns

Ns∑
i=1

D(ti ), (7)

where Ns is the number of samples used to evaluate the long-
time average of the distance D(t ) between two solutions of
Eq. (1) with slightly different initial conditions.

Note that the distance D here is different from D used
in Sec. II D in the following sense. In the evaluation of the
Lyapunov exponent, a perturbation with magnitude ε is in-
cremented at every time step by �t ; see Appendix B. On the
other hand, in the evaluation of the synchronization index, a
perturbation is added only to the initial sate; see Appendix C.

We should also note that the distance D here is defined
in terms of the dynamical variable used as the output signal;
i.e., D = |m(1)

x − m(2)
x |, where m(1)

x and m(2)
x are the solutions

of mx obtained from the LLG equation, Eq. (1), with slightly
different initial conditions. In Secs. III B and IV B, D will be
defined in different ways because the output signals from the
different STOs depend on different variables. The definition
of the synchronization index is different from that in the
previous paper [29]. For example in Ref. [29], the distance
D is measured in the whole phase space, and is not evaluated
from mx only. The reason why we define the synchronization
differently from the previous work relates to the fact that
not all the variables contribute to the output signal used for
computing, as mentioned in Sec. II C. The difference in the
definition of D is not important in this section; but it will be
important in Sec. III B; see also Appendix C.

Figure 4(b) shows the time evolution of the temporal syn-
chronization index SNs = (1/Ns )

∑Ns
i=1 D(ti ) for a low current

density, j0 = 100 MA/cm2, where S in Eq. (7) corresponds to
limNs→∞ SNs . The synchronization index tends to zero as time
increases, as expected from the dynamics shown in Fig. 2,
where the magnetization saturates to a fixed point. Satura-
tion to zero is also observed for a large current density of
450 MA/cm2, as shown in the inset of Fig. 4(b). We observe
similar behavior for the other current density, and find that the
synchronization index is zero over a wide range of current
density (not shown). These results indicate that the output
signal (∝mx) eventually becomes independent of its initial
state and the STO has the echo state property.

III. STO CONSISTING OF TWO FREE LAYERS

Now let us examine the STO shown in Fig. 1(b). We will
show that, unlike the results in Sec. II, chaos appears in some
parameter regions.

A. LLG equation of STO with two free layers

The STO consists of two ferromagnets, F1 and F2, sep-
arated by a nonmagnetic spacer. The LLG equation of the
magnetization mi (i = 1, 2) in Fi layer is given by

dmi

dt
= −γ mi × Hi − γ Hsimi × (m2 × m1) + αimi × dmi

dt
,

(8)

where Hsi is

Hsi = h̄ηi j

2e(1 + λim1 · m2)Midi
. (9)
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FIG. 5. Examples of dynamics of the in-plane (m1x) and out-of-plane (m1z) components of the magnetization for current densities of (a) 100
and (b) 450 MA/cm2 in an STO with two free layers. (c) Bifurcation diagram of the local maximum of temporal m1z as a function of current
density. Similar data for m1 · m2 are shown in (d), (e), and (f). The values of the parameters in two ferromagnets are identical.

The magnetic field [20,34]

Hi =
⎛
⎝ −4πMNixmix − Hdim jx

−4πMNiymiy − Hdim jy

Happl − 4πMNizmiz + 2Hdim jz

⎞
⎠, (10)

includes the dipole field (∝ Hdi) from the other ( j = 1, 2 and
j 
= i) layer, where

Hdi = πMj

⎡
⎢⎣ di

2 + dN + d j√
r2 + ( di

2 + dN + d j
)2

−
di
2 + dN√

r2 + ( di
2 + dN

)2

⎤
⎥⎦.

(11)

Here, dN is the thickness of the spacer layer between the two
ferromagnets, which is assumed to be dN = 3 nm. The dynam-
ics of the two magnetizations are coupled via spin-transfer
torque and the dipole field. The output signal of this STO
originates from the magnetoresistance effect between the two
free layers and is proportional to m1 · m2. The simulations
reported in the previous studies assume identical material
parameters in two free layers [17] whereas an experimental
study used materials with different parameters [16]. In this
study, we vary the magnetization Mi and the Gilbert damping
constant αi.

