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Restricted multicanonical sampling for machine learning potential construction
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The restricted multicanonical (rMUCA) ensemble method is developed and combined with the on-the-fly
machine learning potential (MLP) generation scheme. The rMUCA simulation performs a random walk in the
potential-energy subspace restricted by the selected collective variables and allows us to sample physically
relevant configurations without being trapped in local energy minima. No preliminary simulation runs are
required to construct a bias potential. The sample structures for training are collected dynamically from the
simulations using the MLP itself where the simultaneous error estimation is utilized to judge whether an updated
structure should be added to the sample data set or not. The rMUCA formula can be also used for the saddle-point
search with minor modification. The method is applied to the oxidation of carbon monoxide on platinum surfaces.
The results show that the rMUCA simulation provides an efficient and accurate way to sample rare events for
the MLP construction.
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I. INTRODUCTION

Atomistic simulations, such as molecular dynamics (MD)
and Monte Carlo (MC) methods are nowadays indispensable
tools for investigating a wide variety of material proper-
ties [1,2]. Various ensemble techniques were developed to
take desired statistics with isothermal and/or isobaric con-
ditions [3–10]. The simulations in these physical ensembles,
however, tend to get trapped in local minima on the potential-
energy surface. If the energy minimum is surrounded by the
barriers much higher than the thermal energy, only rare fluc-
tuations can allow the system to jump over the barrier and
move to a new minimum. Therefore, it is often difficult to
directly simulate the transitions between two local-minimum
states by the physical ensemble simulations due to their lim-
ited accessible timescales. To overcome this difficulty, the
multicanonical (MUCA) and multibaric (MUBA) ensemble
methods were proposed [11–18]. The MUCA ensemble is
designed to realize a random walk in the potential-energy
space. Similarly, the MUBA simulation performs a random
walk in the volume space. These random walks are realized
by introducing bias potentials which are usually constructed
with preliminary simulation runs. In the MUCA (MUBA)
ensemble simulation, the system explores the potential-energy
surface over a wide range of temperatures (pressures) without
being trapped in local energy minima.

In atomistic simulations, the accuracy of the interatomic
potentials is an important issue. First-principles calculations
based on density functional theory (DFT) [19–21] provide
an accurate way to describe the atomic interactions with
the quantum-mechanical treatment. Owing to high compu-
tational demands of DFT calculations, empirical interatomic
potentials also are used, particularly, in large-scale simula-
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tions. Since the accuracy of these potentials strongly depends
on assumed functions and their parameters, much attention
should be taken to determine them. An alternative approach
to perform large-scale simulations is the machine learning
potentials (MLPs) [22–25]. In the MLP, the total energy of a
system is expressed by simple and flexible functions which are
chosen from a mathematical viewpoint rather than physical
motivation. Different types of bonding can be treated on the
same footing. Since the MLP is a data-driven approach, how
to select the sample data set for training is crucial. We have de-
veloped the automatic MLP generation scheme, self-learning
and adaptive database (SLAD) [26] in which the sample
structures are dynamically collected by MD simulations using
the MLP itself. The simultaneous error estimation is utilized
to judge whether an updated structure should be added to
the sample data set or not. The expensive DFT calculations
need to be performed only for the collected sample structures.
The SLAD has been applied to various materials [26–29],
demonstrating high computational efficiency with accuracy
comparable to DFT calculations.

To generate the MLP applicable to the rare events, such
as chemical reactions and structural phase transitions, the
structure sampling should be carried out with the enhanced
ensemble to favor the transitions between the states separated
by energy barriers. In this context, we have recently combined
the SLAD approach with the MUBA ensemble simulation
to generate the MLP for predicting the phase stability under
various pressures [18]. The advantage of our method is that
the explicit construction of a bias potential is not required.
This feature is essential to apply the MUBA simulation to the
on-the-fly MLP generation.

In this paper, we present the SLAD approach combined
with the MUCA ensemble to simulate chemical reactions.
The random walk is realized in the potential-energy sub-
space restricted by selected collective variables. Hereafter, it is
referred to as the restricted MUCA (rMUCA) method, which
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is designed to be free from the preliminary simulation runs
to construct the bias potential as in the previous MUBA
simulation. The rMUCA formula can be also utilized for the
saddle-point search with minor modification. The utility of the
method is demonstrated for the oxidation of carbon monoxide
(CO) on platinum (Pt) surfaces.

