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Electric Grüneisen parameters for a biaxial spin-chain system
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The electric Grüneisen parameter, which characterizes the electrocaloric effect in the quantum spin system,
has been introduced. We have calculated the electric Grüneisen parameter for the biaxial spin-chain system with
strong coupling between the spin and the electric subsystems. It is shown that the low-temperature electric field
dependence of the electric Grüneisen parameter manifests features at the critical values of the electric field and
tends to constant at high temperatures. It is determined by the quantum critical points of the spin system. Such
a behavior of the electric Grüneisen parameter can be observed in electrocaloric experiments with spin-chain
materials.
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I. INTRODUCTION

Electrocaloric effect determines the temperature change
of the system due to adiabatic application or removal of an
external electric field [1–3]. Similar to the magnetocaloric
effect, the electrocaloric one permits cooling or heating of the
system. For the description of the caloric effect of solids and
phase transitions associated with the change of the volume,
the Grüneisen parameter is often used. The Grüneisen param-
eter (also known as the Grüneisen ratio) was first introduced
for the Einstein model to study the quantitative characteristics
of the effect of volume change of a crystal lattice on its
vibrational frequencies [4,5]

� = V

�

∂�

∂V
, (1)

where � is the frequency of phonons and V is the volume.
That original Grüneisen parameter is dimensionless. It can be
rewritten as � = (V/cV )(∂S/∂V ), where S is the entropy of
the system, and cV is the specific heat at the fixed volume.

Later, it was proposed to study the magnetic Grüneisen
parameter [6,7]

�m = −
∂S
∂H |T

T ∂S
∂T |V

(2)

for fixed temperature T and volume, respectively. Here H is
the external magnetic field and T is the temperature. In the
following, we use the units in which the effective magneton
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gμB = 1, with g being the effective g factor and μB being the
Bohr magneton, and with the Boltzmann constant kB = 1, for
simplicity. Notice that the magnetic Grüneisen parameter is
not dimensionless.

The magnetic Grüneisen parameter describes the magne-
tocaloric effect; i.e., it shows the connection between the
variation of the external magnetic field, which changes the
population imbalance for spins and the cooling of the system.
The magnetic Grüneisen parameter can be written as �m =
αmT /cV , where αmT is the magnetic expansion coefficient. The
most significant changes of the magnetic Grüneisen parameter
take place at the lines of phase transitions, including the quan-
tum critical points. For example, at the quantum critical point
the magnetic Grüneisen parameter changes its sign [7]. The
magnetic Grüneisen parameter is often used in experiments
for the quantitative description of magnetocaloric effect in
many systems, including low-dimensional magnetic systems
[8], heavy fermion ones [9], and quantum critical phenomena
in solids [10].

Systems with strong coupling of spin, electric, and elastic
subsystems attract the attention of researchers. The nature
of such a coupling is as follows. Nonmagnetic ions (called
ligands), which surround magnetic ions, define the crystalline
electric field, which acts on magnetic ions. That field, together
with the spin-orbit interaction and the exchange coupling, de-
termines the single-ion magnetic anisotropy, or the magnetic
anisotropy of the indirect exchange interaction between spins
in the spin system. Strains of the elastic subsystem change
the distribution of ligands, affecting the internal crystalline
electric field. Similarly, the external electric field, as the crys-
talline electric field of ligands, acts on the orbital moments of
magnetic ions. Due to the spin-orbit coupling, those electric
fields and strains change the single-ion spin anisotropy and/or
the anisotropy of the indirect exchange coupling between
spins. The external magnetic field, in turn, changes the relative
directions of spins, and, due to the spin-orbital coupling, the
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relative directions of orbital moments of ligands, affecting
their positions via strains (as in the Jahn-Teller effect). Hence,
the distribution of charges is changed, affecting the electric
characteristics of the system.

