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From Green-Kubo to the full Boltzmann kinetic approach to heat transport in crystals and glasses
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We show that vertex corrections to the quasiharmonic Green-Kubo theory of heat transport in insulators
naturally lead to a generalization of the expression for the conductivity that could be derived from the linearized
Boltzmann equation, when the effects of the full scattering matrix are accounted for. Our results, which
are obtained from the Mori-Zwanzig memory-function formalism, provide a fully ab initio derivation of the
linearized Boltzmann transport equation and establish a connection between two recently proposed unified
approaches to heat transport in insulating crystals and glasses.
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I. INTRODUCTION

The Green-Kubo (GK) theory of linear response [1,2] and
the Boltzmann’s kinetic approach (BKA), which leads to the
transport equation with the same name (BTE) [3], are usually
considered as independent and complementary methods to
deal with charge and heat transport in condensed matter. By
construction, the GK theory only applies to small perturba-
tions, but it is otherwise general, for it applies to liquids as
well as to solids, either crystalline or amorphous, both in the
classical and fully quantum regimes. The BTE is not limited to
the linear regime, but it is based on a (semi)classical treatment
of charge and energy, which requires a proper definition of
their carriers (e.g., electron and phonon quasiparticles) with
well defined values of their positions, momenta, and energies
[4]. These requirements make it problematic to apply the BKA
to amorphous solids.

A couple of recent papers [5,6] have recently generalized
these approaches, so as to encompass crystalline and dis-
ordered systems in the same theoretical and computational
frameworks. The two papers differ conceptually in that the
first is based on an elaborate generalization of the BKA,
based on Wigner’s dynamics (WD) [7], while the second is
a straightforward specialization of the GK theory to solids in
the quasiharmonic (QH) approximation, and dubbed therefore
“QHGK.” Notwithstanding, the two approaches give similar
results for the heat conductivity, which coincide in the long-
lifetime limit. Even when applied to crystals, these methods
provide further insight into the limits of the quasiparticle
picture of transport: The quasiparticle group velocities are
replaced here with a anti-Hermitian matrix whose diagonal
elements are indeed group velocities, and whose off-diagonal
elements, which fully determine the transport mechanism in
disordered systems, give rise to interband contributions to
heat transport in crystals.

*baroni@sissa.it

The conceptual content of these two approaches and the
meaning of the physical approximations leading to them
are best appreciated in a many-body framework [8], start-
ing from the GK formula [2], which states that the heat
conductivity is proportional to the integral of the time cor-
relation function of the energy flux, 〈Ĵ (t )Ĵ (0)〉, where 〈·〉
indicates an equilibrium thermal average and here and a
caret, “̂”, designates quantum mechanical operators. In the
(quasi)harmonic approximation, the energy flux is quadratic
in the phonon (or, more generally, normal-mode) creation and
annihilation operators, â†

p and âp. The energy-flux correla-
tion function is therefore a linear combination of products of
four normal-mode operators of the form 〈â†

p(t )âq(t )â†
r âs〉 and

〈â†
p(t )â†

q(t )âr âs〉 [6]. The QHGK approach essentially results
from the application of two related, but distinct, approxima-
tions. The first amounts to factorizing four-point correlation
functions into linear combinations of products of two-point
ones, such as, e.g.,

〈â†
p(t )âq(t )â†

r âs〉 ≈ npnrδpqδrs

+ 〈â†
p(t )âp(0)〉〈âq(t )â†

q(0)〉δpsδqr, (1)

where np = 〈â†
pâp〉 = 1/(eh̄ωp/kbT − 1) is a Bose-Einstein oc-

cupation number, ωp being the normal-mode frequency, T the
system’s temperature, and kB the Boltzmann’s constant. In the
parlance of many-body perturbation theory (MBPT), this fac-
torization is described as the neglect of vertex corrections to
the correlation function and referred to as the dressed-bubble
approximation [8]. Physically, vertex corrections describe the
correlation between the decay channels of different normal
modes, and their neglect amounts to expressing the propaga-
tion and decay of each of them independently from all the
others, as if determined by the interaction with a common,
mean-field-like, heat bath. The second approximation con-
sists in assuming that this heat bath is essentially a white
noise, so that its interaction with the normal modes is Marko-
vian, i.e., unaffected by any memory effects. The Markovian
approximation essentially results in a damped exponential
dependence of the single-mode greater Green’s functions on
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time,

−i〈âp(t )â†
p〉 ≈ −i(np + 1)e−iωpt−γp|t |, (2)

which is to say that its spectral function (the imaginary
part of its Laplace-Fourier transform) is Lorentzian. In a
MBPT framework, this roughly corresponds to neglecting
the frequency dependence of the phonon self-energies. The
combination of these two approximations leads to a unified
approach to heat transport that—while reducing in crys-
tals to an enhanced version of the BKA in the so-called
relaxation-time approximation (RTA), where interband effects
are explicitly accounted for—equally applies to amorphous
systems as well.