Figure 5 shows typical magnetization dynamics of this
STO, where two ferromagnets have identical parameters:
M1 = M2 = 1300 emu/cm3. and α1 = α2 = 0.01. When the
current density is relatively small ( j0 = 100 MA/cm2), the
magnetizations saturate to a fixed point; the magnetization

direction in one (F1) layer is shown in Fig. 5(a). On the other
hand, when the current density is large ( j0 = 450 MA/cm2),
an amplitude modulation in the magnetization oscillation oc-
curs; see Fig. 5(b). For the discussion later, it will be useful to
introduce the bifurcation diagram that summarizes the local
maxima of the temporal m1z as a function of the current den-
sity; see Fig. 5(c). Remember, as well, that the variable used as
the output signal for physical reservoir computing is m1 · m2.
The time evolution of m1 · m2 for small and large currents
and the bifurcation diagram are shown in Figs. 5(d)–5(f). The
results indicate that two magnetizations are approximately
antiparallel when the current is small, which is due to the fact
that the dipole interaction prefers the antiparallel alignment
when the magnetizations point in an in-plane direction. The
spin-transfer torque acting on one ferromagnet also prefers the
antiparallel alignment, while that acting on the other prefers
the parallel alignment. As a result, the magnetization align-
ment is close to but slightly different from antiparallel, i.e.,
m1 · m2 � −1. For a large current, the spin-transfer torque
overcomes the damping torque and drives the magnetization
oscillations, where m1 · m2 shows two local maxima. We em-
phasize that these dynamics are not chaotic.

When the parameters of the two ferromagnets are different,
the dynamics become complex [20,21]. As an example, let us
suppose that M1 = 1300 emu/cm3, M2 = 2200 emu/cm3, and
α1 = α2 = 0.01 and study the resulting dynamics. In this case,
for a positive current, a simple oscillation of the magnetization
is excited, as shown in Fig. 6(a) for a current density of
100 MA/cm2. On the other hand, when the current is negative,
the dynamics are complex, as shown in Fig. 6(b) for a current
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FIG. 6. Examples of dynamics of the in-plane (m1x) and out-of-
plane (m1z) components of the magnetization for current densities
of (a) 100 and (b) 450 MA/cm2 in an STO with two free layers.
Bifurcation diagrams of (c) the local maximum of temporal m1z

and (d) m1 · m2 as a function of current density. The values of
the magnetization are different as M1 = 1300 emu/cm3 and M2 =
2200 emu/cm3.

density of 450 MA/cm2. The origin of the asymmetry in the
dynamics with respect to the current direction is as follows.
As mentioned, the dipole interaction prefers the antiparallel
alignment of magnetizations. When the current is positive,

the spin-transfer torque acting on the F1 layer also prefers
the antiparallel alignment, while that acting on the F2 layer
prefers the parallel alignment. Note that the strength of the
spin-transfer torque acting on the F2 layer is relatively small
because it is inversely proportional to the saturation magneti-
zation, and the saturation magnetization M2 in the F2 is large
in the present case. Accordingly, both the dipole interaction
and the spin-transfer torques mainly prefer the antiparallel
alignment, and the dynamics become relatively simple. On
the other hand, when the current is negative, the spin-transfer
torque acting on the F1 layer prefers the parallel alignment,
while that acting on the F2 layer, which is small due to the
large M2, prefers the antiparallel alignment. Thus, while the
dipole interaction prefers the antiparallel alignment, the spin-
transfer torques mainly prefer the parallel alignment. As a
result of competition between them, the dynamics become
complex; in fact, as clarified from the Lyapunov exponent
shown below, the dynamics in Fig. 6(b) can be classified
to chaos. The complexity of the dynamics can be seen in
the bifurcation diagrams of m1z and m1 · m2 [Figs. 6(c) and
6(d)]. The broad distributions, as well as the window struc-
tures, imply the appearance of chaos in the negative current
region [41].

B. Short-term memory capacity, Lyapunov exponent,
and synchronization index of STO with two free layers

Figures 7(a)–7(c) show the short-term memory capacity,
the Lyapunov exponent, and the synchronization index of the
STO, where the magnetization M2 in the F2 layer is plotted on
the vertical axis. The definition of the distance D in the case

FIG. 7. (a) Short-term memory capacity, (b) Lyapunov exponent, and (c) synchronization index of STO with two free layers, where the
horizontal axis is the current density and the vertical axis is the saturation magnetization in F2 layer. (d) Short-term memory where the vertical
axis the Gilbert damping constant of the F2 layer. Examples of time evolution of the temporal (e) Lyapunov exponent and (f) synchronization
index for current density of 100 MA/cm2. The insets show those for the current density of 450 MA/cm2. The Gilbert damping constant of the
F2 layer is 0.01.
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of the synchronization index is the difference in the values of
m1 · m2 calculated under slightly different initial conditions.
The results in the figures indicate the followings. First, the
short-term memory capacity is almost zero when the system is
chaotic, i.e., when the Lyapunov exponent is positive. Second,
in addition to the boundary between zero and finite short-
term memory capacity, there are boundaries along which an
enhancement in the capacity can be observed. We consider
that such an enhancement appears at the edge of the echo state
property, as described below. Third, the short-term memory
capacity is larger than that of the STO with a single free
layer; for example, it is 4.60 when j0 = 344 MA/cm2 and
M2 = 1380 emu/cm3.