Those systems are interesting from pure physical grounds.
In addition, they are important for modern technology from
the viewpoint of applications of magneto-electro-elastic ef-
fects which can be governed by external fields and strains,
in microelectronics, spintronics, optical devices, etc., as, e.g.,
switching devices, or writing and reading devices for memory
storage. One of the most known examples of such systems are
multiferroics, in which orderings can exist in some of men-
tioned subsystems, and they attract great attention [11–17].
For the description of such ordered magnetic and electric
systems, classical electrodynamics can be used [18]. How-
ever, obviously, quantum effects can be also manifested in
compounds with interacting spin, charge, and elastic sub-
systems. It is interesting to consider a quantum many-body
spin system, in which interactions among spin, electric, and
elastic subsystems can take place. Spin-chain compounds
are systems in which spin-spin interactions in one direction
are much stronger than in other ones. They can serve as a
good testing ground for the manifestation of the interaction
among electric, magnetic, and elastic subsystems. In such
systems, the effective reduced dimensionality of the spins
causes the enhancement of quantum and thermal fluctuations,
which destroys magnetic ordering at nonzero temperatures
[19]. However, the coupling between spins along the distin-
guished direction can be very strong, and hence those systems
manifest quantum many-body effects. It is also very impor-
tant that spin-1/2 chains permit exact theoretical results [20],
which give the opportunity to check them in comparison
with the data of experiments in spin-chain compounds. Ob-
viously, quantum effects in spin-chain compounds manifest
themselves at low temperatures, and therefore cooling such
systems with the help of magnetocaloric or electrocaloric
effects are very important for practical purposes.

II. ELECTRIC GRÜNEISEN PARAMETER

For magnetic systems with the magnetoelectric interaction,
we can introduce by analogy with the magnetic Grüneisen
parameter, the electric Grüneisen parameter

�e = −
∂S
∂E |T

T ∂S∂T |V ≡ −αeT

cV
, (3)

where αeT is the electric expansion coefficient. The electric
Grüneisen ratio shows the quantitative relation between the
change of the external electric field, which also can change
the population imbalance for quantum spin systems, and the
refrigeration of the considered system.

In this study, we calculate the electric Grüneisen parameter
for the quantum spin-1/2 chain compound with the strong
magnetoelectric interaction. We show that the behavior of
such a Grünesen ratio in the spin-chain system is determined
by the quantum critical points, which exist there [21,22]. It is
important to stress that those ground-state phase transitions
manifest themselves in the behavior of electric Grüneisen
parameter, the characteristic of the electrocaloric effect, at
nonzero temperature.

III. THE CONSIDERED SYSTEM

The Hamiltonian of the considered biaxial (with the or-
thorhombic magnetic anisotropy) spin-1/2 chain system, in
which the spin subsystem is coupled to the electric one, can
be written as [21,22]

H = −
∑

n

(
JxSx

nSx
n+1 + JySy

nSy
n+1 + JzS

z
nSz

n+1

)
+ a1Ey

∑
n

(
Sx

nSy
n+1 − Sy

nSx
n+1

) + a2Ey

∑
n

(
Sx

nSy
n+1

+ Sy
nSx

n+1

) + a3Ex

∑
n

(
Sx

nSx
n+1 − Sy

nSy
n+1

)
− H

∑
n

Sz
n, (4)

where Sx,y,z
n are the operators of spin projections of the

spins-1/2 situated at the site n, H is the magnetic field H
directed along the z axis, and Jx,y,z are the parameters of the
magnetically anisotropic exchange interaction. It is useful to
introduce I = (Jx + Jy)/2 and J = (Jx − Jy)/2. Then, Ex,y are
the components of the external electric field and a1,2,3 are
the coefficients of the magnetoelectric coupling (for the y
direction of the electric field they are related to the exchange-
antisymmetric and exchange-symmetric couplings). The form
of the electromagnetic coupling in the Hamiltonian is the
particular case of the general interactions between spin and
electric degrees of freedom

∑
m,n

∑
ipq aipqEiS

p
n Sq

m, where
n, m numerate the lattice sites, and i, p, q = x, y, z [18] with
a1,2,3 being the components of the tensor aipq. Notice that we
use the form of magnetoelectric coupling similar to Ref. [23],
where the studied effects were observed in the magnetically
ordered multiferroic.