In this paper, we show how the two approximations that
lead to the QHGK approach can be removed by treating the
anharmonic decay of the vibrational normal modes through
the Mori-Zwanzig (MZ) memory-function formalism [9,10].
Our main result is that a proper account of vertex corrections
in the QHGK approach leads to an expression for the heat
conductivity that, while applying to both lattice-periodic and
disordered systems, in the former case naturally reduces to
the full BTE beyond the RTA, i.e., properly accounting for
the effects of the full scattering matrix. This result shows
how the full linearized BTE can be derived entirely from first
principles within the GK theory of linear response and sheds
light onto the conceptual equivalence of the QHGK [6] and
WD-BKA [5] approaches to heat transport. In Sec. II, we
briefly present the Mori-Zwanzing approach to the Green-
Kubo linear-response theory of heat transport; in Sec. II A, we
derive the single-mode approximation to the GKMZ theory,
which is closely related to the QHGK approach of Ref. [6];
in Sec. III, we derive the full Boltzmann equation from the
GKMZ approach to heat transport; in Sec. IV, we draw a com-
parison with the WTE approach of Refs. [5,7]; in Sec. V, we
present a numerical application to the Li3ClO antiperovskite
ionic conductor; and Sec. VI finally contains our conclusions.

II. GREEN-KUBO-MORI-ZWANZIG THEORY
OF LATTICE HEAT CONDUCTIVITY

The quantum GK formula for the thermal conductivity, κ ,
reads

κ = 1

V T

∫ ∞

0
dt

∫ 1
kBT

0
dλ〈Ĵ (t − ih̄λ)Ĵ (0)〉, (3)

where V is the system’s volume, Ĵ is a generic Cartesian
component, the energy-flux operator in the Heisenberg rep-
resentation, and Cartesian indices have been suppressed to
unclutter the notation. All the algebra that follows is consider-
ably simplified by introducing the Kubo inner product [11,12]
between quantum mechanical operators, defined as

(Â, B̂)
.=

∫ 1
kBT

0
〈Â†(−ih̄λ)B̂〉dλ, (4)

where the time evolution of operators in the Heisenberg
representation can be formally expressed in terms of the ex-
ponential of the Liouvillian superoperator [13], L, defined as
Â(t ) = eiĤt/h̄Âe−iĤt/h̄ .= eiLt Â, and LÂ

.= [Ĥ , Â]/h̄ = −i ˙̂A.
In terms of this scalar product, the quantum heat conductivity,

Eq. (3), simply reads κ = 1
V T

∫ ∞
0 (Ĵ (t ), Ĵ (0))dt , in close for-

mal analogy with its classical counterpart.
In the QH approximation, the energy flux can be cast into

the form

Ĵ = − ih̄

2

∑
pq

vpq

(
ωp + ωq

2

)
(â†

pâq − â†
qâp)

+ ih̄

2

∑
pq

vpq
ωp − ωq

2
(â†

pâ†
q − âpâq), (5)

where vpq is the real antisymmetric generalized group-
velocity matrix [6,14]. The first, phonon-conserving term in
Eq. (5) was dubbed resonant in Ref. [6], while the second, an-
tiresonant; one was shown to give negligible contributions and
will thus not be considered any further in the present work.
By applying the GK formula, Eq. (3), and manipulating the
indices on account of the antisymmetry of the group-velocity
matrix—which makes the ordering of equal-time products of
bosonic operators such as, e.g., â†

p(t )âq(t )—irrelevant, one
finally obtains

κ = h̄2

V T

∑
IJ

vIvJ ω̄I ω̄JC̄IJ (0), (6)

where the indices I = (pq) and J = (rs) label pairs of normal
modes, ω̄I = (ωp + ωq)/2, ÂI = â†

pâq, and C̄IJ (0) is the zero-
frequency value of the Fourier-Laplace (FL) transform of the
two-mode correlation function:

C̄IJ (z) =
∫ ∞

0
dt eiztCIJ (t ), and

CIJ (t ) = (ÂI (t ), ÂJ ). (7)

For the sake of clarity, we stress that velocity matrices appear-
ing in the expression of vector quantities (such as a current)
carry a Cartesian index, whereas products of two such matri-
ces appearing in tensor quantities (such as the conductivity)
carry two indices. Equation (6) shows that the computation of
the heat conductivity reduces to that of two-phonon correla-
tion functions. In the following, we show how this task can
be effectively tackled by leveraging the MZ memory-function
formalism.