The rest of this paper is organized as follows: In Sec. II,
we describe the formalism for the rMUCA simulation and the
related methods. In Sec. III, the results for the CO oxidation
reactions on the Pt surfaces are presented, and the accuracy of
the constructed MLP is examined. Section IV summarizes the
main results of this paper.

II. METHODOLOGY

A. Restricted multicanonical simulation

The simulations are carried out with the hybrid Monte
Carlo (HMC) method [30]. In the HMC method, the con-
ventional canonical (NV T ) ensemble is sampled using the
microcanonical (NV E ) Hamiltonian,

HNVE =
∑

i

pi · pi

2mi
+ U ({ri}), (1)

where ri(i = 1, . . . , N ) represent atomic positions, pi are the
momenta conjugate to ri, mi are atomic masses, and U is
the interatomic potential. The NV T sampling with the HMC
is carried out as follows: (i) For a given atomic configura-
tion, pi are reflushed by the Maxwell distribution. (ii) The
microcanonical MD run is executed with a few time steps.
(iii) The Metropolis criterion is applied for the change in the
Hamiltonian �HNVE due to the configuration update to accept
or reject the trial configuration. The acceptance probability is
given by

p = min[1, exp(−β �HNVE )], (2)

where β(= 1
kBT ) is the inverse temperature. The HMC method

combines the advantages of the MD and MC simulations,
which allows the global MD configuration updates and does
not suffer from the discretization error due to a finite time-step
size [30].

In order to realize a random walk in the potential-energy
space with the HMC, we introduce collective variables (CVs),
c j ( j = 1, . . . , Nc) [31], and add a bias potential δU to HNVE ,

HrMUCA = HNVE + δU ({c j}). (3)

The variables {c j} are a small set of functions of ri (Nc � N )
and map the entire degrees of freedom of the system into a
reduced subspace. They should, therefore, be chosen properly
to characterize the reaction process. Let us decompose the
atomic force F i(= − ∂U

∂ri
) into the components parallel and

perpendicular to this subspace. The parallel component is
given by

F‖
i =

∑

j

(
n̂ j

i · F i
)

n̂ j
i , (4)

where n̂ j
i ’s are orthonormal vectors (

∑
i n̂ j

i · n̂k
i = δ jk ) which

are obtained by applying the Gram-Schmidt procedure to
n j

i = ∂c j

∂ri
. The perpendicular component is given by F⊥

i =
F i − F‖

i . If removing the parallel component F‖
i from the

real force F i in the dynamics of the MD updates, the system
performs a random walk within the subspace restricted by the
CVs. This is achieved by setting the bias potential to

δU =
∑

i

(
ri − r0

i

) · F‖
i

({
r0

i

})
, (5)

where r0
i ’s denote the initial atomic positions for each HMC

sweep. The corresponding derivative of the Hamiltonian is
obtained as ∂HrMUCA

∂ri
= −F i({ri}) + F‖

i ({r0
i }) that becomes ap-

proximately −F⊥
i ({ri}). The HMC simulation using HrMUCA

with Eq. (5), therefore, realizes the rMUCA sampling.
The advantage of the present method is that any prelim-

inary simulation runs are not required to construct the bias
potential. The bias potential of Eq. (5) can be calculated
analytically. This point is essential to combine the rMUCA
sampling with the on-the-fly MLP generation.

To enforce the random walk sampling in the CV subspace,
an additional history-dependent potential [13,18,32] is intro-
duced to the Hamiltonian of Eq. (3). The simulated subspace
is restricted within the range between cmin

j and cmax
j . The trial

configuration during the HMC sweeps is rejected when any of
{c j} are out of the range. The history-dependent potential is
given by

�δU ({c j}) =
∑

j

[
�δU 0

j + kBT log h j (c j )
]
, (6)

where h j is the histogram for the jth collective variable with
a finite bin size. The initial conditions are �δU 0

j = 0 and
h j = 1. The histogram is updated at each HMC step. The
derivative of the histogram potential is evaluated using nu-
merical differentiation. When the highest value of hj exceeds
the criterion hmax = 1000, the histogram potential is reset to
be �δU 0

j = �δUj and h j = 1.