First, one can see that the electric field, directed along the
x axis, renormalizes the exchange parameter J → (J − a3Ex ).
Let us then consider the effect of Ey. Suppose that for the spin
chain the open boundary conditions are imposed. Then, using
the rotation of all spins with respect to the axis z by the angle
ψ , we can rewrite the Hamiltonian (4) as

H = −I
∑

n

(
Sx

nSx
n+1 + Sy

nSy
n+1

)
−J1

∑
n

(
Sx

nSx
n+1 − Sy

nSy
n+1

) − Jz

∑
n

Sz
nSz

n+1

−H
∑

n

Sz
n + a1E

∑
n

(
Sx

nSy
n+1 − Sy

nSx
n+1

)
, (5)

where J1 = [(J − a3Ex )2 + (a2Ey)2]1/2 and tan 2ψ =
−(a2Ey)/(J − a3Ex ). The angle ψ does not enter the
expression for the Hamiltonian for the open chain.

Now we can obtain some analytical results for the electric
Grünesen parameter as a function of the temperature and
applied electric and magnetic field. We can use the Jordan-
Wigner transformation [24] connecting spin operators and
operators of creation and destruction of spinless fermion op-
erators and the Fourier transformation. The Hamiltonian (5)
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takes the form

H = −NH

2
− N�

4
+

∑
k

[
[H − I1 cos(k − φ)]a†

kak

− J1

2
(a−kake−ik + H.c.) − Jz

N
cos(k)ρ−kρk

]
, (6)

where a†
k (ak) creates (destroys) the spinless fermion with the

quasimomentum k, I1 = [I2 + (a1Ey)2]1/2, tan φ = (a1Ey)/I ,
and ρk = ∑

p a†
p+kap.

IV. RESULTS

Let us start our analysis with the simplest case Jz = 0 for
which the Hamiltonian (6) is the quadratic form of Fermi
operators. Using the Bogoliubov transformation, we obtain for
the free energy of the system per site

F = −T

N

∑
k

ln [2 cosh(εk/2T )], (7)

where T is the temperature, and

εk = a1E sin(k) +
√

[H − I cos(k)]2 + J2
1 sin2(k). (8)

Using the expression for the free energy, it is easy to
calculate the specific heat per site

cV = (4T 2N )−1
∑

k

(εk )2

cosh2(εk/2T )
. (9)

We can see that for the spin-chain system the specific heat
decays at high temperatures as T −2. At low temperatures,
the specific heat is exponentially small if the spectrum (8)
is gapped, and it manifests the linear growth with T if
the spectrum is gapless. For intermediate temperatures, the
temperature behavior of the specific heat of the spin chain
manifests the maximum [20]. Such a behavior is characteristic
for spin-chain systems for nonzero Jz also [20].

For the electric expansion coefficients per site, we get

αexT = (4T 2N )−1
∑

k

a3(J − a3Ex )[sin(k)]2

cosh2(εk/2T )
,

αeyT = −(4T 2N )−1
∑

k

sin(k)εk

cosh2(εk/2T )

×

⎡
⎢⎣a1 + a2

2 sin(k)√
[H − I cos(k)]2 + J2

1 sin2(k)

⎤
⎥⎦, (10)

where the first expression is for the electric field Ex and
the second one is for Ey. The electric expansion coefficients
also decay at high temperatures as T −2. Hence, the elec-
tric Grüneisen ratios tend to constant at high temperatures,
similar to the magnetic Grüneisen parameter [6,7]. The low-
temperature behavior of the electric expansion coefficients
also depends on the features of the spectrum of elementary
excitations of the system. Hence, the ground state and the low-
temperature behavior of the electric Grüneisen parameters are
determined by those features, too.

FIG. 1. The specific heat of the biaxial spin chain in the absence
of external magnetic field as a function of the temperature and the
applied external electric field Ex .

The low-temperature behavior of all thermodynamic char-
acteristics of the spin chain is determined by quantum critical
points (lines), governed by the magnetic field H and the elec-
tric field Ex,y. Those points (lines), as usual for quantum chain
systems, are determined by the dispersion law εk . It is easy to
see that for [a2

1 − a2
2]E2

y < (J − a3Ex )2 the dispersion law is
gapped for all k except of the value of H = Hc1 = I at which
the dispersion law is gapless at k = 0. On the other hand,
the dispersion law is gapless for [a2

1 − a2
2]E2

y � (J − a3Ex )2

and H2 � H2
c2

= I2 + [a2
1 − a2

2]E2
y − (J − a3Ex )2. The criti-

cal lines at H = 0 as a function of the external electric field are
determined from the formula [a2

1 − a2
2]E2

cy = (J − a3Ecx )2.
Let us consider the effect of Ex and Ey separately, starting

with the case Ex �= 0 and Ey = 0.
Figures 1–3 present the temperature and electric field Ex

behavior of the specific heat, electric expansion coefficient,
and the electric Grüneisen parameter �ex = −αexT /cV for the
biaxial spin-1/2 chain (we use I = 1, J = 0.3, and a3 = 1 for
figures below) for Ey = 0 and H = 0.