We should note that the Lyapunov exponent of the present
STO is at least zero, or positive (see also Appendix B). This
is due to the axial symmetry around the z axis, where ro-
tations of the two magnetizations around the z axis through
the same angle do not change the system energy. As a result,
a perturbation given to the phases of the magnetizations in
the xy plane remains finite. This means that the maximum
Lyapunov exponent is at least zero. Therefore, one might
consider that the present STO does not have the echo state
property. However, the rotations of m1 and m2 around the z
axis through the same angle do not change the output signal
of the STO, m1 · m2. In this sense, the output signal has the
echo state property in some parameter regions, even where the
(maximum) Lyapunov exponent is zero. Therefore, to reveal
the echo state property of the output signal, we evaluated the
synchronization index of m1 · m2, in addition to the Lyapunov
exponent. Here, we found that the short-term memory capac-
ity is finite and can be large at the edge of the echo state
property; compare Figs. 7(a) and 7(c).

Now let us examine the effect on the short-term memory
capacity of varying the damping constant α2 in the F2 layer
for saturation magnetizations of M1 = M2 = 1300 emu/cm3;

FIG. 8. Examples of dynamics of the in-plane (m1x) and out-of-
plane (m1z) components of the magnetization for current densities
of (a) 100 and (b) 450 MA/cm2 in STO with two free layers and
one reference layer. Bifurcation diagrams of the local maxima of
temporal (c) m1x and (d) m1z as a function of current density.

see Fig. 7(d). In this case, the short-term memory capacity is
large when the current is small. Also, chaos is absent in this
parameter region; see Fig. 7(e), where the temporal Lyapunov
exponents for small and large current densities tend to be zero.
The fact that the short-term memory capacity remains finite
also implies the presence of the echo state property; see also
Fig. 7(f), where the temporal synchronization indexes also
saturate to zero.

IV. STO CONSISTING OF TWO FREE
AND ONE REFERENCE LAYERS

In this section, we the STO schematically shown in
Fig. 1(c). The spin-transfer torque from the reference layer
provides an additional torque and change the dynamical state
and the computational capability from those of the STOs
studied in Sec. III.

A. LLG equation of STO with two free and one reference layers

The LLG equations of the magnetizations in the F1 and F2

layers are given by

dm1

dt
= − γ m1 × H1 − γ Hs1m1 × (m2 × m1)

+ γ Hsm1 × (p × m1) + α1m1 × dm1

dt
,

(12)

dm2

dt
= − γ m2 × H2 − γ Hs2m2 × (m2 × m1)

+ α2m2 × dm2

dt
. (13)

Assuming that the total output signal is dominated by the
magnetoresistance effect between the reference and F1 layer,
the output signal is proportional to m1 · p = m1x.

Figures 8(a) and 8(b) show typical dynamics excited in
the STO for small (100 MA/cm2) and large (450 MA/cm2)
currents. The two ferromagnets have identical parameters:
M1 = M2 = 1300 emu/cm3 and α1 = α2 = 0.01. When the
current is small, the magnetizations saturate to a fixed point.
Unlike the STO studied in Sec. III, complex dynamics appear
for a large current, even when the parameters of the two
ferromagnets are identical, due to the spin-transfer torque
from the reference layer acting on only the F1 layer. The
bifurcation diagrams of m1x and m1z [Figs. 8(c) and 8(d)] show
that complex structures appear in the positive current region.
These results imply chaos in the positive current region.