B. Saddle-point search

Apart from the collection of the training data set for the
MLP generation, the decomposed force of Eq. (4) is also use-
ful to search saddle points (transition states). The knowledge
of the saddle point enables us to evaluate the reaction rate by
assuming the harmonic transition state theory [33]. A first-
order saddle point is a stationary point on the potential-energy
surface where the Hessian matrix has one and only one neg-
ative eigenvalue. If we can choose one CV that characterizes
the reaction process properly, the structural relaxation using
the following modified force is expected to converge to a
transition state,

F∗
i ({r j}) = F i({r j}) − (1 + λ)F‖

i ({r j}), (7)

where λ is a positive number. By inverting the parallel com-
ponent of the real force F i, the system performs a uphill walk
along the potential-energy subspace restricted by the CV and
a downhill walk in all other directions. In our experience,
λ � 0.5 is an appropriate choice (λ = 1 sometimes causes
numerical instability).

Several methods have been proposed to find saddle
points [34,35], the climbing nudged elastic band (cNEB)
method, the dimer method, the Lanczos iterative method, the
rational function optimization with approximate Hessian, and
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so on. The cNEB method requires the knowledge of the initial
and final states and the one-to-one correspondence between
constituent atoms of both states. The other methods are the
Hessian-based ones in which the minimum eigenmode is eval-
uated with the exact or approximate Hessian. The advantage
of the present method over these existing methods is that
no evaluation of the Hessian matrix is required during this
saddle-point search. This method also requires no knowledge
of the final state of the transition. Once the transition state is
obtained, the final state can easily be calculated by searching
a nearby local energy-minimum state in the forward direction
with the standard structural relaxation method.

C. Machine learning potential

In this section, the formulation of our MLP is described
briefly to make this paper self-contained. A monoatomic
system is considered here for simplicity. The details of our
formulation including the extension to a multiatomic species
system can be found in Ref. [24]. The power spectrum of
the Fourier coefficients in the spherical coordinates is used
as the descriptor to characterize local atomic geometries. The
descriptor for the Ith atom located at rI is given by

gI = gI
nl =

l∑

m=−l

f I
nlm f I

nlm, (8)

with the angle-resolved function,

f I
nlm =

∑

i �=I

fcut
(
rI

i

)
jl
(
qnrI

i

)
Ylm

(
r̂I

i

)
, (9)

where rI
i = ri − rI , rI

i = |rI
i |, jl ’s are the spherical Bessel

functions, Ylm’s are the real spherical harmonics, and fcut is
a smooth radial cutoff function with the cutoff radius of rcut.
The sampling wave-vector lengths are set to be qn = 2πn/rcut.
The similarity measure between two local geometries is
given by

d2(gI , gJ ) =
nmax∑

n=0

lmax∑

l=0

∣∣gI
nl − gJ

nl

∣∣2
, (10)

where the resolution of the descriptors is controlled by nmax

and lmax. Using this similarity measure, the total energy of the
system is expressed by a sum of weighted Gaussians,

U =
∑

J∈ref

αJ

∑

I

Q(gI , gJ ), (11)

where Q(gI , gJ ) = exp[−d2(gI , gJ )/(2θ2)] approximates the
overlap between two geometries, α are the regression co-
efficients, and θ is the scale parameter. The index J runs
over the reference descriptors that are selected from the local
geometries in the sample data set by the recursive bisection
method with the k-means clustering. This treatment removes
highly correlated configurations and, thus, enhances the com-
putational efficiency without significant loss of accuracy. The
analytic evaluation of the atomic force is straightforward.

For a given sample data set, the squared sum of the residu-
als of the total energy and force is minimized with the standard
L2 regularization to determine the regression coefficients in
Eq. (11). The normalization parameters D are introduced for

TABLE I. Parameters for MLP construction. The scale parameter
θ , regularization parameter λ, descriptor expansion parameters, nmax

and lmax, cutoff radius rcut , normalization parameters D−1, spilling
factor tolerance slarge, and recursive bisection criterion δr.

MLP parameters

θ 0.3
λ 1 × 10−2

nmax 12
lmax 6
rcut (bohr) 8.5
D−1

energy (hartree/atom) 5 × 10−5

D−1
force (hartree/bohr) 1 × 10−3

slarge 0.02
δr 0.05

the energy and force to make them dimensionless and treat the
quantities with different physical units on the same footing.
During the simulation run, the simultaneous error estimation
is performed using the following spilling factor,

s(g) = 1 −
∑

I∈ref

∑

J∈ref

Q(g, gI )Q−1(gI , gJ )Q(gJ , g). (12)

This factor becomes zero when the geometry g is fully pro-
jected by the reference descriptors, whereas, s = 1 when g has
no overlaps between them. A smaller value of s is expected to
result in higher accuracy of the MLP.