FIG. 2. The electric expansion coefficient of the biaxial spin
chain in the absence of external magnetic field as a function of the
temperature and the applied external electric field Ex .
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FIG. 3. The electric Grüneisen parameter of the biaxial spin
chain in the absence of external magnetic field as a function of the
temperature and the applied external electric field Ex .

We can see the changes of the low-temperature behavior of
the specific heat and the electric expansion coefficient at Ex =
Ecx = J/a3. In particular, the specific heat at the critical point
changes the low-temperature behavior from the exponential
growth with T to the linear one, and the electric expansion
coefficient changes sign. However, those changes are rela-
tively small and smooth. Instead, the behavior of the electric
Grüneisen parameter clearly shows the features related to the
quantum critical point Ecx.

Figures 4 and 5 show the behavior of the electric Grüneisen
parameter in nonzero magnetic field. In Fig. 4, the case H =
Hc1 = 1 is shown. One can see only a quantitative difference
between this case and the case H = 0 (see Fig. 3): The feature
at Ex = Ecx becomes larger. In Fig. 5, the behavior of the
electric Grüneisen parameter is presented for large magnetic
field H = 3. We see that the character of the behavior remains
similar to the small magnetic field situation; however, the
feature at the critical value of the electric field Ecx becomes
smooth, and the value of the Grüneisen parameter becomes
smaller. Notice that the low-temperature specific heat for large
values of H grows exponentially with the temperature.

FIG. 4. The electric Grüneisen parameter of the biaxial spin
chain in the critical external magnetic field H = I as a function of
the temperature and the applied external electric field Ex .

FIG. 5. The electric Grüneisen parameter of the biaxial spin
chain in the large external magnetic field H = 3 as a function of the
temperature and the applied external electric field Ex .

The effect of the z-z spin-spin interaction can be analyt-
ically taken into account, e.g., using the Hartree-Fock-like
approximation. Consider for simplicity, e.g., the case at which
a1 = 0. The Hamiltonian (6) in this case can be rewritten as

Ha1=0 = −N[Jz + 2H]

4

−
∑

k

[
(H − I1 cos(k) − Jz )a†

kak

+ J1

2
sin(k)(a−kak + H.c.)

]

+Jz

N

∑
k1+k2=k3+k4

cos(k1 − k4)a†
k1

a†
k2

ak3 ak4 , (11)

where we take I1 and J1 at a1 = 0. The parameters [21]

s = 〈
Sz

j

〉
,

r = 2
〈
Sx

j S
x
j+1 + Sy

j S
y
j+1

〉
,

q = 2
〈
Sx

j S
x
j+1 − Sy

j S
y
j+1

〉
, (12)

satisfy the self-consistency equations

s = 1

2N

∑
k

Ãk

ε̃k
tanh

(
ε̃k

2T

)
,

r = − 1

N

∑
k

Ãk cos(k)

ε̃k
tanh

(
ε̃k

2T

)
,

q = − i

N

∑
k

B̃k sin(k)

ε̃k
tanh

(
ε̃k

2T

)
. (13)

In the Hartree-Fock-like approximation, we use

Ãk = H + 2sJz − (I1 − rJz ) cos(k),

B̃k = −i(J1 + qJz ) sin(k),

ε̃k =
√

Ã2
k + |B̃k|2, (14)

where brackets denote the Gibbs distribution with the Hamil-
tonian Ha1=0 ≈ ∑

k ε̃kc†
kck + C, the fermion operators ck (c†

k )
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are destruction (creation) operators, in which Ha1=0 is diag-
onal in the Hartree-Fock-like approximation, and C is the
operator-independent value. In this approach, the nonzero
value of Jz renormalizes the parameters of (8) and, hence, (7).
In the ground state, we get

s = 1

2N

∑
k

Ãk

ε̃k
,

r = − 1

N

∑
k

Ãk cos(k)

