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Anomalous transport in periodic photonic chains with designed loss
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Here we show that a coherent random walk in a perfectly periodic chain of bosonic modes with designed loss
can exhibit a variety of different anomalous transfer regimes in dependence on the initial state of the chain. In
particular, for any given finite initial time-interval there is a set of initial states leading to a hyperballistic transport
regime. Also, there are initial states allowing one to achieve a subdiffusive regime or even localization for a given
time-interval, or change an asymptotic long-time diffusion rate. We show how these anomalous transport regimes
can be practically realized in a laser-written network of single-mode waveguides in balk glass or how a planar
system of coupled single-mode waveguides can be realized with an integrated photonic platform.
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I. INTRODUCTION

Due to recent development of experimental techniques al-
lowing for creating involved networks of high-quality optical
waveguides [1,2], systems of coupled single-mode waveg-
uides have become a powerful tool for emulating a plethora
of effects reaching even up to the cosmological ones [3–5].
Systems of evanescently coupled single-mode waveguides
in a balk dielectric allow one to create perfectly periodic
flat-band structures where localization is possible for certain
states [6–8], demonstrate Aharonov-Bohm caging [9,10] and
different kinds of topological insulation [11–13], and emulate
synthetic dimensions [14] and even the gauge field of a cosmic
string [4].

Adding controlled designed loss to such waveguides net-
works opened a number of novel interesting possibilities.
They were deemed interesting even to such an extent as to
produce a title “Loss leads the way to utopia” in a very recent
issue of Nature Photonics [15]. Designed loss in a waveguide
network can induce a plethora of effects such as nonre-
ciprocal propagation and directional amplification [16–19],
non-Hermitian skin effects [20], deterministic and conditional
nonclassical state generation and protection [21,22], and ro-
bust multiple-beam splitting and optical routing [23].

There are quite feasible experimental possibilities of creat-
ing large networks of coupled waveguides with designed loss
(with loss realized by coupling to, for example, as “waveguide
tails” [23,24] or through “wavy waveguides” [25,26] laser-
written in balk glass, or just planar semiconductor structures
with metal added on the tops of waveguides [19]). However,
there are not many studies that discuss state transport between
the waveguides, especially in the regime when the designed
loss dominates the dynamics (realizing so-called “dissipa-
tive coupling”). To our knowledge, still there are no works
describing coherent effects of this transport stemming from
delocalized excitation of dissipatively coupled waveguides,
i.e., of exciting initially several waveguides in the chain. From

the other side, there are already clear hints about such a
coherent transport being able to reveal interesting unexpected
features. Recently is was shown that decoherence and loss
can turn a coherent walk into a classical one and switch the
ballistic regime to the diffusive one after some interaction time
even in perfectly periodic lattices [25,27–29].

Already for quite a long time, coherent walks have been an
intensively studied field of research [27,30–32]. Their time-
continuous version represents a general scheme of quantum
state transport through a network of coupled quantum sys-
tems and can be used for consideration of numerous transport
phenomena in solid-state physics, biophysics, photonics, etc.
[26,31,33–38]. Typically, in the absence of decoherence and
loss, quantum walks demonstrate ballistic spatial spread in
contrast with classical random walks demonstrating diffu-
sive spread [31]. It is customarily considered that alteration
of spatial variance behavior can be achieved by spatial or
temporal perturbation of the lattice order or by nonlinear
effects. For example, it was shown that one can achieve
hyperballistic or subdiffusive transport regimes, or even local-
ization, by randomly perturbing the network and making the
structure nonhomogeneous, or via nonlinearity or controlled
time-dependent operations, or by subjecting the network to
non-Markovian noise, making the probabilities of jumps be-
tween the network systems time dependent [39–45].

Here we demonstrate that coherent interference effects in
a perfectly periodic linear and unperturbed waveguide net-
work with designed loss allow one to obtain quite a wide
spectrum of transport regimes. In particular, for an arbitrary
finite time-interval one can achieve superballistic growth of
a spatial variance of the field distribution in the waveguide
chain, or subdiffusive and even localization behavior for a
timescale much exceeding the typical timescale of excita-
tion exchange between neighboring waveguides. For all the
considered cases, a long-time asymptotic behavior always
remains diffusive. However, the rate of diffusion depends on
the initial state.
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The paper is structured in the following way. In Sec. II,
we describe the model of the next-neighbor coupled chain of
bosonic modes realized by evanescently coupled single-mode
waveguides, derive the master equation in the dissipative
coupling limit, and obtain the system of equations for the
energy transfer across the chain and discuss its solution. In
Sec. III, we identify the stages of transport and show how
the different transport regimes arise during the interference
stage in dependence on the initial state. In particular, we show
how superballistic transport and localization can appear dur-
ing times much exceeding typical transient timescales for the
considered modal structure. Also, we show how these regimes
scale with delocalization of the initial state. In Sec. IV, we
discuss the character of interference leading to different trans-
port regimes and derive a simple model able to provide for a
qualitative description of the regimes and their scaling behav-
ior. In Sec. V, we discuss practicalities of possible realization
of our regimes in a waveguide system with designed loss and
illustrate how the dissipative coupling limit can be approached
in practice.