In his celebrated 1965 paper [10], Mori showed that C̄IJ (z)
can be formally expressed as

C̄IJ (z) = i
∑

K

�̄−1
IK (z)CKJ , where (8)

CIJ = CIJ (0), (9)

�̄IK (z) = zδIK − �IK + i	̄IK (z), (10)

�IJ = i
∑

K

( ˙̂AI , ÂK )C−1
KJ , (11)

	̄IJ (z) =
∑

K

( ˙̂AI ,Q(z − QLQ)−1Q ˙̂AK )C−1
KJ , (12)

and Q is the projector over the operator manifold orthogonal
to span({ÂI}), defined by its action onto a generic operator,
B̂, as

QB̂ = B̂ −
∑

IJ

ÂI (ÂJ , B̂)C−1
IJ . (13)

054311-2



FROM GREEN-KUBO TO THE FULL BOLTZMANN KINETIC … PHYSICAL REVIEW B 107, 054311 (2023)

Mind the difference between CIJ , which is a function of time,
and its FL transform C̄IJ , which is a function of frequency.
More details on the Mori-Zwanzig formalism can be found,
e.g., in Chapter 5 of Ref. [12].

The single-mode approximation

In order to proceed further, we seek to evaluate C̄IJ (z),
Eq. (8), to leading order in the strength of the anharmonic
interactions, V̂ = Ĥ − Ĥ◦, Ĥ◦ = ∑

p h̄ωp(â†
pâp + 1/2) being

the harmonic Hamiltonian. Let us start with CIJ , Eq. (9),
and �IJ , Eq. (11), whose leading order in V is O(1). In the
harmonic approximation, one has

C◦
IJ =

∫ 1
kbT

0
dλ〈â†

qâs〉◦〈âpâ†
r 〉◦eh̄λ(ωp−ωq )δpsδqr

= np − nq

h̄(ωq − ωp)
δIJ , (14)

where 〈·〉◦ indicates a thermal average in the canonical ensem-
ble of the harmonic system, and

�IJ = (ωp − ωq)δIJ . (15)

In this approximation, the time evolution of ÂI is parallel to
ÂI : One concludes that Q ˙̂AI ∼ O(V ), and that 	̄ is ∼O(V2)
[Eq. (12)]. We notice that, to this order in V , the thermal
averages that implicitly appear in the Kubo inner product in
Eq. (12) can be performed in the canonical ensemble of the
harmonic Hamiltonian: We indicate this “harmonic” Kubo
product by the symbol (Â, B̂)◦. The �̄ matrix in Eq. (10)
is singular at z = 0 for 	̄ = 0: Its inverse in Eq. (8), is
therefore �̄−1(0) ∼ O(V−2), consistent with the divergence
of the heat conductivity in the harmonic limit. By using
Eq. (14), the heat conductivity, Eq. (6), can be cast into the
form

κ = ih̄2

V T

∑
IJ

vIvJ ω̄I ω̄J�̄
−1
IJ (0)C◦

JJ

= i

V

∑
IJ

cJvIvJ
ωI

ωJ
�̄−1

IJ (0), (16)

where cJ = h̄2ω̄2
JCJJ/T is the resonant generalized modal

specific heat introduced in Ref. [6].
Equation (16) is completely general, though its implemen-

tation requires the computation and inversion of the N2 × N2

matrix, �̄IJ , where N is the number of normal modes. This
task is greatly facilitated when the off-diagonal elements of
this matrix, i.e., of the 	̄ matrix in Eqs. (10) and (12), can be
neglected. In this case, Eq. (16) can be shown to reduce to

κ = 1

V

∑
pq

cpqvpqvpq

	̄′
pq

(ωq − ωp − 	̄′′
pq)2 + (	̄′

pq)2
, (17)

where 	̄′
pq = Re 	̄pq,pq(0) and 	̄′′

pq = Im 	̄pq,pq(0), which is
closely reminiscent of QHGK expression of Ref. [6]. The
details of the derivation are reported in Appendix A.

The neglect of the off-diagonal elements of 	̄ is con-
ceptually analogous to the single-mode (SM) approximation
in the solution of the linearized BTE. This approximation
has been shown to be particularly crude in the presence of

strong hydrodynamic effects, especially (but not limited to)
2D materials [15], leading to an underestimate of the heat
conductivity. In Sec. III, we will further elaborate on this
analogy and show how the full BTE can be derived from the
GKMZ theory. Some numerical evidence on the magnitude
of the effects of nondiagonal terms in 	 will be provided in
Sec. V.