The asymmetry of the dynamics with respect to the current
direction arises for the following reason. First, let us consider
the negative current case. The spin-transfer torque from the
reference layer acting on the F1 layer moves m1 in the −x
direction. Then, m2 moves in the +x direction to minimize
the dipole interaction energy. The spin-transfer torque from
the F2 acting on the F1 layer prefers the parallel alignment
of the magnetizations, and thus, tries to move m1 in the +x
direction. However, this motion is compensated against with
the spin-transfer torque from the reference layer, and m1 re-
mains in the −x direction. The spin-transfer torque from the
F1 acting on the F2 layer prefers the antiparallel alignment
of the magnetization, and thus, m2 also remains in the +x
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FIG. 9. (a) Short-term memory capacity, (b) Lyapunov exponent, and (c) synchronization index of an STO with two free layers and one
reference layer, where the horizontal axis is the current density and the vertical axis is the saturation magnetization in the F2 layer. (d), (e), and
(f) are the same as (a), (b), and (c) but as a function of the Gilbert damping constant in the F2.

direction. Accordingly, the two magnetizations stay the fixed
points.

Next, let us consider the positive current case. The spin-
transfer torque from the reference layer acting on the F1 layer
moves m1 in the +x direction. Accordingly, m1 and m2 try
to point in the +x and −x direction, respectively. However,
the spin-transfer torque from the F1 acting on the F2 layer in
this case prefers the parallel alignment of the magnetizations,
and thus, m2 cannot remain in the −x direction. As a result,
the magnetizations do not saturate to a fixed point when the
current magnitude is large.

B. Short-term memory capacity, Lyapunov exponent, and
synchronization index of STO with two free layers

and one reference layer

Figure 9(a)–9(c) summarizes the short-term memory ca-
pacity, the Lyapunov exponent, and the synchronization index
of the present STO, where the saturation magnetization M2

in the F2 layer is plotted in the vertical axes. The dis-
tance D for the synchronization index is evaluated from m1x.
The maximum short-term memory capacity, 5.72 for j0 =
127 MA/cm2 and M2 = 1320 emu/cm3, is larger than those
of the STO with one free layer and the STO with two free
layers. These results in these sections, as well as here, indi-
cate that adding another free layer makes the magnetization
dynamics complex and helps to enhance the computational
capability of STO-based physical reservoir computing. The
short-term memory capacity again becomes zero when the
system is in a chaotic state, where the Lyapunov exponent is
positive; see Figs. 9(a) and 9(b). The maximum value of the
short-term memory capacity appears near the edge of the echo
state property. Here, the parameter regions corresponding to

the zero Lyapunov exponent are relatively limited especially
in the positive current region, so the edges of chaos and the
echo state property nearly overlap in the present STO. This
might be due to the spin-transfer torque from the reference
layer, which breaks the systems’s axial symmetry around the
z-axis and reduces the parameter region corresponding to the
zero Lyapunov exponent, compared to those in Sec. III B.
Similar behaviors are found when the damping constant α2 in
the F2 layer is varied, as shown by the plots of the short-term
memory capacity, Lyapunov exponent, and synchronization
index in Figs. 9(d)–9(f). The maximum short-term memory
capacity is 5.76 for j0 = 127 MA/cm2 and α2 = 0.00847. As
shown in Figs. 9(a) and 9(d) that the maximum short-term
memory capacity occurs in a relatively low current region,
while low computational capability dominates in the relatively
high current region due to the appearance of chaos. This fact
might make the low current region preferable for physical
reservoir computing.

Here, we have shown the dependence of the short-term
memory capacity on the parameters in the F2 layer. Similar
behaviors, such as maximization of the short-term memory
capacity near the edge of the echo state property, occur
even when the parameters in the F1 layer are varied; see
Appendix D.

V. CONCLUSIONS

In summary, we studied the magnetization dynamics in
STOs with two free layers. It was shown that adding another
free layer makes the dynamical output signal complex due to
the coupled motion of the magnetizations via the spin-transfer
torques and the dipole field. For example, in addition to the
saturation of the magnetization to a fixed point found in the
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STO with a single free layer, an amplitude-modulated oscil-
lation was found in the STO consisting of two free layers.
The STOs with two free layers also showed chaotic dynamics
particularly in the large current region. These complex dy-
namics mainly appear when structural asymmetries, such as a
difference in parameters and/or the presence of the reference
layer, exist. We investigated the computational capability of
these STOs for physical reservoir computing by evaluating
the short-term memory capacity. The maximum values for the
STOs with two free layers were larger than that of the STO
with a single free layer. Through the evaluations of the Lya-
punov exponent and the synchronization index, it was shown
that the short-term memory capacity is maximized near the
edge of the echo state property. We note that the short-term
memory capacity is the linear component of the informa-
tion processing capacity [60,61], and the total information
processing capacity is bounded by the linearly independent
output of the system. Therefore, an increase in the short-
term memory capacity does not guarantee an increase in the
total information processing capacity directly; the nonlinear
components of the information processing capacity might be
suppressed in STOs with two free layers. In future, the total
information processing capacity should be analyzed.