II. MODEL

In our work we discuss a one-dimensional (1D) chain of
next-neighbor linearly coupled bosonic modes with every sec-
ond mode subjected to additional designed loss [see Fig 1(a)].
This scheme can be described by the following master equa-
tion for the total density matrix of the system:

d

dt
ρtot = − i

h̄
[H, ρtot]

+ (� + γbulk )
∑
∀ j

(2b jρtotb
†
j − ρtotb

†
jb j − b†

jb jρtot )

+ γbulk

∑
∀ j

(2a jρtota
†
j − ρtota

†
j a j − a†

j a jρtot ), (1)

where the modal interaction Hamiltonian is

H =
∑
∀ j

h̄v[b†
j (a j + a j+1) + (a†

j + a†
j+1)b j]. (2)

The operators bj and b†
j are the annihilation and creation

operators for modes of the waveguides with the additional
designed loss with the rate �. The annihilation and creation
operators aj and a†

j describe modes in waveguides with only
the passive loss unavoidably occurring in realistic waveguide
systems. The rate of this loss is γbulk. The interaction constant
v describes the beating rate between the waveguides.

In Sec. V, we discuss in more detail practical realizations of
the scheme (1) as the network of next-neighbor evanescently
coupled single-mode waveguides. In particular, we show that
it is quite feasible to create waveguide chains with acceptably
low homogeneous passive loss (actually, of about 1 dB/cm or
lower) and sufficiently high designed loss �. Thus the whole
range of the effects discussed below is feasible for practical
observation in systems of waveguides laser-written in balk
glass or in planar semiconductor structures [19,23–26].

FIG. 1. (a) The scheme of a bosonic mode chain with designed
loss in waveguides bj described by the matrix equation (1). (b) The
scheme of the dissipatively coupled tight-binding chain of bosonic
modes described by Eq. (3). (c) The variance for the single initial
excited mode with the number n0 = 150 in the chain with 300
waveguides. The dotted line corresponds to the linear dependence
γ t . (d) The variance for the initial state given by Eq. (7) for four
initially excited modes with the numbers k = n0 − 8, n0, n0 + 8, and
n0 + 16 for n0 = 150 in the chain with 300 waveguides. Thick solid,
thin solid, dashed, and dash-dotted lines correspond to the follow-
ing state signatures: {+,+, −, −}, {+, −, −, −}, {−, +,−, +}, and
{+, +, +, +}. Upper and lower dotted lines correspond to the linear
dependencies 3γ t and γ t .

A. Dissipative coupling limit

Here we concentrate our attention mostly on the case when
the loss rate � is large. We assume that the state of modes b j is
reduced to the vacuum on the timescale much shorter than the
timescale of the modes aj dynamics. Thus, the lossy modes b j

can be adiabatically eliminated. The modes a j interact only
through their coupling to the common loss reservoir. Such
“dissipatively coupled” systems have a number of remarkable
properties that are useful for photonic applications. They “ter-
malize” coherence (i.e., off-diagonal elements of the density
matrix in the energy basis [46] or amplitudes of the modal
coherent states [23]). So, they were considered as a basis for
so-called “coherent diffusive photonics” for building optical
equalizers and beam splitters, distributors, and nonrecipro-
cal optical circuits [19,23]. Nonlinear dissipatively coupled
waveguides can be used to generate and preserve nonclassi-
cal states [16,21,22,47]. By adding unitary coupling between
modes and adjusting dissipative coupling between them, one
can achieve unidirectional field transfer along the chain and
create topologically nontrivial bound states [16,17].