Yet, no assumptions have been made on the time depen-
dence of the single-mode Green’s function or on the frequency
dependence of its Fourier transform. Indeed, in Appendix B
we show that for a cubic anharmonic potential Eq. (17) can be
put into the dressed-bubble form of Refs. [8,16]:

κ = 1

V

∑
pq

h̄2(ωp + ωq)2

4
vpqvpq(Ipq + Iqp), (18)

Ipq = 1

8πkbT 2

∫
dωg̃>

p (ω)g̃<
q (ω), (19)

where

g>
p (t ) = −i〈âp(t )â†

p〉, (20)

g<
p (t ) = i〈â†

pâp(t )〉 (21)

are the so-called greater and lesser Green’s functions, and
g̃≶

q (ω) indicate their Fourier transforms, whose line shape is
not assumed a priori. In Eq. (18), we have omitted terms
of order O(N−1), which are negligible in the thermodynamic
limit.

In the Markovian approximation, i.e., by further neglect-
ing memory effects (which in the MBPT parlance amounts
to neglecting the frequency dependence of the phonon self-
energy), we arrive at the RTA approximation for the SM
Green’s function, g>

p (t ) = −i(np + 1)e−iωpt−γp|t | and g<
p (t ) =

i npe−iωpt−γp|t |. By plugging these expressions into Eq. (19),
one obtains

κM = 1

V

∑
pq

cM
pqvpqvpqτpq, (22)

where

cM
pq = np(nq + 1) + nq(np + 1)

2kBT 2

(ωp + ωq)2

4
, (23)

τpq = γp + γq

(ωp − ωq)2 + (γp + γq)2
, (24)

and “M” stands for “Markovian,” which coincides with the
QHGK expression of Ref. [6], to within terms of order
O(γ 2), in agreement with the conclusions of Ref. [8]. Memory
effects, defined in the MBPT formalism as the frequency
dependence of the phonon self-energy function, i.e., as the
non-Lorenzian features of the imaginary part of the Green’s
function, are likely important in the strongly anharmonic
regime and have been shown to have a non-negligible impact
on the thermal conductivity of a ferroelectric material near the
critical temperature [16].

III. FROM GKMZ TO THE FULL BTE

Until now, no assumptions on the crystalline order of the
system have been made. Lattice periodicity brings about a
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great simplification that allows one to reduce the MZ approach
to heat transport to the full (i.e., beyond the RTA) BTE.
The crucial step permitting this reduction is the realization
that lattice periodicity implies a Bloch block structure (no
pun intended!) of the velocity matrices. In a periodic system,
normal-mode indices split into a pair of Bloch-wave-vector
and phonon-band indices: q → {q, ν} and the velocity matri-
ces read

vqν,kμ = vq,νμ δqk, with

vq,νμ = v∗
q,μν = −v−q,μν, (25)

where the diagonal term is the usual phonon group velocity:
vq,νν = ∇qωqν . These relations allow us to to cast the energy
current, Eq. (5) into the Hardy form [6,8,17]:

Ĵ = h̄
∑
qνν ′

ωqν + ωqν ′

2
vqνν ′ â†

qν âqν ′

+ h̄
∑
qνν ′

ωqν − ωqν ′

4
vqνν ′ (â−qν âqν ′ − â†

qν â†
−qν ′ ). (26)

Neglecting again the antiresonant (second-line) part of the
flux, we find

κ = i

V T

∑
qkνν ′μμ′

ckμμ′vqνν ′vkμμ′
ωqνν ′

ωkμμ′
�̄−1

qνν ′,kμμ′ (0), (27)

where ckμμ′ = ckμkμ′ .

In Appendix C, it is shown that when the phonon line
widths are small with respect interband separations, the �̄

matrix in Eq. (27) is diagonal in the νν ′ and μμ′ indices.
Assuming that this is the case, the matrix �IJ in Eqs. (11)
and (15) vanishes, and Eq. (27) becomes

κ = 1

V

∑
qνkμ

ckμvqνvkμ

ωqν

ωkμ

	̄−1
qνkμ

(0), (28)

where ckμ = ckμμ = nkμ(nkμ+1)h̄2ω2

kBT 2 is the modal heat capacity.
If we now define the scattering matrix S as

Sqνkμ = 	̄kμqν

ωkμ

ωqν

, (29)

then Eq. (28) can be written as

κ = 1

V

∑
qνkμ

cqνvqνvkμS−1
qνkμ

, (30)

which has the same form as from the full BTE, provided S
can be identified with the scattering matrix appearing therein
[3,18]. In order to see that this is indeed the case, we compute
the memory matrix, Eq. (12), to lowest (second) order in the
cubic anharmonic interactions, K , taking into account lattice
periodicity. The calculations are quite lengthy and are fully
reported in Appendix D. The final, purely real, results read