ACKNOWLEDGMENTS

The results were partially obtained from the project “Inno-
vative AI Chips and Next-Generation Computing Technology
Development/(2) Development of Next-Generation Comput-
ing Technologies/Exploration of Neuromorphic Dynamics
towards Future Symbiotic Society” commissioned by NEDO.
T.Y. is supported by JSPS KAKENHI Grant No. 21K14526.
T.T. is supported by JSPS KAKENHI Grant No. 20H05655.

APPENDIX A: METHOD OF EVALUATING SHORT-TERM
MEMORY CAPACITY

Here, we summarize the details of the method of evaluating
the short-term memory capacity. The short-term memory ca-
pacity is a kind of information processing capacity [60,61] and
quantifies task-independent computational capability. We as-
sume that a series of pulse input signals rk (k = 1, 2, · · · , NL)
is injected into the physical reservoir, where the suffix k dis-
tinguish the order of the input signal. In the main text, we used
a binary input signal bk = 0, 1 as the input signal rk. Another
kind of input signal can be found in, for example, Ref. [61],
where a uniformly distributed random number (0 � rk � 1 or
−1 � rk � 1) is used. We define the target data zk,D from
the input signal rk . Here, D is an integer called the delay
(D = 0, 1, 2, · · · ). An aim of physical reservoir computing
is to recognize the past input data from the present output
signal, and therefore, it is necessary to introduce a delay to
distinguish the past input data. For example, in the evaluation
of the short-term memory capacity, zk,D is bk−D [35,36] (or
rk−D [61]); i.e., the target data are the input data injected D
times before from the present input signal. Another example
of zk,D is zk,D = ∑D

j=0 bk−D+ j (mod 2) for the evaluation of
parity-check capacity [35,36]. The target data of the infor-
mation processing capacity [60,61] are, in general, nonlinear
combination of rk−D. After defining the target data, we intro-

duce the weight wD,i to minimize

NL∑
k=1

(
Nnode+1∑

i=1

uk,iwD,i − zk,D

)2

, (A1)

where the output data from the ith (virtual) node in the
presence of the kth input is denoted as uk,i. When physical
reservoir is a many body system, the suffix i distinguishes
each body. On the other hand, in the present paper, we use
a single STO. In this case, a time-multiplexing method [35]
is applied in order to introduce virtual neurons, uk,i = u[t0 +
(k − 1 + i/Nnode)tp], where t0 is the initial time at which the
input signal is injected while Nnode is the number of virtual
neurons. The function u(t ) is the output signal from the STO;
for example, in the case of the STO with a single free layer
studied in Sec. II, the experimentally measured quantity is mx,
and thus u(t ) = mx(t ). The process determining the weight
is called learning. The number of the input signal used for
learning is NL. Note that a weight should be introduced for
each target data.

Next, we inject a different series of pulses r′
n (n =

1, 2, · · · , N ′
L), where the prime symbol is added to quantities

to distinguish them from those used in learning. The number,
N ′

L, of input data is not necessarily the same as the number
used in learning, i.e., NL 
= N ′

L. Then, from the output data
u′

n,i, which is the response of the physical reservoir to the
injection of r′

n, and using the weight wD,i determined by
learning, we define system output as

y′
n,D =

Nnode+1∑
i=1

un,iwD,i. (A2)

If the learning is done well, y′
n,D will reproduce the target data

z′
k,D defined from r′

n. To quantify the reproducibility, we can
use the correlation coefficient

Cor(D) =
∑N ′

L
n=1(z′

n,D − 〈z′
n,D〉)(y′

n,D − 〈y′
n,D〉)√∑N ′

L
n=1(z′

n,D − 〈z′
n,D〉)2

∑N ′
L

n=1(y′
n,D − 〈y′

n,D〉)2
.