In the limit of large loss v/� → 0, the lossy modes b j

can be adiabatically eliminated from the master equation (1).
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The result is the following master equation describing the
system of dissipatively coupled bosonic modes aj schemati-
cally shown in Fig. 1(b) (for the detailed derivation see, for
example, Ref. [47]):

d

dt
ρ =

∑
∀ j

(γ̄ + γbulk )(2LjρL†
j − ρL†

j L j − L†
j L jρ)

+
∑
∀ j

γbulk (2a jρa†
j − ρa†

j a j − a†
j a jρ), (3)

where γ̄ = v2/(� + γbulk ) is the dissipation rate and the
Lindblad operators Lj = a j + a j+1 describe symmetric next-
neighbor dissipative coupling between jth and j + 1th modes
with the annihilation operators aj and a j+1.

B. Transport description

To discuss energy transport across the system of dis-
sipatively coupled waveguides, we derive from the master
equation (3) the following equation for the first-order corre-
lation functions:

1

γ

d

dt
g j,k = −4g j,k − g j+1,k − g j−1,k − g j,k+1 − g j,k−1, (4)

where γ = γ̄ + γbulk. We account for the pas-
sive loss of waveguides by introducing g j,k (t ) =
〈a†

j (t )ak (t )〉 exp{2γbulkt}.
To describe the transport, we introduce the normalized

population distribution

p j = g j, j

ptot
, ptot =

∑
∀ j

g j, j . (5)

Further we assume the case when the initially excited modes
are far from the edges of the chain. We also take that during
the time interval of our interest excitation is still far from
the edges. We consider the dynamics of the excitation spread
through the modes described by the spatial variance �2:

�2(t ) =
∑
∀ j

[ j − x̄(t )]2 p j (t ), x̄(t ) =
∑
∀ j

j p j (t ), (6)

where x̄ is the average time-dependent excitation shift. Notice
that the variance �2 does not depend on γbulk in the dissipa-
tive coupling limit when the designed loss much exceeds the
passive one, i.e., � � γbulk.

Notice that by a trivial sign change,

g j,k → (−1) j+kg j,k,

Eq. (4) transforms to the equation formally coinciding with
the one describing a 2D classical continuous random walk
[31,48]. So, for the chain of finite length described by Eq. (4),
the exact analytic solution can be easily found [46,48] for any
initial set of g j,k . One also has here a “coherence preserva-
tion”:

∑
∀ j (−1) j+kg j,k (t ) = const. For negligible passive loss

such a coherence preservation can lead to stationary entangled
states despite the dissipative character of the dynamics [46].
It is worth emphasizing that, in contrast with the classical
random walk, gj,k are complex-value functions.

III. TRANSPORT

Here we discuss the appearance of different transport
regimes as a consequence of modal interference, and we show
how the initial state of the waveguide chain affects both the
length and the character of the interference stage in dynamics.
We demonstrate interference effects similarly to how it is usu-
ally done for classical antenna arrays showing how respective
phases and spatial placement of excitations in a chain affect
the field pattern. So, we consider a case when only some
sets of modes {k} are initially excited in coherent states with
equal absolute amplitudes but with different combinations of
possible π -differences in phase, whereas all the other modes
are initially in the vacuum state:

ρ(0) = |ψ〉〈ψ |, |ψ〉 =
∏
∀k

|δkα〉k

∏
∀ j �=k

|0〉 j, (7)

where δk = ±1.

A. Stages and regimes

It needs to be mentioned that the system shown in Fig. 1(a)
was considered in Ref. [25]. There only a single initially
excited waveguide was considered outside of the regime of
purely dissipative coupling (i.e., not in the limit v/� → 0). In
Ref. [25] it was found that initially, for time intervals less than
�/v2, the transport is typical for the unitary coupled chain.
It is ballistic. However, for times exceeding �/v2 the trans-
port acquires diffusive character with the linearly spreading
variance.

This result can be illustrated with the following simple
estimation. For just a pair of dissipatively coupled modes, a1,2,
with just one mode initially excited with the unit amplitude,
one gets from Eq. (4) that

p1,2(t ) = 1

2

(1 ± e−γ t )2

1 + e−2γ t
. (8)

So, energy exchange between modes occurs on the timescale
1/γ . In Fig. 1(c) the variance �2(t ) given by Eq. (6) is shown
when just a single waveguide is initially excited. There one
can see that indeed for times exceeding 1/γ the transport
becomes diffusive [for comparison, the dotted line shows
the dependence �2(t ) = γ t]. Curiously, as Eqs. (6) and (8)
show, even in a simple two-waveguide model for small times,
γ t � 1, the variance has a ballistic character, �2(t ) ∝ t2.

Our main message is that adjusting phases, numbers, and
spatial separation of initially excited waveguides, due to inter-
ference, one can obtain a wide variety of transport regimes
during a time interval (interference stage) much exceeding
1/γ .

