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Amorphous silicon (a-Si) is an important thermal-management material and also serves as an ideal playground
for studying heat transport in strongly disordered materials. Theoretical prediction of the thermal conductivity
of a-Si in a wide range of temperatures and sample sizes is still a challenge. Herein we present a systematic
investigation of the thermal transport properties of a-Si by employing large-scale molecular dynamics (MD)
simulations with an accurate and efficient machine learned neuroevolution potential (NEP) trained against abun-
dant reference data calculated at the quantum-mechanical density-functional-theory level. The high efficiency of
NEP allows us to study the effects of finite size and quenching rate in the formation of a-Si in great detail. We
find that a simulation cell up to 64 000 atoms (a cubic cell with a linear size of 11 nm) and a quenching rate down
to 1011 K s−1 are required for almost convergent thermal conductivity. Structural properties, including short- and
medium-range order as characterized by the pair-correlation function, angular-distribution function, coordination
number, ring statistics, and structure factor are studied to demonstrate the accuracy of NEP and to further evaluate
the role of quenching rate. Using both the heterogeneous and homogeneous nonequilibrium MD methods and
the related spectral decomposition techniques, we calculate the temperature- and thickness-dependent thermal
conductivity values of a-Si and show that they agree well with available experimental results from 10 K to room
temperature. Our results also highlight the importance of quantum effects in the calculated thermal conductivity
and support the quantum-correction method based on the spectral thermal conductivity.
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I. INTRODUCTION

Silicon remains as one of the most fundamental semicon-
ductor materials in the microelectronics industry. Amorphous
silicon (a-Si) is a disordered semiconductor material with
important technological applications, in particular as pho-
toabsorber in solar cells [1,2]. Understanding the thermal
properties of a-Si at the atomic level is important in predicting
the behavior of this material and how it may affect device
performance. Experimental measurements [3–6] have played
an important role in characterizing the thermal transport prop-
erties of a-Si, but theoretical understanding and reproduction
of the experimental results are also important. For pristine
crystalline silicon, phonons are the dominant heat carriers
and phonon-mediated heat transport has been well understood
in terms of anharmonic phonon-phonon scattering within the
phonon-gas picture. However, due to the complexity of the
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structure and the absence of long-range order [7] in amor-
phous systems, there are no well-defined phonon bands and
the phonon-gas picture is not valid [8]. Most of heat carriers
in a-Si are vibrations with short mean-free paths (MFPs) due
to the disorder-induced scattering and thus the thermal con-
ductivity in a-Si is about two orders of magnitude smaller than
that in crystalline silicon around room temperature [5].

Assuming the dominance of disorder-mediated scattering,
a harmonic Hamiltonian model has been proposed by Allen
and Feldman [9] and numerical methods based on the Kubo-
Greenwood formula have been devised [10], which have led
to a classification of lattice vibrations in amorphous materials
into propagons, diffusons, and locons corresponding to low,
medium, and high-frequency vibrations, respectively [11].
Recently, unified approaches that can account for both anhar-
monicity and disorder have been developed [12,13], providing
a more comprehensive understanding of heat transport from
the crystalline to the strongly disordered limit. These methods
have found many applications in amorphous or amorphouslike
materials, yet they have limitations, such as nonlinear scaling
of the computational cost with respect to the simulation cell
size and the high cost of including high-order anharmonicity.
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Molecular dynamics (MD) simulations, on the other hand,
have a linear-scaling computational cost with respect to the
simulation cell size and contain lattice anharmonicity and
phonon scatterings to all orders. MD is the most comprehen-
sive classical atomistic simulation method to study thermal
transport and has been the standard approach used for bench-
marking other theoretical models or computational methods
[12,14,15]. However, reliable application of MD simulations
to amorphous materials in general, and to a-Si in particular,
is hindered by two main aspects: the scarcity of accurate and
efficient interatomic potentials and the classical nature of the
MD method.