	̄qνkμ(z = 0) = 2γqνδqkδνμ + π h̄
∑
q′ν ′

|Kqνkμq′ν ′ |2nq′ν ′

[
(nqν + 1)

nkμ

δ(ωqν + ωkμ − ωq′ν ′ ) − nqν

nkμ

δ(ωqν + ωq′ν ′ − ωkμ)

− nqν + 1

nkμ + 1
δ(ωkμ + ωq′ν ′ − ωqν )

]
, (31)

where Kqνkμq′ν ′ = 1√
8ωqνωkμωq′ν′

∂3V
∂Xqν∂Xkμ∂Xq′ν′ δq−k−q′,G, with ∂3V

∂Xqν∂Xkμ∂Xq′ν′ being the third derivative at the equilibrium of the

potential with respect to the amplitude of the lattice distortion along the lattice normal modes Xqν . The presence of δq−k−q′,G
ensures the conservation of the crystal momentum of the phonons involved, modulus a reciprocal lattice vector G. For a cubic
anharmonic potential, the phonon line width γqν is defined as [19]

γqν = π h̄
∑

q′ν ′kμ

|Kqνkμq′ν ′ |2
[

1

2
(nkμ + nq′ν ′ + 1)δ(ωqν − ωkμ − ωq′ν ′ ) + (nkμ − nq′ν ′ )δ(ωqν + ωq′ν ′ − ωkμ)

]
. (32)

Equations (31) and (32) coincide with those appearing in the
full BTE, computed to lowest order in the cubic anharmonic
corrections to the lattice Hamiltonian [18], thus proving the
equivalence of the treatments of thermal transport based on
the Boltzmann’s kinetic approach and the Green-Kubo theory
of linear response.

IV. COMPARISON WITH THE WIGNER
TRANSPORT EQUATION

As an alternative to the GK theory, the BTE for heat trans-
port can be derived from MBPT, leveraging a Wigner-like
lattice distribution obtained from phonon Green’s functions
[20]. Recently, this approach has been considerably refined by
introducing a dependence of the Wigner distribution on band

indices, which give rise to interband contributions to the heat
conductivity when the distance between neighboring bands
is comparable with the phonon linewidth [5,7,8]. The final
expression for the heat conductivity in the WTE approach is
given by Eq. (12) of Ref. [5]:

κWTE = κBTE + h̄2

kbT 2V

∑
qν =ν ′

ωqν ′ + ωqν

4
[ωqνnqν (nqν + 1)

+ ωqν ′nqν ′ (nqν ′ + 1)]Vqνν ′Vqν ′ν

× γqν + γqν ′

(ωqν − ωqν ′ )2 + (γqν + γqν ′ )2
, (33)

where κBTE is the BTE expression for the heat conductivity

given by Eq. (30) and Vqνν ′ = 2√
ωqνωqν′

ωqν+ωqν′ vqν ′ν is the velocity
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matrix defined in that work. By treating the difference be-
tween Eq. (27) and Eq. (30) in the RTA, the former can be
cast into the form

κ = κBTE + 1

V

∑
qν =ν ′

cqνν ′vqνν ′vqν ′ν

× γqν + γqν ′

(ωqν − ωqν ′ )2 + (γqν + γqν ′ )2
, (34)

which differs from Eq. (33) only by corrections of order
O(γ 2/ω2). These considerations show that, provided the same
levels of approximation are adopted, the WTE and GKMZ
give the same results, in line with the work of Ref. [8] and
previous work for the electrical conductivity as reported, e.g.,
in Mahan’s textbook [21]. Crucially, a proper account of in-
terband contributions to heat conduction allows the WTE to
be easily generalized to disordered systems, which, strictly
speaking, do not display any dispersions, as they lack trans-
lational symmetry. This result emerges naturally from the GK
approach, which does not presuppose any symmetry.

We conclude that crystals whose interband spacing is com-
parable with their phonons’ linewidths cannot be described by
full BTE alone. Among these crystals, we find materials such
as (anti)perovskites with promising applications in various
fields of electronics, which will be the subject of a numerical
application in Sec. V.

V. APPLICATION TO Li3ClO

The theory presented in this paper has been demonstrated
on the lithium-rich antiperovskite Li3ClO, which is a promis-
ing candidate for all solid-state lithium-metal batteries and
whose transport properties have been recently studied with
state-of-the-art methods [22]. We computed the heat conduc-
tivity of this material using the present theory and classical
force fields, as described in Appendix E. In Fig. 1, we dis-
play our results obtained using different approximations. We
identify two distinct regimes. At low temperatures, hydro-
dynamic effects [15]—which are accounted for in the full
BTE but not in QHGK—may considerably enhance the heat
conductivity, while interband contributions in Eqs. (33) and
(34)—present in QHGK but not in the BTE—are negligible
due to the vanishing of the vibrational linewidths as T → 0; in
this regime, the full BTE correctly describes the temperature
dependence of the heat conductivity, while QHGK does not.
At room temperature and above, instead, interband effects
may be important, particularly in complex crystals as in the
present case, while hydrodynamic effects are negligible; in
this case, the QHGK approximation is applicable and the BTE
is not. Equations (33) and (34) nicely and correctly interpolate
between these two regimes.