Figure 1(d) shows an example of this variety obtained by
changing on π phases of only four initially excited waveg-
uides; i.e., we took k = n0 − 2m, n0, n0 + 2m, and n0 + 4m
in Eq. (7), where n0 is the number of the waveguide in the
middle of the chain, m = 4, and α = 1. We chose this state
to show to the maximal extent both the interference stage and
the asymptotic stage for all the considered cases.

First of all, the result of the signature choice,
sign[δ1,2,3,4] = {+,+,−,−}, shown by the thick solid curve
in Fig. 1(d) gives an intuitively expected linear diffusion for
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times exceeding a typical interaction timescale (γ t > 1), but
with an unexpected rate: 3γ instead of classically expected γ

[the upper dotted line shows the dependence �2(t ) = 3γ t].
The signature {+,+,+,+} gives an expected linear dif-

fusion with the rate γ shown by the dash-dotted curve in
Fig. 1(d) just like it was for the case of the single excited
waveguide shown in Fig. 1(c) [for comparison, the lower
dotted line shows the dependence �2(t ) = γ t]. However, this
stage occurs only after some period of the variance decreasing.
The duration of this stage significantly exceeds the inverse rate
γ −1.

The signature {+,−,−,−} gives only the localization dur-
ing the considered interaction time, i.e., the variance decreases
[as shown by the thin solid line in Fig. 1(d)].

Finally, the signature {−,+,−,+} leads to a faster than
diffusive transport [the dashed curve in Fig. 1(d)].

One can see that the choice of phases δ j indeed can drasti-
cally affect the dynamics of the variance �2(t ). The character
of the transport crucially depends on whether the initial state
amplitudes sum to zero or not. We discuss reasons for this in
the next section.

B. Superballistic regime and scaling

Now let us show that the faster-than-diffusive regime ex-
emplified by the dashed curve in Fig. 1(d) can be indeed
superballistic. Also, it can be scaled up by increasing the
spatial extent of the initial state. This case is illustrated in
the main panel of Fig. 2(a). Here the variance dynamics is
given for the state (7) with six initially excited modes with the
numbers

k = n0 − 4m, n0 − 2m, n0, n0 + 2m, n0 + 4m, n0 + 6m

(9)

with the amplitude α = 1 and the signature
{−,+,−,+,−,+}. Thick solid, dashed, and dash-dotted
lines correspond to the initial state spatially extended with
m = 1, 2, and 3. For comparison, the diffusive regime
�2(t ) = 3γ t is shown by the thin solid line, and the ballistic
regime �2(t ) = γ 2t2 is shown by the dotted line; for better
comparison the values of �2(t ) − �2(0) were shown for
each case. One can see how the superballistic region extends
toward longer interaction times with increasing of the
localization region of the initial state.

Remarkably, for the initial state (9) the spatial distribution
of the population shown in Fig. 2(b) exhibits structuring in-
stead of intuitively expected spreading and homogenization.
Only the population of the modes at the edges of the excited
state survives, whereas inner modes are quickly depopulated.
In the next section we explain this seemingly counterintuitive
behavior.

By choosing an initial state one can also capture the transi-
tion from the superballistic to the ballistic stage, with both of
them extending for periods of time much exceeding 1/γ . An
example of such a state is the initial state (7) with 12 initially
excited modes with α = 1, the numbers

k = n0 + jm, j = −5,−4, . . . , 5, 6, m = 7, (10)

and the signature {(−1) j}. The inset in Fig. 2 plotted in log-
log axes shows that there is indeed superballistic dynamics;

FIG. 2. (a) Illustration of the superballistic regime scaling for the
initial state given by Eq. (9). Thick solid, dashed, and dash-dotted
lines correspond to m = 1, 2, and 3 and the function �2(t ) − �2(0).
The thin solid line corresponds to the diffusive regime �2(t ) −
�2(0) = 3γ t . The dotted line shows the ballistic regime �2(t ) −
�2(0) = γ 2t2. The inset shows log-log plots of the variance given
by Eq. (10). In the inset, the dashed and dotted lines show the super-
ballistic and ballistic regimes given by �2(t ) − �2(0) = 1.4(γ t )n,
n = 3 and 2. (b) The distribution of pj (t ) for the initial state cor-
responding to m = 3. Other parameters are the same as those for
Fig. 1(b).

it can have an extended, over several 1/γ intervals, stage
when �2(t ) − �2(0) ∝ (γ t )3. The solid line in the inset cor-
responds to the initial state (10), the dotted line in the inset
corresponds to �2(t ) − �2(0) ≈ 1.4(γ t )2, and the dashed
line corresponds to �2(t ) − �2(0) ≈ 1.4(γ t )3. As shown in
the inset, the transport corresponding to the initial state (10)
goes from the superballistic regime (when the variance is
cubic on the propagation time) to the ballistic regime (when
the variance is proportional to the squared propagation time).
However, it should be noticed that eventually for large in-
teracting times [for the case of the initial state (10), it is
approximately for γ t > 20], the transport is diffusive.