ε̃k
,

q = − i

N

∑
k

B̃k sin(k)

ε̃k
. (15)

The right-hand sides of Eqs. (15) in the thermodynamic limit
N → ∞ can be written via complete elliptic integrals. The
ground-state features (related to the quantum phase transition)
of the behavior of the electric Grüneisen parameter exist for
Ey = 0 at Ex = (J + qJz )/a3, at which value the Grüneisen
ratio changes its sign. For Ex = 0, the feature of the electric
Grüneisen parameter can exist for negative q with (qJz )2 >

J2 at Ey =
√

(qJz )2 − J2)/a2. At high temperatures (at which
the values s, r, and q are inverse proportional to T , i.e., they
are small), the electric Grüneisen parameter for Jz �= 0 taken
into account in the Hartree-Fock-like approximation tends to
constant at T → ∞.

In the absence of the magnetic field, the behavior of the
biaxial spin chain for a1 = 0 is known exactly from the Bethe
ansatz solution for Jz �= 0 [25]. Consider the case Ey = 0
and Ex �= 0. Let us, by adapting the results of Ref. [26],
denote J1/I = −k2sn2(iη, k), and Jz/I = cn(iη, k)dn(iη, k),
where we use the Jacobi elliptic sinus, cosine, and delta
functions with the elliptic modulus k (do not confuse with
the quasimomentum of excitations for the case Jz = 0 and
the Hartree-Fock like calculations). In such a notation, we
can use, e.g., the elliptic modulus as being responsible for
nonzero J1 and the parameter η for the definition of the value
of Jz; however, other definitions are also possible [27]. Ther-
modynamics of the chain is described by the solution of the
set of nonlinear integral equations [26]. At high temperatures
T � I, J, Jz, one gets for the free energy F = −T N ln 2, as
it must be, so that the entropy in this limit is constant, as
for the case Jz = 0. The case of low temperatures is more
complicated. Consider, for example, the antiferromagnetic in-
teractions. Then the low-temperature free energy of the spin
chain can be written as

F

N
= e0 − exp(−e0/T )[B1T 3/2 + B2T 5/2 + O(T 7/2)], (16)

where

B1 = [iIsn(iη, k)]1/2

[
K (1 − k1)

πK1k1

]1/2

,

B2 = [iIsn(iη, k)]3/2 1 − k3
1

4
√

π

[
K

K1k1(1 − k1)

]3/2

,

e0 = iIsn(iη, k)

[
K1

2K
− k1

]
, (17)

FIG. 6. The quantum critical lines of the spin chain for the gen-
eral case of exchange parameters Jx,y,z in the absence of the external
magnetic field as a function of Ex .

where K is quarter period of the elliptic functions, related
to k via the parameter q (do not confuse this with the self-
consistency parameter of the Hartree-Fock-like calculations)

K = π

2

∞∏
n=1

[
1 + q2n−1

1 − q2n−1

1 − q2n

1 + q2n

]2

,

k = 4
√

q
∞∏

n=1

[
1 + q2n

1 + q2n−1

]4

(18)

[the conjugated quarter period K ′ = π−1 ln(q−1) so that q =
exp(−πK ′/K )], and the additional modulus k1 defined via the
parameter q1 [with the quarter periods K1 and K ′

1 related to
q1 as q1 = exp(−πK ′

1/K1)] is determined from the condition
[25]

ln q1 = −πη

K
. (19)

Thus, the low-temperature part of the entropy of the spin chain
is exponentially small:

S
N

= exp(−e0/T )

(
B1

[
e0√
T

+ 3
√

T

2

]

+ B2

[
e0

√
T + 5T 3/2

2

]
+ · · ·

)
. (20)

Therefore, the low-temperature specific heat and the electric
expansion coefficient are exponentially small.

For the ferromagnetic case, the situation is more compli-
cated; however, the low-temperature part of the free energy of
the spin chain also decays exponentially with the temperature
[26], except for critical lines (see below).