VI. CONCLUSIONS

In this paper, we have critically analyzed the approxi-
mations that lead to the unified quasiharmonic Green-Kubo
approach to heat transport in crystalline and disordered insula-
tors [6] and shown how they can be dealt with by applying the
Mori-Zwanzig memory-function formalism to one- and two-
normal-mode correlation functions. In the first case, the MZ

FIG. 1. Top: Thermal conductivity averaged over the three Carte-
sian coordinates as a function of temperature, computed with
Eq. (34). Bottom: The ratio between the thermal conductivity com-
puted with different methods and the one in the top panel.

formalism allows one to account for vibrational memory (self-
energy, in the MBPT parlance) effects on heat conduction,
whereas in the second it permits one to dispose of the dressed-
bubble approximation to the two-mode correlation functions
and derive an expression for the heat conductivity that is
equivalent to that provided by the full linearized Boltzmann’s
transport equation. Besides providing a fully ab initio deriva-
tion of the latter, we believe that our paper will pave the way
to the study of systems where memory effects and vertex
corrections to heat transport coefficients are both important.
Moreover, we have clarified the interconnection and equiv-
alence between the Wigner and quasiharmonic Green-Kubo
approaches to heat transport in solids, provided the same
levels of approximation are adopted—thus extending the work
of Ref. [8].
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APPENDIX A: DERIVATION OF EQ. (17)

In order to prove Eq. (17), we first write Eqs. (6)–(9) in the
diagonal (I = J) approximation:

κ ≈ h̄2

V T

∑
pq

vpqvpqω̄
2
pq

∫ ∞

0
(Âpq(t ), Âpq ). (A1)
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We now observe that Âpq = Â†
qp and that the Kubo inner prod-

uct, Eq. (4), has the property (Â, B̂) = (Â†, B̂†)∗. We conclude
that

∫ ∞

0
(Âqp(t ), Âqp) =

(∫ ∞

0
(Âpq(t ), Âpq )

)∗
, (A2)

from which we deduce that the C̄pq,pq(0) [Eq. (7)] matrix is
Hermitian with respect to p ↔ q exchange, whereas 	̄pq,pq

and �pq,pq [Eqs. (12)–(15)] are anti-Hermitian, and Eq, (17)
follows immediately.

APPENDIX B: DERIVATION OF EQ. (18)

In order to compare Eqs. (17) and (18), we first com-
pute the diagonal part (II = (pq, pq)) of the memory matrix,
assuming that the anharmonic terms in the vibrational
Hamiltonian can be truncated to third order in the atomic
displacements:

V̂ ≈ h̄3/2

6

∑
pqr

KpqrX̂pX̂qX̂r, (B1)

where X̂p = â†
p + âp is a (rescaled) normal-mode coordinate.

Using the method explained in Sec. D, we obtain

	̄′
pq,pq(z = 0) = γ̄ >′

p (ωq)dpq + γ̄ <′
q (ωp)dqp + O(N−1), (B2)

where N is the number of normal modes, (·)′ = Re(·), dpq =
β h̄(ωp−ωq )

eβ h̄(ωp−ωq )−1
, and γ̄ ≶

p (ω) are the FL transforms of the one-body
greater and lesser Green’s functions, whose expressions as
obtained from Mori’s formalism [10] are

ḡ>
p (ω) = −i〈âpâ†

p〉
1

(ωp − ω) − iγ̄ >
p (ω)

,

ḡ<
p (ω) = i〈â†

pâp〉 1

(ωp − ω) − iγ̄ <
p (ω)

. (B3)

The corresponding Fourier transforms equal twice the imagi-
nary part of Eqs. (B3), reading

g̃>
p (ω) = −i〈âpâ†

p〉
2γ̄ >′

p (ω)

|(ωp − ω) − iγ̄ >
p (ω)|2 , (B4)

g̃<
p (ω) = i〈â†

pâp〉
2γ̄ <′

p (ω)

|(ωp − ω) − iγ̄ <
p (ω)|2 . (B5)

To lowest order in the cubic anharmonic correction to the
lattice potential energy, Eq. (B4) reads

γ̃ <′
p (ω) = π h̄

16np

∑
qr

|Kpqr |2[nqnrδ(ω − ωq − ωr ) + (nq + 1)nrδ(ω + ωq − ωr )