The MLP construction is carried out with the following
SLAD procedure [18]: (i) During the HMC simulations with
the MLP, a sample structure is collected when the maximum
value of the spilling factors exceeds the tolerance slarge or
2000 HMC steps proceed without any sample collection. Once
a sample structure is collected, the HMC simulation is sus-
pended. (ii) The DFT calculation is performed on the new
sample structure, and the result is added to the sample data
set. (iii) The MLP is reconstructed with the updated sample
data set. (iv) The HMC simulation is restarted from the latest
accepted configuration. The parameters for the MLP construc-
tion used in this paper are summarized in Table I.

D. DFT calculation

The DFT calculations for the collected sample struc-
tures are performed using the ultrasoft pseudopotential
method [36–38]. The cutoff energies are 15 and 120 hartree
for the wave function and charge density, respectively. A 
-
centered 2 × 2 × 1 k-point mesh is used for the Brillouin-zone
integration, and Gaussian smearing with a width of 6 mhartree
is applied.

Long-range van der Waals (vdW) forces play an important
role for surface reactions. The local-density approxima-
tion [39–41] and semilocal generalized gradient approxima-
tion (GGA) [42–44], which are commonly adopted for the
exchange-correlation functional in DFT calculations, cannot
describe this interaction properly. In order to deal with the
vdW interaction accurately, the nonlocal functional, optB86b-
vdW [45], is adopted for the exchange-correlation energy. It
was shown that this functional correctly describes the site
preference of CO on the Pt(111) surface [46]. Double spatial
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FIG. 1. Slab models for (a) Pt(111) and (b) Pt(211) surfaces.
Computational unit cells are represented by thick lines. Pt atoms
in the top surface layer are depicted in light yellow, and others are
depicted in silver. The same color scheme is used in the subsequent
figures.

integrals for the nonlocal functional are carried out using the
interpolation scheme [47,48].

The DFT code as well as the machine learning code used in
this paper have been developed by the author and already ap-
plied successfully to a wide variety of the systems [18,24,26–
29,37,38,48–52].

III. RESULTS AND DISCUSSION

A. MLP construction

The rMUCA ensemble method is applied to the CO oxida-
tion reaction on Pt surfaces. Two kinds of surfaces Pt(111)
and Pt(211) are considered. The Pt(111) surface shows an
ideal flat terrace, whereas the Pt(211) surface is a stepped
one and consists of three-atom-wide (111) terraces and (100)
step edges. These surfaces are simulated by repeated slab
models which are shown in Fig. 1. The slab models are con-
structed using the theoretical bulk lattice constant, a = 3.950
Å, that is in good agreement with the experimental value of
3.925 Å [53]. The periodicity in the lateral directions is set
to be p(3 × 3) and p(3 × 1) for Pt(111) and Pt(211), respec-
tively. Both slab models are composed of four Pt layers with
a 10-Å vacuum. To simulate the CO oxidation reaction, one
CO molecule and one O adatom are placed on the top surface
of the Pt slab. The corresponding coverage of CO and O is
1/9 monolayers for both Pt(111) and Pt(211). These two slab
models are used throughout this paper. In the HMC simula-
tions, the harmonic well potential is additionally applied to
the bottom two Pt layers in order to simulate the bulk crystal,
Vwell = k

2

∑
i |ri − rb

i |2, where rb
i ’s denote bulk Pt positions,

and the spring constant is set to k = 0.1 hartree/bohr2.
For the rMUCA sampling, the C-O coordination num-

ber is chosen as the CV, which is calculated from the

expression [54],

CN =
∑

i

1 − (
�ri
d

)6

1 − (
�ri
d

)12 , (13)

where �ri’s are the interatomic distances between C and O
atoms, the scale parameter is d = 1.46 Å, and i runs over two
O atoms in the C-centered Wigner-Seitz cell. The CV range
from 1 to 2 is discretized with 20 bins. This CV choice allows
us equivalent treatment for two types of oxygen atoms, an
oxygen adatom on the surface and O in the CO molecule, and,
thus, the exchange between them via the oxidation and sub-
sequent reduction reactions is naturally incorporated into the
simulation. The unfavorable CO dissociation can be prevented
by setting the CN range to be from 1 to 2.