(A3)
The component-wise information processing capacity is de-

fined as

C(z′
n,D) = [Cor(D)]2. (A4)

The magnitude of the correlation coefficient is unity when
the system output y′

n,D completely reproduces the target data
z′

n,D. On the other hand, the correlation coefficient is zero
when the input signal cannot reproduce the input data. There-
fore, the component-wise information processing capacity
quantifies the reproducibility of the target data. Note that
the component-wise information processing capacity is in-
troduced for each target data z′

n,D, and is independent of the
suffix n because the average with respect to the input pulse is
calculated in Eq. (A3). For example, Ref. [61] evaluates the
component-wise information processing capacity of several
physical reservoirs, where the capacities are distinguished by
the nonlinearity of the target data and the delay D. In the
evaluation of the short-term memory capacity, we restrict the
target data to being a linear combination of the input data, i.e.,
zk,D = bk−D, and define the short-term memory capacity as the
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sum of the component-wise information processing capacity
with respect to the delay D, i.e.,

CSTM =
Dmax∑
D=1

C(b′
n−D); (A5)

see also, for example, Ref. [36,62] for the definition of the
short-term memory capacity. In many cases [36], the cor-
relation coefficient Cor(D) becomes negligibly small for a
large delay when the physical reservoir has the echo state
property, and thus, past information fades in time. In such a
case, the value of the information processing capacity will
be independent of the maximum delay Dmax. As mentioned,
the component-wise capacity quantifies the reproducibility of
the target data, and the target data for the evaluation of the
short-term memory capacity is the input data as is. Therefore,
the short-term memory capacity can be, roughly speaking,
regarded as the number of the past input data reproduced
from the present output, as mentioned in the main text. Note
that, in some cases [29], C(zn,D) for D = 0 is included in
the definition of the capacity. In the present study, we use
NL = N ′

L = 1000 random binary data, Nnode = 250 nodes, and
Dmax = 30.

Figure 10 summarizes examples of these procedures for
an STO with single free layer with the current density of
10 MA/cm2. In Fig. 10(a), an example of a series of random
binary input signal and the dynamics of mx are shown. The
value of mx changes with respect to the input signal; from
this dynamical response, the input signal can be identified.
Figure 10(b) shows an example of the reproduction of the
input data with delay D = 1. As can be seen, the reproducibil-
ity decreases with the delay increasing. Figure 10(c) shows
the dependence of [Cor(D)]2 on the delay D. The short-term
memory capacity is obtained as a sum of these [Cor(D)]2.

In the determination of the weight, the output uk,i should be
independent of the initial state. This is because the initial state
of physical system is often uncontrollable, and the compu-
tational capability should not depend on such uncontrollable
variables. In addition, the output u′

n,i used in the evaluation of
the capacity should be independent of the input data rk,i used
in the determination of weight. This is because there should
be no correlation between the learning and the evaluation
of capacity. As mentioned in the main text, if the physical
reservoir has echo state property, the dynamical state will be

independent of the past state by injecting random input signal.
Therefore, before the determination of the weight, we inject
300 random binary input signals for STO. Similarly, after
determining the weight and before evaluating the capacity,
we also inject different 300 random binary input signals to
erase a correlation between the learning and the evaluation.
These processes are called washout. As can be seen from these
examples, the echo state property is a necessary factor for
physical reservoir computing.

APPENDIX B: METHOD OF EVALUATING
LYAPUNOV EXPONENT

Here, let us summarize the method of evaluating the Lya-
punov exponent. For simplicity, we will use an STO with a
single free layer as an example, for a while.

We denote the solution of the LLG equation with a certain
initial condition as m(t ). At a certain time t0, we introduce
m(1)(t0), which points in a slightly different direction from
m(t0) with distance ε. We emphasize that there is no corre-
lation between m(t ) and m(1)(t0). The distance is the relative
angle of two magnetizations, i.e., ε = cos−1[m(t0) · m(1)(t0)].
Solving the LLG equations for m(t0) and m(1)(t0), we obtain
m(t0 + �t ) and m(1)(t0 + �t ). Then, we define a temporal
Lyapunov exponent at time t1 = t0 + �t as

Λ(t1) = 1

�t
ln

D (t1)

ε
, (B1)

where D (t1) = cos−1[m(t0 + �t ) · m(1)(t0 + �t )] is the dis-
tance between m(t0 + �t ) and m(1)(t0 + �t ). Next, we
introduce m(2)(t0 + �t ) by moving m(t0 + �t ) in the di-
rection of m(1)(t0 + �t ) through the distance ε. Solving
the LLG equations of m(t0 + �t ) and m(2)(t0 + �t ) yields
m(t0 + 2�t ) and m(2)(t0 + 2�t ). Then, the temporal Lya-
punov exponent at time t2 = t0 + 2�t is defined as Λ(t2) =
(1/�t ) ln[D (t2)/ε], where D (t2) is the distance between
m(t2) and m(2)(t2).