+ nq(nr + 1)δ(ω − ωq + ωr ) + (nq + 1)(nr + 1)δ(ω + ωq + ωr )] + O(K3). (B6)

Neglecting corrections of order O(N−1), we obtain

κ = 1

V

∑
pq

h̄2(ωp + ωq)2

4
vpqvpq(Ipq + Iqp), where (B7)

Ipq = np(nq + 1)

2kbT 2

γ̄ >′
p (ωq) + γ̄ <′

q (ωp)

|(ωp − ωq) − i(γ̄ >
p (ωq)dpq + γ̄ <

q (ωp)dqp)|2 . (B8)

Let us compare this expression with Eq. (18), which gives the QHGK approximation within the full dressed-bubble
approximation, including memory (non-Markovian) effects. The integral in Eq. (18) can be computed using Cauchy’s residue
theorem. For instance, in the ωq = ωp case, substituting Eq. (B4) into Eq. (19), we obtain an integrand with four distinct poles,
whose positions in the QH approximation are

ω±
p = ωp + γ̄ ′′

p (ωp) ± iγ̄ ′
p(ωp) + O

(
γ 2

p

)
ω±

q = ωq + γ̄ ′′
q (ωq) ± iγ̄ ′

q(ωq) + O
(
γ 2

q

)
, (B9)

where γ̄ ′′
q = Imγ̄q. Closing the path in the upper complex half-plane, we get

Ipq = 2π i
∑

Imz̄>0

Res( f (z̄)) = (np + 1)nq

2kbT 2

(
γ̄ >′

p (ω+
q )

|(ωp − ω+
q ) − iγ̄ >

p (ω+
q )|2 + γ̄ <′

q (ω+
p )

|(ωq − ω+
p ) − iγ̄ >

q (ω+
p )|2

)
, (B10)

where we used 〈âpâ†
p〉 ≈ np + 1. We observe that Eqs. (B10)

and (B8) have the same numerator but a slightly different de-
nominator. Their difference is negligible if | γ̄p(ωq )−γ̄p(ωp)

ωp−ωq
| � 1,

which happens in the quasiharmonic limit (γ̄ ,
∂γ̄

∂ω
∼ O(K2) →

0) if the memory function is regular enough. If γ̄ (ω) = γ ,
independent of ω, both Eqs. (B10) and (B8) return the Marko-
vian approximation, Eq. (22), to order O(γ 2).

In these calculations we have neglected terms of order
O(N−1), which can be identified with the diagonal part of the
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vertex corrections. We notice that similar O(N−1) corrections
are also neglected when comparing BTE-RTA, τqν = 1/2γqν ,
with the diagonal of the full BTE scattering matrix: Sqνqν =
2γqν + O(N−1).

APPENDIX C: DERIVATION EQ. (28) FOR WELL
SEPARATED BANDS

Equation (28) is derived under the assumption that the
interband (ν = ν ′ and μ = μ′) elements of the 	̄−1

qνν ′,q′μμ′
matrix can be neglected. This is indeed the case when the
phonon bands are well separated, in the sense that |ωqν −
ωqν ′ | � 	qνν ′,kμμ′ ∀ (kμμ′). We say in this case that interband
contributions are negligible and we call the corresponding ap-
proximation the intraband approximation. Let us decompose
the �̄ matrix into a diagonal part, DIJ = (−�II + i	̄II )δIJ ,
and an off-diagonal part O = �̄ − D and apply the identity

�̄−1 = (D + O)−1 = D−1 − D−1O(D + O)−1. (C1)

The last term can be rewritten as

(D−1O(D + O)−1))IJ =
∑

K

D−1
IK (O(D + O)−1)KJ

= D−1
II (O(D + O)−1)IJ . (C2)

The O matrix does not diverge when |ωqν − ωqν ′ | → ∞.
Therefore,

lim
|ωqν−ωqν′ |→∞

[
1

ωqν ′ − ωqν + i	̄qνν ′,qνν ′

− 1

ωqν ′ − ωqν + i	̄qνν ′,qνν ′
(O(D + O)−1)qνν ′,kμμ′

]
= 0.

(C3)

Therefore, only the ν = ν ′ elements survive in this limit. Due
to the relation between �̄IJ and �̄JI , the argument can be
repeated for the second pair of band indices μ,μ′. Thus, for
well-separated bands

(�̄)−1
qνν ′,kμμ′ ≈ δνν ′δμμ′ (�̄)−1

qνν,kμμ
, (C4)

which motivates the intraband approximation.