First, two MLPs are generated for the Pt(111) and Pt(211)
surfaces, separately. The HMC simulations are carried out at
T = 500 K and the simulation period is taken to be 200 000
HMC steps. Three MD steps with a time-step size of 0.97 fs
are used for the configuration updates. The sample structures
for training are collected by the SLAD approach. As the initial
configuration for the Pt(111) surface, a CO molecule is placed
at the top site, and an oxygen adatom O∗ is placed at the
hollow-hcp site: Hereafter, the O adatom is denoted as O∗
to distinguish it from O in the CO molecule. For the Pt(211)
surface, CO and O∗ are placed at the top and hollow-fcc sites
on the (111) terrace, respectively.

Figure 2 depicts the profiles of the CV, the C-O co-
ordination number, during the HMC simulations with the
rMUCA sampling. The CV exhibits rapid oscillations over
the range from 1 to 2 both for Pt(111) and Pt(211), indicating
the promotion of the reaction, CO + O∗ ↔ CO2. This can
be confirmed visually from the snapshots shown in Fig. 2. The
number of the sample structures collected by the SLAD, on
which the DFT calculations are performed, is 178 and 195 for
Pt(111) and Pt(211), respectively. Since each HMC simulation
includes about 600 000 configuration updates, the structure
sampling is considerably accelerated by the dynamical data
collection with the SLAD.

Then, the MLP is reconstructed using both sample data
sets collected for Pt(111) and Pt(211). Total number of the
sample structures is 373, which contain 14 547 local atomic
geometries. Applying the recursive bisection method for
sparesification [24], the number of the regression coefficients
is reduced to 5398. Figure 3 shows the scatter plots for the re-
constructed MLP where 40 test configurations are taken from
two HMC runs every 10 000 steps. The MLP reproduces the
DFT results quite well. The mean absolute errors for the test
(training) data set are 1.2 × 10−4 (7.7 × 10−5) hartree/atom
and 3.1 × 10−3 (2.5 × 10−3) hartree/bohr for the total energy
and force, respectively. The small differences between the
prediction errors for the training and test datasets indicate
that the physically relevant configuration subspace is suitably
covered with the sample structures collected by the SLAD.

If only the history-dependent potential is used as the bias
potential, which corresponds to the metadynamics [31], it also
promotes the oscillations of the CV. The periods of the oscil-
lations, however, become somewhat longer than those with
the rMUCA bias potential. The rMUCA method enhances
the random walk in the subspace restricted by the CVs and
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FIG. 2. Profiles of the CV (the C-O coordination number) during
the HMC simulations with the rMUCA ensemble, together with
selected snapshots of the geometries. (a) Pt(111) and (b) Pt(211).

allows us efficient sampling of rare events. The disadvantage
of the rMUCA sampling is that the history-dependent poten-
tial obtained by it does not correspond to the the free-energy
surface as a function of the CV. The recalculation with the
metadynamics is, however, relatively easy if the well-trained
MLP is constructed with the rMUCA sampling.

B. MD simulation

Using the constructed MLP, the conventional NV T MD
simulations are carried out for the Pt(111) and Pt(211) sur-
faces with CO and O∗ adsorbates. The potential Vwell is
added for the bottom two Pt layers as performed in the HMC
simulations with the rMUCA sampling. The Nośe-Poincaré
thermostat [10] is used to control temperature at T = 500 K.
The simulation period is taken to be 200 000 MD steps with
a time-step size of 1.94 fs. During MD runs for both surfaces,
the maximum values of the spilling factor are kept smaller
than the tolerance (slarge = 0.02), suggesting high accuracy of
the simulations (see the left insets of Fig. 4).

Trajectories of C and O∗ are shown in Fig. 4 where the
trajectory of O in the CO molecule is not shown for clarity
since no breaking of the C-O bond is observed in both simula-
tions. For the Pt(111) surface, the simulation starts with CO at

FIG. 3. Scatter plots for (a) total energy and (b) force.

the top site and O∗ at the hollow-hcp site. It is found that O∗
is not diffusive and fluctuates around the hollow-hcp site. On
the other hand, the CO molecule shows surface diffusion via
the bridge and hollow sites, but does not approach the O∗ site.
This implies the repulsive interaction between CO and O∗.