C. Localization and scaling

Now let us demonstrate that the localization evidenced
by the thin solid line in Fig. 1(d) can also be scaled; i.e.,
by choosing the initial state one can extend the region of
localization to an arbitrary degree. We illustrate this situation
with the same initial state (7) as was used for Fig. 1(d); i.e., we
have four initially excited modes with numbers k = n0 − 2m,
n0, n0 + 2m, and n0 + 4m and the signature {+,−,−,−}.
Solid, dotted, dash-dotted, and dashed lines correspond to
increased spatial extent of the initial state with m = 1, 3, 4,
and 5. One can see how the region of variance diminishing
is extended toward the larger interaction times with extending
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FIG. 3. (a) Scaling of the localization regime for the initial state
(7) with four initially excited modes with numbers k = n0 − 2m,
n0, n0 + 2m, and n0 + 4m and the signature {+,−, −, −}. Solid,
dotted, dash-dotted, and dashed lines correspond to m = 1, 3, 4, and
5. (b) The distribution of pj (t ) for the initial state corresponding to
m = 5. Other parameters are the same as those for Fig. 1(d).

the spatial localization of the initial state. One can also see
in Fig. 3(b) that for the case of m = 5 the distribution of the
probabilities p j (t ) remains indeed well localized during all
the interaction time. In contrast with the dynamics depicted in
Fig. 2(b), the field evolution of Fig. 3(b) shows that the popu-
lation of the edge mode with the phase opposite to other three
modes slowly decays, causing the field localization in these
modes.

Also, just like for the other discussed cases, eventually
with increasing interaction time the transport comes to the
usual diffusive regime, as is evidenced by the solid and dotted
lines.

IV. DISCUSSION OF THE REGIMES

Here we explain why just the choice of phases of the initial
state deeply affects the interference of waveguide modes and
leads to so wide a variety of transport regimes. The dissipative
dynamics described by Eq. (3) asymptotically projects any
initial state (7) on the state with equal absolute values of
amplitudes and π -phase difference between the neighboring
modes extended through the whole lattice. So, the considered
states with equal amplitudes and different phases can have
very different overlap with the stationary state in dependence
on the phase choice. Intuitively, when some initial state turns
to zero in the right-hand side of Eq. (4) for some group
of { j, k}, one should expect rather slow initial dynamics of
the corresponding correlation functions, and vice versa. The
combination of such “slow” and “fast” regions produces the
structuring seen in Figs. 2(b) and 3(b).

A. Continuous approximation

This intuition can be further explained and corroborated
by a simple qualitative model able to capture interference
phenomena leading to the plethora of the observed regimes.
To that end let us introduce the functions ψ j,k = (−1) j+kg j,k

and consider the continuous approximation of an infinitely
long chain getting from Eq. (4) the following 2D heat-transfer
equation [48,49]:

1

γ

∂

∂t
ψ (x, y; t ) = ∂2

∂x2
ψ (x, y; t ) + ∂2

∂y2
ψ (x, y; t ), (11)

where x and y are normalized dimensionless spatial coor-
dinates. Curiously, for the imaginary γ , Eq. (11) describes
propagation of the field spatial coherence of diffracting beams
[50,51]. Coherent diffusion of a complex-valued field de-
scribed by Eq. (11) can be found also in other fields of physics,
for example, when studying atomic coherence in a gas of
diffusing atoms [52,53], restricted diffusion in a magnetic
field [54], or spin-transport in semiconductors [55]. Also, the
continuous approximation of Eq. (11) can be used to obtain
approximate descriptions of coherent diffusion in finite-sized
systems with different boundary conditions.