Now let us generalize the above procedure. At tn = t0 +
n�t , we introduce m(n+1)(tn) by moving m(tn) in the di-
rection of m(n)(tn) through a fixed distance ε. Solving the
LLG equation, we obtain m(tn+1) and m(n+1)(tn+1). From the
distance D (tn+1) = cos−1[m(tn+1) · m(n+1)(tn+1)] between
m(tn+1) and m(n+1)(tn+1), the temporal Lyapunov exponent at
t = tn+1 is defined as Λ(tn+1) = (1/�t ) ln[D (tn+1)/ε]. Then,
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the Lyapunov exponent is defined as

Λ = lim
NΛ→∞

1

NΛ

NΛ∑
i=1

Λ(ti ). (B2)

For STOs including two free layers, we should define
m(n+1)

i (tn) to make the total distance, i.e., the sum of the
distances between mi(tn) and m(n+1)

i (tn), equal to ε; see also
Ref. [40], where a similar method for an STO with a feedback
circuit is developed.

As can be seen from this explanation, the distance between
two samples is given at every time step tn, contrary to the eval-
uation of the synchronization index explained in Appendix C
below, where the perturbation is given at the initial time only.

Note that the difference m(n+1)(tn) − m(tn) between m(tn)
and m(n+1)(tn) corresponds to the direction along which the
difference expands the most. Therefore, the Lyapunov expo-
nent estimated above is the maximum (or largest) Lyapunov
exponent, which quantifies the maximum expansion rate from
the initial difference. There are n Lyapunov exponent, Λ1, Λ2,
· · · , Λn (Λ1 � Λ2 � · · · � Λn) for a system with n dimen-
sions, and Λ above corresponds to Λ1. Another Lyapunov
exponent, Λ2, · · · , Λn, can be estimated similarly, although
it is often sufficient to estimate the maximum Lyapunov ex-
ponent for clarifying the dynamical state. In addition, the
Lyapunov exponent estimated here corresponds to a condi-
tional Lyapunov exponent [29].

The Lyapunov exponent here is the long-time average of
the temporal Lyapunov exponent. While the value of the tem-
poral Lyapunov exponent near the initial time (t = t0) depends
on the choice of the initial perturbation [m(1)(t0)], which is an
arbitrary value, the long-time averaged value tends to become
a certain value, which is independent of the initial value; see,
for example, Ref. [40]. Because of the finite calculation time,
however, the initial value of the temporal Lyapunov exponent
might provide some confusion. For example, in Fig. 7(b), the
label includes a negative value, while we argue that the expo-
nent is zero or positive. This is because a negative value in the
temporal Lyapunov exponent near the initial time, originated
from an arbitrary choice of the initial perturbation, remains.
As mentioned above, however, it becomes sufficiently small,
and the long-time averaged value becomes close to zero. We
have carefully checked these values and concluded that the
Lyapunov exponent in Fig. 7(b) is zero or positive.

APPENDIX C: METHOD OF EVALUATING
SYNCHRONIZATION INDEX

Here, let us summarize the method of evaluating the syn-
chronization index. For simplicity, we will suppose an STO
with a single free layer as an example, for a while.

We denote the solutions of the LLG equation with two
different initial conditions as m(1) and m(2). We again empha-
size that m(1) and m(2) do not have any correlation. Then, we
evaluate the evolution of their difference. Here, the difference
is given to the initial state only, while that in Appendix B is
given at every time step tn. Accordingly, m(a) (a = 1, 2) intro-
duced here has a different meaning from that in Appendix B.
In the case of STOs with two free layers, we solve the LLG

equations for two magnetizations m(1)
i and m(2)

i (i = 1, 2),
where there are small differences between the initial states of
different samples.

Suppose that a random binary input signal is injected into
the STO. Therefore, if the STOs for m(1)

i and m(2)
i show

noise-induced synchronization [57], the difference will be
zero, and the synchronization index will also be zero. How-
ever, noise-induced synchronization is not the only state that
appears in nonlinear oscillators. For example, if the STOs
originally show chaotic behavior, it is difficult to realize noise-
induced synchronization. Another possibility is input-driven
chaos [29], where the input signal causes chaos even if the
STO does not show chaotic behavior originally. In these cases,
the synchronization index will remain finite even after a long
time passes. Therefore, the synchronization index becomes
zero only when the distance between the initial states is zero,
which indicates the presence of the echo state property, as
mentioned in Sec. II C.