In the starting configuration for the Pt(211) surface, CO
and O∗ are placed at the top and hollow-fcc sites on the (111)
terrace, respectively. After about 3000 MD steps, O∗ hops to
the bridge site on the step edge and is trapped there for the
rest of the simulation period. The CO molecule also prefers
the step edge and is mainly located at the top site on it. The
reason for the preferential occupation of the sites on the step
edge is probably due to the low coordination number of Pt
on the step edge, which will make these Pt atoms chemically
reactive [55,56].

The profiles of the C-O coordination number during the
MD runs are given in the right insets of Fig. 4. The variations
in the coordination number do not cover the entire range
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FIG. 4. Trajectories of C and O∗ calculated with conventional
MD simulations at T = 500 K. (a) Pt(111) and (b) Pt(211). The
profiles of the maximum spilling factor and the C-O coordination
number are given in the left and right insets, respectively.

from 1 to 2 and are limited within the region of CN � 1.5,
indicating that no formations of CO2 are reproduced in the
MD simulations. Comparing these profiles with those shown
in Fig. 2, we can confirm that the rMUCA sampling allows
us efficient collection of rare-event configurations that are
difficult to access in the physical ensemble simulations.

C. CO oxidation reaction

The energetics and reaction pathways of the CO oxidation
reactions on the Pt(111) and Pt(211) surfaces are investigated
using the MLP. For Pt(111), CO at the bridge site and O∗
at the hollow-hcp site are chosen as the initial state (IS),
which is found to be the most stable configuration in the
present coverage. According to the result of the standard
MD simulation, two adsorbates located on the step edge are
chosen as the IS for Pt(211) where CO and O∗ are placed at
the top and bridge sites, respectively. The standard structural
relaxation is performed for them. Then, the uphill relaxation
with the modified force of Eq. (7) is applied to the IS to find
the transition state (TS). The final state (FS) is obtained by
applying the subsequent standard downhill relaxation to the
TS. At the beginning of the uphill and downhill relaxation,
the interatomic distance between C and O∗ is shortened by

FIG. 5. Energetics of the CO oxidation reaction on the Pt(111)
surface. (a) Energy diagram, where the black (gray) lines represent
the MLP (DFT) results. The geometries of (b) the initial state (CO +
O∗), (c) the TS, and (d) the final state (CO∗

2). The arrows in (c) show
the eigenvector of the minimum eigenmode where the Pt components
are omitted because of their negligible contribution.

about 0.5 Å to create nonzero terms in the force. During the
relaxation processes, the bottom two layers of the Pt slabs
are fixed at their bulk positions. In this section, the origin of
the energy is set to be the sum of the total energies of the
clean Pt surface and an isolated CO2 molecule calculated by
DFT where the latter is calculated using a face-centered cubic
supercell with the lattice constant of a = 16 Å. Figure 5 shows
the result for the Pt(111) surface. The energy barrier in the for-
ward direction (the energy difference between the IS and TS)
is predicted to be �E = 0.99 eV. This agrees well with the
previous theoretical result obtained by the DFT-GGA calcula-
tion, 1.05 eV [57]. The interatomic distance between C and O∗
in the TS is dCO∗ = 1.88 Å that is about 1.6 times longer than
the theoretical C-O bond length in the isolated CO2 molecule
(1.19 Å). The FS is obtained to be a bent-shaped CO∗

2 complex
(an asterisk is introduced to denote a chemisorbed state of
CO2) which is weakly bound on the Pt(111) surface with
the adsorption energy E = −0.10 eV. The C-O bond lengths
of CO∗

2 are dCO2∗ = 1.23, 1.28 Å which are slightly longer
than that in the CO2 molecule and the O-C-O bond angle is
θCO2∗ = 132.7◦. It is confirmed that the Hessian matrices for
the IS and FS have no negative eigenvalues, and that for the
TS has only one negative eigenvalue. The eigenvector of the
minimum eigenmode in the TS gives the reaction coordinate
at the saddle point, which is shown in Fig. 5(c). The corre-
sponding vibrational frequency is ν# = 346i cm−1. To check
the robustness of the saddle-point search method, the uphill
relaxation is repeated using the C-O∗ interatomic distance as
the CV. The obtained geometric parameter and the energy of
the TS are essentially the same as those calculated with the
CN , indicating that the present method is almost unaffected
by the choice of the CV.