At the critical lines at which quantum phase transitions
take place (e.g., related to the limiting case k → 1 and real
η, or k → 0 with imaginary η; see the phase diagram in Fig. 6
below), the low-temperature part of the free energy is

F

N
= e0 − πT 2

6v
, (21)
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FIG. 7. The specific heat of the biaxial spin chain in the absence
of external magnetic field as a function of the temperature and the
applied external electric field Ey.

with the renormalized ground-state energy e0 and with v

being the velocity of the low-energy gapless excitation (for
example, at k → 1 and real η the velocity is equal to v =
(Iπ sin(2η)/2η), so that the low-temperature entropy is S =
NT/3v. The low-temperature specific heat and the electric
expansion coefficient are linear in T .

The features of the behavior (in particular, the change of
the sign) of the electric Grüneisen parameter �ex exist at the
quantum critical lines shown in Fig. 6; cf. Ref. [28]. At the
quantum critical lines elementary excitations of the system
become gapless, while for other values of Ex they are gapped.
This situation is similar to the case Jz = 0. Therefore, the
features in the behavior of the electric Grüneisen parameter
for the biaxial spin chain with Jz �= 0 are expected to mani-
fest themselves at low temperatures, similar to the behavior
presented in Fig. 3 for Jz = 0. At high temperatures, the
electric Grüneisen parameter tends to constant for the biaxial
spin chain with Jz �= 0, as in the case Jz = 0. There are no
additional features in the behavior of the electric Grüneisen
ratio at intermediate temperatures for the biaxial spin chain
with Jz �= 0, similar to the situation with Jz = 0.

For instance, for the easy-plane-like case −I < Jz < I at
Ex = J/a3, the low-temperature part of the free energy is
described by Eq. (21), and the electric Grüneisen parame-
ter manifests peculiarities similar to the case with Jz = 0.
For any other values of Ex in this easy-plane-like region,
the low-temperature part of the free energy is described by
Eq. (16), and there are no features in the behavior of the
electric Grüneisen parameter. However, for the easy-axis-like
case Jz > I or Jz < −I , at Ex = J/a3 the low-temperature part
of the free energy is described by Eq. (16) or similar for the
ferromagnetic case, so that there are no low-temperature pe-
culiarities in the behavior of the electric Grüneisen parameter
at Ex = J/a3. Instead, the peculiarities are at the lines Ex =
(J + Jz − I )/a3 and Ex = (J − Jz + I )/a3 for Jz > I , and at
Ex = (J + Jz + I )/a3 and Ex = (J − Jz − I )/a3 for Jz < −I;
see Fig. 6. At those lines, the low-temperature part of the free
energy is described by Eq. (21), while for other values of the
the electric field Ex the low-temperature part of the free energy
is described by Eq. (16) or similar for the ferromagnetic case.

FIG. 8. The electric expansion coefficient of the biaxial spin
chain in the absence of external magnetic field as a function of the
temperature and the applied external electric field Ey.

Let us now turn to the case Ex = 0 with Ey �= 0 for Jz = 0.
This situation is more complicated than previously considered
case Ex �= 0 with Ey = 0 at which the magnetic anisotropy of
the spin system remains orthorhombic (except of the critical
values Ecx), because the electric field Ey produces monoclinic
magnetic anisotropy.

Figures 7–9 manifest the temperature and electric field Ey

behavior of the specific heat, electric expansion coefficient,
and the electric Grüneisen parameter �ey = −αeyT /cV for the
biaxial spin-1/2 chain (we use I = 1, J = 0.3, a1 = 1, and
a2 = 0.5 for all figures below) for Ex = 0 and H = 0.

We see that the temperature and electric field behavior
of the specific heat and the electric expansion coefficient
is similar to those, obtained for the electric field Ex in the
absence of the magnetic field (see Figs. 1 and 2). On the
other hand, the electric Grüniesen parameter for this direction
of the electric field, which changes sign at the critical value
Ecy = J/

√
a2

1 − a2
2, has different low-temperature behavior

compared to the case Ex �= 0 (cf. Fig. 3). In particular, there
exists a minimum in the low-temperature dependence of �ey,
which was absent for �ex. That minimum is related to the

FIG. 9. The electric Grüneisen parameter of the biaxial spin
chain in the absence of external magnetic field as a function of the
temperature and the applied external electric field Ey.
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FIG. 10. The electric Grüneisen parameter of the biaxial spin
chain for the external magnetic field H = 1 as a function of the
temperature and the applied external electric field Ey.

features of the spectrum εk for Ey �= 0, which are absent for
Ex �= 0.