APPENDIX D: COMPUTATION OF THE MEMORY
MATRIX IN THE CUBIC APPROXIMATION [Eq. (31)]

In order to compute the memory matrix leading to the
BTE, Eq. (31), we express the 	̄IJ matrix in Eq. (12) as the
FL transform of the time-correlation function of the projected
time derivatives of the ÂI and ÂJ operators:

	̄IJ (0) = 1

C◦
JJ

∫ ∞

0
(Q ˙̂AI , e−iQLQtQ ˙̂AJ )dt, (D1)

where we used the harmonic approximation of CIJ and

Q ˙̂AI
.= i

h̄
Q[â†apâq, Ĥ ]

= − ih̄1/2

2

∑
rs

KprsX̂rX̂sâq + â†
p

ih̄1/2

2

∑
rs

KqrsX̂rX̂s,

(D2)

FIG. 2. Phonon dispersions and linewidths (upper panel) and
VDOS (lower panel) of Li3ClO (see text).

where we use a cubic anharmonic potential as in Eq. (B1).
As explained in the main text, at our desired order of
approximation, 	̄ ∼ O(K2), both the average and the Liouvil-
lian operator can be evaluated in the harmonic approximation.

Regarding the FL transforms (LFT) ( f̄ (ω)), it is computed
through the Fourier transform (FT) ( f̃ (ω)), using the relation

f̄ (ω) =
∫ ∞

0
eiωt f (t ) (D3)

= 1

2
f̃ (ω) + i

2π

∫ ∞

−∞
dω

1

ω − ω′ f̃ (ω′). (D4)

Assuming that the FT is real, half of it is the real part of the
LFT (the dissipative part), while the imaginary part would be
given by the second term in the relation, the convolution one.
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Combining Eq. (12) and Eq. (D2) we obtain

	̄′
pq,rs(0) = h̄

8Crs,rs

∑
tuvz

∫ ∞

−∞
dt

∫ 1
kbT

0
dλ

× [KptuKrvz〈X̂t (τ )X̂u(τ )âq(τ )â†
s X̂vX̂z〉◦

+ KqtuKrvz〈â†
p(τ )X̂t (τ )X̂u(τ )X̂vX̂zâr〉◦

− KptuKrvz〈X̂t (τ )X̂u(τ )âq(τ )X̂vX̂zâr〉◦

− KqtuKrvz〈â†
p(τ )X̂t (τ )X̂u(τ )â†

s X̂vX̂z〉◦]. (D5)

This expression contains a great number of combinations of
annihilation and creation operators. Let us compute one of
them. For instance,∫ ∞

−∞
dt

∫ β

0
dλ KptuKrvz〈â†

t (τ )â†
u(τ )âq(τ )â†

s âv âz〉◦

= 2πKptuKrvz
eβ h̄(ωt +ωu−ωq ) − 1

h̄(ωt + ωu − ωq)
δ(ωt + ωu − ωq)

× 〈â†
t â†

uâqâ†
s âv âz〉◦

= 2πβKptuKrvzδ(ωt + ωu − ωq)〈â†
t â†

uâqâ†
s âv âz〉◦. (D6)

Now we should apply Wick’s theorem on the thermal average;
however, several of the resulting terms vanish because they
are proportional to a delta function of a finite argument. For
instance, coupling â†

uâq would lead to ∼δ(ωt ). Thus, keeping
only the nonvanishing combinations, one gets

2πβKptuKrvz(nt nu(nq + 1)

× δ(ωt + ωu − ωq)(δtvδuzδqs + δtzδuvδqs)). (D7)

All the other elements of 	̄ can be computed by performing
analogous calculations. We note that by applying the same
argument as in Sec. A, we can conclude that 	̄pq,rs(0) is real
when Âpq and Ârs are Hermitian.

APPENDIX E: TECHNICAL DETAILS AND
INTERMEDIATE RESULTS OF THE NUMERICAL

APPLICATION

The Li3ClO compound is simulated in a cubic cell with
edge a0 = 3.875 Å, using the Buckingham potential [23],
and the PPPM [24] method to treat the Coulomb inter-
action. Second- and third-order interatomic force constants
were computed with LAMMPS [25] using a finite-difference
method in a [5,5,5] supercell, while the κALDO code [18]
was used to evaluate vibrational frequencies, anharmonic
linewidths, and thermal conductivities. Lattice-dynamical cal-
culations were performed on a [16,16,16]k-point mesh. In
Fig. 2, we display the phonon dispersions of the mate-
rial and the vibrational density of states (VDOS), computed
with a Gaussian broadening function with a standard devi-
ation of 0.3 THz. The pink area surrounding the phonon
dispersion represents twice the line widths—computed at
250 K on a coarse grid and Fourier-interpolated on a finer
one—highlighting the regions in reciprocal space where the
separation between phonon bands is comparable with the
vibrational broadening, and interband contributions to the
heat conductivity are expected to be important; see Eqs. (33)
and (34).
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