The result for the Pt(211) surface is shown in Fig. 6. The
geometries of the CO-O∗ complexes obtained for the TS and
FS are relatively similar to those on Pt(111). For the TS, the C-
O∗ distance is dCO∗ = 1.96 Å. A bend-shaped CO∗

2 complex is
also found as the FS of Pt(211) in which dCO2∗ = 1.23, 1.25 Å
and θCO2∗ = 144.7◦. By checking the eigenvalues of the
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FIG. 6. Energetics of the CO oxidation reaction on the Pt(211)
surface. See the caption of Fig. 5.

Hessian matrices, it is identified that IS and FS are local
energy minima, and TS is a first-order saddle point. The
imaginary vibrational frequency in TS is ν# = 381i cm−1.
The energies of the IS and FS are lower than those of Pt(111)
by 0.35 and 0.22 eV, respectively, most likely owing to high
reactivity of the Pt atoms on the step edge as mentioned
in the previous section. The previous DFT calculation with
GGA [56] also supports more stable adsorption of CO and
CO∗

2 at the step edge than at the flat terrace. If the reactants
become more stable, in general, the reaction among them
is accompanied with a higher-energy barrier because of the
high-energy cost for breaking/reforming of their bonds. In
fact, the barrier height is predicted to be �E = 1.53 eV which
is 0.54 eV higher than that of Pt(111).

Assuming the harmonic transition state theory [33], the
reaction rate coefficients at 500 K are estimated to be 4.1 ×
102 and 4.7 × 10−3 s−1 for Pt(111) and Pt(211), respec-
tively. The coefficient of Pt(211) is five orders of magnitude
smaller than that of Pt(111). The stable adsorbates on the
step edge cause a higher-energy barrier. Thus, the stepped Pt
surfaces are expected to inhibit the CO oxidation, at least, for
low coverage surfaces where the adsorption of CO and O∗ on
the step edge will be dominate [58,59].

Finally, the DFT total-energy calculations are performed
on the IS, TS, and FS configurations obtained by the MLP.
These results are also given in Figs. 5(a) and 6(a). As can be
seen, the deviations of the MLP energies from the DFT ones
are kept small: They are less than 0.1 eV in most cases, and the
only exception is 0.15 eV for the IS of Pt(211). These errors
do not affect our consideration for the characteristic of the CO
oxidation reaction on the Pt surfaces discussed in this section.

The MLP generated with the on-the-fly rMUCA sampling
shows sufficient accuracy to simulate the chemical reactions
involving the transitions between the states separated by en-
ergy barriers.

IV. SUMMARY

In this paper, the restricted multicanonical ensemble
method was combined with the on-the-fly MLP generation
scheme, SLAD. The rMUCA simulation performed a random
walk in the potential-energy subspace restricted by the se-
lected collective variables. Any preliminary simulation runs
were not required to construct a bias potential. This feature
was essential to apply the rMUCA simulation to the on-the-fly
MLP generation. The rMUCA formula can be easily modified
for the saddle-point search.

The utility of the method was demonstrated for the CO
oxidation reactions on the Pt surfaces. Two kinds of the sur-
faces, flat Pt(111) and stepped Pt(211), were considered. The
rMUCA simulations successfully promoted the CO oxidation
reaction which was difficult to reproduce in the standard en-
semble simulations. During about 1 200 000 configuration
updates in the HMC sweeps, the total number of the DFT
calculations required is only 373, indicating remarkable ef-
ficiency of the dynamical data collection with the SLAD.
The constructed MLP shows sufficient accuracy to predict the
energetics of the CO oxidation reactions in which the validity
of the saddle-point search scheme using the rMUCA formula
is also confirmed. The rMUCA simulation combined with the
SLAD provides an efficient and accurate way to generate the
MLP applicable to the rare events. From an application point
of view, the present results suggest that step edges on the Pt
surfaces inhibit the CO oxidation.

In the rMUCA simulation, the choice of collective co-
ordinates is a critical step, which depends on the system
of interest. Although a universal recipe has not yet been
proposed, we can find a large variety of examples in the pub-
lished metadynamics papers [54,60–62]. The several useful
guidelines have also been suggested to generate appropriate
CVs [31]. In this context, the similarity measure for the MLP
descriptors given in Eq. (10) is expected to be a good CV in
many cases since it accurately characterizes the local atomic
environment.
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