Figure 10 shows the behavior of the electric Grüneisen
parameter for the intermediate value of the external magnetic
field H = 1. For Ey = Ecy, this point corresponds to H = Hc2.
The behavior of the electric Grüneisen parameter at this tri-
critical point differs from the one at H = Hc1 for x direction
of the electric field, cf. Fig. 4, and from the behavior at zero
magnetic field.

Finally, Figs. 11 and 12 show the temperature and electric
field behavior of the specific heat and the electric Grüneisen
parameter in the strong magnetic field H = 3. Here the strong
field H produces the gap in the spectrum of elementary exci-
tations, and hence the low-temperature specific heat increases
exponentially with T for all values of Ey (similar to the case
with Ex �= 0). The electric Grüneisen parameter, similar to the
case Ex �= 0; see Fig. 5) changes sign at Ey = Ecy; however,
there is no feature at that critical value of the electric field.
The nonmonotonic low-temperature behavior of the electric

FIG. 11. The specific heat of the biaxial spin chain in the strong
external magnetic field H = 3 as a function of the temperature and
the applied external electric field Ey.

FIG. 12. The electric Grüneisen parameter of the biaxial spin
chain for the strong external magnetic field H = 3 as a function of
the temperature and the applied external electric field Ey.

Grüneisen parameter for the y direction of the electric field
(see Figs. 9, 10, and 12), compared to the x direction (see
Figs. 3–5) is related to the more complicated ground-state
phase diagram in the electric and magnetic field for the Ey �= 0
(Ex = 0) case with respect to the Ex �= 0 (Ey = 0) one.

Unfortunately, for the monoclinic situation with a1 �= 0, in-
duced by Ey in the biaxial spin chain, even for H = 0 there are
no exact solutions for nonzero Jz. However, we suppose that
there must exist critical values of the electric field Ey (related
to the points of the spectra of elementary excitations, at which
the gap is closed), and the electric Grüneisen parameter of the
biaxial spin chain with Jz �= 0 will manifest changes of sign
and low-temperature features, similar to the case Jz = 0, and
tends to constant at high temperature.

We are not aware of data of electrocaloric experiments
for spin-chain compounds. Our results can be considered as
predictions for possible electrocaloric experiments in such
systems. It is possible, however, to estimate values of the
magnetoelectric coupling constants in real compounds with
the magnetoelectric interaction, a1,2,3, using, e.g., the results
of experiment for the samarium ferroborate [23]. Their values
at low temperature were about 7× 10−2 μC/m2. The critical
values of the electric field are determined by the value of the
in-plane magnetic anisotropy J . For spin-chain compounds,
the latter is of order of �g2 (here �g is the difference between
the effective in-plane g factors) times the isotropic exchange
along the chain [20]. For spin-chain compounds, that differ-
ence can be on the order of 0.01–0.1 [29,30]. For organic
spin-chain systems, the isotropic exchange is of order of 10 K
[31], and for spin-chain crystals it can be of order of 100 K
[32]. For instance, for the spin-chain crystal 6(MAP)CuCl2
the isotropic exchange parameter along the chain is 110 K,
while the in-plane magnetic anisotropy is 0.76 K [32].

V. SUMMARY

In summary, we have studied the quantitative characteris-
tics of the electrocaloric effect in the quantum biaxial spin
chain system. We have shown that the introduced electric
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Grüneisen parameter demonstrates the critical behavior at the
quantum critical points and lines reminiscent to the behavior
of similar magnetic Grüneisen parameters for the spin chains.
At nonzero low temperatures, the electric Grüneisen ratios
shows the change of its sign and strong enhancement at T →
0. Such a behavior is the manifestation of the quantum nature
of the low-dimensional many-body spin system. We expect
that the predicted behavior can be observed in real biaxial spin
chain compounds, because while the coefficients a1,2,3 can be

relatively small there, the orthorhombic magnetic anisotropy
J (which determines the values of the critical electric fields) is
also small in typical spin-chain systems, and hence the values
of critical electric fields can be accessed in experiments.
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