We solve Eq. (11) with the following initial condition:

ψ (x, y; 0) =
∑
∀ jk

φ jkδ(x − x j )δ(y − xk ),

where φ jk describes the initial excitation distribution of
waveguides, and δ(x) is the Dirac delta function. Thus, one
can write down the standard solution for the continuous prob-
ability distribution [48]:

p(x, t ) =
∑
∀ j,k

c jk (t )√
2πγ t

exp

{
− [x − (x j + xk )/2]2

2γ t

}
, (12)

where p(x, t ) = ψ (x, x; t ) and

c jk (t ) = φ jk√
8πγ t

exp

{
− (xk − x j )2

8γ t

}
. (13)

Equations (12) and (13) lead to the following solution for the
continuous version of the variance (6):

�̄2(t ) = γ t + D(t ), (14)

which is the sum of the classical diffusive part and the inter-
ference part appearing due to coherence of the initial state

D(t ) = 1

4 p̄tot (t )

∑
∀ j,k

c jk (t )(x j + xk )2 − [x̄(t )]2, (15)

where the average displacement is

x̄(t ) = 1

2 p̄tot (t )

∑
∀ j,k

c jk (t )(x j + xk ) (16)

and the total probability is

p̄tot =
∑
∀ j,k

c jk . (17)

B. Limitations and results

Of course, one can hardly expect that the simple model
(11) would be able to reproduce precisely all the features of
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FIG. 4. Illustration of the continuous approximation validity.
Panel (a) shows the relative variance �2(t ) − �2(0). Here the solid
lines correspond to the exact solution of Eq. (3); the dashed lines
correspond to the approximation given by Eqs. (14) and (15). The
middle solid and dashed lines correspond to two initially excited
modes, n0 − 1 and n0, with the signature {+,−}. The lower solid
and dashed lines correspond to two initially excited modes, n0 − 2
and n0 + 3, with the signature {+,−}. The upper solid and dashed
lines correspond to four initially excited modes, n0 − 2, n0, n0 + 1,
and n0 + 3, with the signature {+, −, +, −}. Panel (b) shows a rel-
ative difference of variance for the exact and approximate solutions,
δ�2 = |�2

exact (t ) − �2
approx(t )|/�2

exact (t ). The solid line corresponds
to two initially excited modes, n0 − 1 and n0, with the signature
{+, −}. The dotted line corresponds to two initially excited modes,
n0 − 2 and n0 + 3, with the signature {+, −}. The dashed line cor-
responds to four initially excited modes, n0 − 2, n0, n0 + 1, and
n0 + 3, with the signature {+, −, +, −}. Panel (c) shows how the
continuous approximation captures the transport dynamics for the
initial states considered in Fig. 1(c) and demonstrates the variance
for the initial state given by Eq. (7) for the four initially excited
modes with the numbers k = n0 − 8, n0, n0 + 8, and n0 + 16. Solid
and dashed lines correspond to the exact solutions with the following
state signatures: {+, −, +, −} and {+, −,−, −}; circles and squares
show corresponding approximate solutions. For all panels, n0 = 150
in the chain with 300 waveguides.

the continuous model. This is obvious even from the variance
dynamics of the initial single-mode excited state shown in
Fig. 1(c). For this case the continuous approximation (14)
gives just a straight line ignoring the transition stage and re-
sulting in higher values of the variance. Figure 4 demonstrates
that larger distance between the initially excited waveguides
improves the validity of the approximation. Figure 4(a) shows
that the variance for the exact solution of Eq. (3) and for
the approximate solution given by Eqs. (14) and (15) become
close even for times less than 1/γ when the distance between
the initially excited waveguides grow. However, adding two
excited state close to each other to a well-extended state
spoils the approximation for small times [see the upper solid
and dashed lines in Fig. 4(a); these lines correspond to four
initially excited modes, n0 − 2, n0, n0 + 1, n0 + 3, with the
signature {+,−,+,−}; the solid lines correspond to the exact
solution of Eq. (3); the dashed lines correspond to the ap-
proximation given by Eqs. (14 and (15)]. Figure 4(b) shows
a relative difference of variance for the exact and approximate
solutions, δ�2 = |�2

exact (t ) − �2
approx(t )|/�2

exact (t ). One can
see that indeed distancing initially excited waveguides from
one another reduces the relative error of the approximation
even for the stage γ t < 1. As Fig. 4(b) shows, for the states
illustrated in Fig. 1(d) the error of the approximation is small.

So, Eqs. (12)–(17) can indeed lead to a simple explanation
of the observed regimes discussed above. First of all, it is easy
to see that deviations from the diffusive regime are indeed
due to coherence of the initial state. In the absence of the
coherence, i.e., when φ jk ∝ δ jk , the term D(t ) is constant and
is zero for just one initially excited waveguide. This term is
also constant asymptotically (for γ t → ∞), if the sum of the
initial state coherences is not zero scoh = ∑

∀ j,k φ jk �= 0.
It was already shown in Ref. [46] that having scoh = 0

can lead to a number of quite nontrivial consequences. In
particular, the choice of the initial state can lead to different
kinds of asymptotic polynomial decay of ptot (t ). Formally, it
is quite easy to see from the long-time dynamics correspond-
ing to (xk − x j )2/8γ t → 0 when the function

√
γ tc jk (t ) can

be approximated by the finite number of terms of the series

√
γ tc jk (t ) ∝

∑
n=0

φ jk

n!