In this paper, we present solutions to both of the aforemen-
tioned obstacles. On the one hand, we develop an accurate
yet highly efficient interatomic potential based on machine
learning techniques for general silicon systems, applicable
to a-Si in particular. There have been some machine learned
potentials (MLPs) developed for studying thermal transport in
a-Si [16,17], but they are not efficient enough for performing
a comprehensive investigation with careful convergence tests.
The silicon MLP we develop in this work is based on the
neuroevolution potential (NEP) framework [18] which can
achieve an unprecedented computational speed of about 107

atom step per second using a single Nvidia graphics pro-
cessing units (GPU) such as Tesla A100. The high accuracy
and efficiency of the NEP model allow us to reach a large
simulation cell size and long evolution times, generating re-
alistic a-Si structures that closely resemble the experimental
samples, which is the prerequisite for obtaining reliable pre-
dictions for the thermal transport properties. On the other
hand, we apply a proper quantum-statistical correction to
the spectral thermal conductivity calculated within the ho-
mogeneous nonequilibrium molecular dynamics (HNEMD)
formalism [19] and find that this can lead to quantitative
agreement with the experimental results [4] in a wide range of
temperatures, from 10 K up to the room temperature. With the
combination of the efficiency and accuracy of the NEP model
and a proper quantum-statistical correction, we achieved in-
sightful results that are difficult to obtain previously.

II. TRAINING A MACHINE LEARNED
POTENTIAL FOR a-Si

The NEP model is a neural network (NN) based MLP
trained using the separable natural evolution strategy (SNES)
[21]. The NN maps the local atom-environment descriptor of
a central atom to its site energy and the total energy of an
extended system is the sum of the individual site energies
of the atoms. The descriptor used in NEP [18] consists of
selected radial and angular components similar in spirit to the
Behler-Parrinello symmetry functions [22] and the optimized
[23] smooth overlap of atomic positions (SOAP) [24].

To train a NEP model applicable to a-Si, we reuse the
well-designed training database that has been used to train
an accurate Gaussian-approximation potential (GAP) (called
GAP18 here) [20]. This training data set was computed at
the quantum-mechanical density-functional (DFT) level us-
ing the PW91 functional [25] and covers a wide range of
silicon structures, including the liquid and a-Si ones in partic-
ular. The GAP18 potential has been demonstrated to be well

FIG. 1. (a) Evolution of the various terms in the loss function,
including those for the L1 and L2 regularization, the energy root-
mean-square error (RMSE) (eV/atom), force RMSE (eV/Å), and
virial RMSE (eV/atom) as a function of the training generation.
(b) Energy and (c) force calculated from the NEP model as compared
to the PW91-density-functional theory (DFT) reference data. The
overall converged RMSE of energy and force are presented. (d) Cu-
mulative probability of force error from the NEP model trained in
this work as compared to those from the previous NEP21 [18] and
GAP18 [20] models.

transferable and is able to simultaneously describe various
properties of crystalline and noncrystalline silicon [26]. How-
ever, thermal transport usually involves large length and long
timescales and GAP18 is not currently efficient enough for
this purpose. The NEP model as implemented in the GPUMD

package [27,28], on the other hand, can reach a computational
speed of about 5 × 106 atom step per second for a-Si by using
a single GPU card such as Tesla V100, which is about three
orders of magnitude faster than GAP18 using 72 Xeon-Gold
6240 central processing unit (CPU) cores [18].

A NEP model has already been trained previously for
benchmarking the NEP framework [18] (we call it NEP21),
but with a better understanding on the hyperparameters, we
here retrain it by changing the relative weight of virial from
1 to 0.1, keeping all the other hyperparameters as used in
Ref. [18] unchanged. Figure 1(a) shows the convergence trend
of the root-mean-square error (RMSE) of energy, force, and
virial during the training process. We note that both L1 and
L2 regularization are used in our training, which can help to
increase the robustness of the potential. Upon convergence,
the predicted energy and force from NEP correlate with the
reference data very well, as shown in Figs. 1(b) and 1(c). The
converged energy and force RMSEs for the training data set
are 5.9 meV/atom and 96 meV/Å, respectively. The corre-
sponding RMSEs for the holdout testing data set as used in
Ref. [20] are 7.8 meV/atom and 93 meV/Å, respectively. As
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TABLE I. Fractions of the different CNs and the average CN
(CN) from our NEP model for different quenching rates.