Now let us briefly comment on the definition of the dis-
tance D between the initial states; see also Secs. II C and
II E. One possible “distance” between two samples of the
solution is the relative angle, cos−1[m(1) · m(2)], between two
solutions, m(1) and m(2). This definition relies on the fact that
the LLG equation conserves the norm of the solution m, and
thus, the magnetization dynamics described by m with nor-
malization |m| = 1 can be regarded as the motion of a point
particle on the unit sphere. Then, the angle between m(1) and
m(2) represents their distance measured on the sphere. This
definition of the distance is used in, for example, Ref. [40].
For the STOs with two free layers studied in Secs. III B
and IV B, the distance is defined as D = ∑2

i=1 cos−1[m(1)
i (t ) ·

m(2)
i (t )], where the suffix i distinguishes the ferromagnetic

layers.
A different choice of distance is made in, for

example, Refs. [21,63,64]. There, the zenith and azimuth
angles, θ

(a)
i and ϕ

(a)
i , are m(a)

i = [m(a)
ix , m(a)

iy , m(a)
iz ] =

[sin θ
(a)
i cos ϕ

(a)
i , sin θ

(a)
i sin ϕ

(a)
i , cos θ

(a)
i ], and the distance

is defined as D =
√∑2

i=1[|θ (1)
i − θ

(2)
i |2 + |ϕ(1)

i − ϕ
(2)
i |2]. In

this definition, D is a distance in a four dimensional phase
space consisting of θ1, ϕ1, θ2, and ϕ2.

We defined the distance D differently, as mentioned in
Sec. II E. The distances in Sec. II E, III B, and IV B are based
on mx, m1 · m2, and m1x as D = |m(1)

x − m(2)
x |, D = |m(1)

1 ·
m(1)

2 − m(2)
1 · m(2)

2 |, and D = |m(1)
1x − m(2)

1x |, respectively. This
is because, if these distances tend to be zero, the output signal
used for physical reservoir computing becomes independent
of the initial state; thus, these distances provide a natural
standard with which to study the echo state property for com-
puting. It is unnecessary that m(1) and m(2) become identical;
only the dynamical variable used for the computing should be
identical. Simultaneously, we note that the difference of the
definition of D in the previous and present papers is important
mainly in Sec. III B only, where even in parameter regions
where m(1) 
= m(2), D = |m(1)

1 · m(1)
2 − m(2)

1 · m(2)
2 | could be

zero, due to the axial symmetry. In Secs. II E and IV B,
on the other hand, m(1) and m(2) [or m(1)

i and m(2)
i ] be-

come identical in parameter regions where D = 0. This is
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FIG. 11. (a) Short-term memory capacity, (b) Lyapunov exponent, and (c) synchronization index of an STO with two free layers and one
reference layer, where the horizontal axis is the current density and the vertical axis is the saturation magnetization in the F1 layer. (d), (e), and
(f) Same as (a), (b), and (c) a function of the Gilbert damping constant in the F1 layer.

because the presence of the reference layer breaks the axial
symmetry of the system and reduce the parameter regions
where the Lyapunov exponent is zero. In summary, the def-
inition of the distance D should be carefully chosen mainly
in Sec. III B because the system has axial symmetry, due to
which, the output signal shows the echo state property even
if m(1)

i 
= m(2)
i .

APPENDIX D: DEPENDENCE OF SHORT-TERM MEMORY
CAPACITY ON PARAMETERS IN F1 LAYER

In Sec. IV B, the dependence of the short-term memory
capacity on the parameters in the F2 layer was studied. The
parameters, such as the saturation magnetization M2 and the
damping constant α2, can be changed by changing ferromag-
netic materials. Therefore, we studied the short-term memory
capacity by changing them. On the other hand, changing the
material in the F1 layer might be not preferable because it

also changes the magnitude of the output signal generated
through the GMR/TMR effect. Usually, CoFeB/MgO-based
magnetic tunnel junctions are used for STOs, which can emit
relatively large power [28,36]. However, for comprehensive
study, one might be interested in the dependence of the short-
term memory capacity on the parameters in the F1 layer.
Figures 11(a)–11(c) summarize the short-term memory capac-
ity, the Lyapunov exponent, and the synchronization index of
the STO with two free layers and one reference layer, where
the vertical axis represents the saturation magnetization M1

in F1 layer. The other parameters are M2 = 1300 emu/cm3

and α1 = α2 = 0.01. On the other hand, Figs. 11(d)–11(f)
show the same where the vertical axis represents the damping
constant α1 in F1 layer while M1 = M2 = 1300 emu/cm3 and
α2 = 0.01. These results indicate that the maximum short-
term memory capacity occurs near the edge of the echo state
property, which is consistent with the conclusion in the main
text.
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