[
− (xk − x j )2

8γ t

]n

. (18)

As it follows from Eqs. (12)–(18), for the initial state (7)
having scoh = 0 and

∑
∀ j,k φ jkxkx j �= 0 leads to

√
γ t p̄tot (t →

∞) ∝ (γ t )−1 and D(t → ∞) = 2γ t , giving rise to the 3
times larger asymptotic diffusion rate observed in Figs. 1
and 2.

One can see also from Eqs. (12)–(18) that different poly-
nomial decay laws of ptot (t ) can be achieved by the choice
of the initial state (7) zeroing first terms of the series (18)
representing ptot (t ). Such a choice of the initial state (7) will
not change the asymptotically linear behavior of D(t → ∞).
However, it might affect the dynamics at earlier times. Exactly
this is shown in Figs. 2 and 3. Interference cancels lower-order
terms, making faster terms to contribute and thus creating
superballistic transport dynamics. In the localization case,
interference can make D(t ) negative, as is seen in Fig. 3.

Finally, Eqs. (12)–(18) clearly show the timescaling
demonstrated in Figs. 2 and 3. Indeed, the time dependence
of D(t ) is only through the terms (xk − x j )2/γ t . Having
increased every distance, xk − x j , m times is equivalent to
decreasing the dissipative coupling rate, γ , m2 times.

However, one should emphasize that the scaling behavior
of the variance is not reduced to a simple, albeit nonlinear,
stretching along the time axis. As is shown in Figs. 2(a) and
3(a), with increasing the distance between the initially excited
waveguides, not only are the regions of superdiffusive and
subdiffusive behavior extending, but the values of variance
reached before coming to the diffusive regime are different,
too.

V. ESTIMATIONS FOR POTENTIAL EXPERIMENT

The considered system of dissipatively coupled modes (1)
can be realized and is already realized as an array of unitary
coupled single-mode waveguides where every second waveg-
uide has an enhanced designed loss. Such systems were made
by laser-writing waveguides in glass [23,25,26,29]. In partic-
ular, designed loss in Refs. [25,26] was realized by making
“wavy” modulated waveguides [see Fig. 5(a)]. Of course,
making waveguides wavy means that both loss and coupling
to the neighboring straight waveguides varies. However, the
interaction length required to observe the transition between
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FIG. 5. (a) The scheme of coupled single-mode waveguides with designed loss through “tails” of coupled waveguides as was experimen-
tally realized in Ref. [23]. (b) The scheme of coupled single-mode waveguides with designed loss through “wavy” modulation of every second
waveguide as was experimentally realized in Refs. [25,56]. (c) The scheme with planar integrated waveguides with induced additional loss
in every second waveguides as it is described in Ref. [19]. (d) Distribution of the population pj for all the waveguides including lossy ones
and for the initial state corresponding to the dashed line in Fig. 3(a). (e) Variance for the states given by the solution of Eq. (1) for the initial
state of the aj modes describing by (7) and (10), with the amplitude α = 1, the signature {−,+, −, +, −, +} and m = 3. (f) Variance for
the states given by the solution of Eq. (1) for the initial state of the aj modes describing by (7), with 4 initially excited modes with numbers
k = n0 − 2m, n0, n0 + 2m, n0 + 4m, with the amplitude α = 1, the signature {+,−, −, −} and m = 5. For both panels (e) and (f), the initial
states of the modes bj are the vacuum. Dash-dotted, dashed, and dotted lines correspond to v/� = 0.43, 0.25, and 0.083. The solid line in
panel (e) replicates the dash-dotted line in Fig. 2(a), and the dashed line in panel (f) replicates the dashed line in Fig. 3(a).

the ballistic and diffusive dynamics (several centimeters) far
exceeds the modulated waveguide oscillation length (around
a millimeter), allowing one to describe the system with an
average coupling coefficient of about 0.5 cm−1 and the de-
signed loss with a rate of about 0.5–1 cm−1. Notice that for
the borosilicate glass and the used 633-nm wavelength the
passive loss rate on the written straight waveguides was about
0.1 cm−1 Ref. [56]. In Ref. [23] the designed loss was realized
by coupling every second waveguide to “tails” of waveguides
[see Fig. 5(b)]. There the two-waveguide equalization and the
state transfer across several dissipatively coupled waveguides
were experimentally demonstrated with cw coherent excita-
tion using 700- to 800-nm light. There also the coupling
strength and the designed loss were of an order of magnitude
higher than the passive waveguide loss.

More versatile and compact structures can be realized
on integrated photonic platforms, such as the InP platform
[19,57]. The latter realization is depicted in Fig. 5(c), where
the coupling between waveguides is with the coupling con-

stant v, and every second waveguide is subject to the designed
loss with the rate �. As is discussed in Ref. [19], realization
on an integrated photonic platform can be more versatile than
waveguide-writing schemes due to greater variability of ways
and degrees of modification of the designed loss. One can
achieve up to 2 orders of magnitude larger coupling and de-
signed loss than in the glass-written structures and can observe
the discussed transport regimes on a few millimeter scale with
cw light.

Notice that the system (1) discussed in Ref. [25] for a sin-
gle initially excited waveguide demonstrated the appearance
of the diffusive regime typical for the dissipatively coupled
bosonic chains discussed here with the transition time of
about 1/γ even not being in the dissipative coupling limit.
Figures 5(e) and 5(f) show how for the realistic structures
of Figs. 5(a)–(c) the dissipative coupling limit is approached
for the superballistic regime [Fig. 5(e)] and the localiza-
tion [Fig. 5(f)] regime with diminishing the ratio v/� while
keeping γ constant. Dashed, dotted, and dash-dotted lines in
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Figs. 5(e) were obtained for the initial state (7) with excita-
tion as it was for the dash-dotted line in Fig. 2(a). Dashed,
dotted, and dash-dotted lines in Figs. 5(f) were obtained for
the initial state (7) with excitation as it was for the dashed line
in Fig. 3(a). For both Figs. 5(e) and 5(f) dash-dotted, dashed,
and dotted lines correspond to v/� = 0.43, 0.25, and 0.083.
All the b j modes were supposed initially to be in the vacuum
states. Solid lines in Figs. 5(e) and 5(f) show corresponding
solutions of Eq. (3).

It can be seen in Figs. 5(e) and 5(f) that the dynamics typi-
cal for the limit of large loss is actually quite easily reached in
practice. Already for v ≈ 0.25� one has a good approxima-
tion of the dissipative coupling regime, and v ≈ 0.08� gives
results practically coinciding with ones obtained from Eq. (3).
Figure 5(d) shows the normalized population distribution pj

in all the waveguides including lossy ones for the localization
regime corresponding to the dotted line in Fig. 5(f). As it
should be expected in the regime of the dissipative coupling,
population in the lossy waveguides drops very quickly (on the
scale of �t ∼ 1), reproducing the picture seen in Fig. 3(b).

VI. CONCLUSIONS

Here we have demonstrated that perfectly periodic net-
works of dissipatively coupled bosonic modes can exhibit
a variety of transport regimes in dependence on the initial
excitation of the modes. The discussed regimes can be ob-
served in tight-bonding 1D systems of coupled single-mode
waveguides feasible in different photonic platforms. Such sys-
tems were already realized by laser writing in balk glass and
can be also realized with integrated photonic platforms. Our
observations are important in view of the possible applica-
tions of these networks of dissipatively coupled modes. For
functioning optical equalizersand beam splitters, distributors
and nonreciprocal optical circuits need input fields to spread

across a network [19,23]. Studies of on the field propagation
in the networks can allow for optimization of propagation time
and regimes and, in particular, for minimization of the device
length.

We have shown that coherent interference effects can lead
to a superballistic transport regime or to localization in any
predefined interaction time interval. This interval can be ex-
tended by changing the initial state. We have described the
way of doing that and derived a simple analytic model to
explain such scaling behavior. This model also explains the
appearance of both localization and superballistic regimes
and demonstrates the nature of different possible rates of the
asymptotic transport regime. It is always diffusive. However,
for certain initial states the rate of diffusion can be three times
more than for others.

Notice that here we have pursued only the task of demon-
strating possibilities offered by interference occurring in the
coherent diffusive quantum walk of amplitudes. We have
discussed transport regimes for different classical factorized
states of the bosonic modes. We have not exploited corre-
lated states and propagation of correlation and nonclassicality
through our network. To provide a hint toward possible non-
trivial effects connected with quantum correlation transport,
one can notice that the finite system described by Eq. (3) has
entangled stationary states [23,46]. Also, the dynamics of the
nth order correlation function describes coherent diffusion in
n dimensions.
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