α (K s−1) CN = 3 CN = 4 CN = 5 CN

1011 0.45% 98.09% 1.46% 4.010
1012 0.61% 96.99% 2.40% 4.018
5 × 1012 0.79% 95.72% 3.49% 4.027
1011 [26] 0.60% 98.36% 1.04% 4.004

can be seen in Fig. 1(d), the NEP model trained in this work
is slightly more accurate than NEP21 but is still less accurate
than GAP18. This training accuracy is similar to that obtained
by using the atomic cluster expansion approach [29]. Despite
the relatively lower training accuracy, the NEP trained here
exhibits performance on a par with GAP18 in predicting the
various structural properties of a-Si, as will be demonstrated
below.

III. SAMPLE GENERATION AND STRUCTURAL
CHARACTERIZATION

A. Generating a-Si samples

The key ingredient for obtaining reliable results for the
physical properties of a-Si is sample preparation. To this end,
we use classical MD simulations with a melt-quench-anneal
process to prepare the a-Si samples. All the MD simula-
tions are performed using the GPUMD package [27] (version
2.9.1). We take diamond silicon as the initial structure and
quickly heat it up to T0 = 2000 K to reach the liquid state
and equilibrate it for 0.1 ns. Then, we cool down the sys-
tem with the target temperature in the thermostat linearly
dropping from T0 to a temperature T (from 10 to 1000 K)
with a given quenching rate α (from 5 × 1012 down to 1011

K s−1). Finally, we anneal the quenched sample at T for
0.5 ns to obtain a well-equilibrated a-Si structure. We use the
isothermal-isobaric ensemble (zero target pressure) realized
by the Berendsen thermostat and barostat [31] during the
melt-quench-anneal process. We have checked that using the
recently proposed Bernetti-Bussi barostat [32] combined with
the Bussi-Donadio-Parrinello thermostat [33] does not lead to
noticeably different results. In all the MD simulations, we use
a time step of 0.5 fs.

Figure 2(a) shows the evolution of the temperature and
potential energy in the case of T = 300 K and α = 1011 K s−1

obtained by using a system with N = 64 000 atoms. In this
case, the quenching process lasts 17 ns. To appreciate the high
computational demands for heat transport applications and the
excellent computational efficiency of NEP we note that, to
reach the same quenching rate, the system size must be chosen
to be N = 512 in GAP18 [26] with a time step of 1 fs.

B. Short-range order

After generating the a-Si samples, we first characterize the
bond motifs of the short-range order in terms of the pair-
correlation function (PCF), the angular-distribution function
(ADF), and the coordination number (CN). The results are
shown in Fig. 3 and Table I. For the first peak located at about
2.36 Å in the PCF, the height calculated from the NEP model

FIG. 2. (a) Temperature and potential energy as a function of
simulation time during the melt-quench-anneal process. (b) Snapshot
of an a-Si sample after the melt-quench-anneal process, where atoms
with different coordination numbers (CN) are rendered in different
colors. The OVITO package [30] is used for visualization.

increases with decreasing quenching rate α, getting close to
the experimental value [34] when α is reduced to 1011 K s−1.
The GAP18 model [20] gives a sharper distribution around the
first peak. All the theoretical and experimental results agree
well beyond the first peak, particularly at the second peak at
3.86 Å.

For the ADF, there are no experimental data, but the NEP
and GAP18 models agree well for the same quenching rate
α = 1011 K s−1. Both show a peak at an angle of 109.5◦,
indicating the dominance of sp3 bond motifs in a-Si. Similar
to the case of PCF, the peak height in the ADF increases
with decreasing quenching rate which indicates that a smaller
quenching rate leads to a more locally ordered a-Si structure.

Based on the PCF, we determine the CN of each atom
from the neighboring atoms within a cutoff distance of 2.9 Å.
The calculated fractions of atoms with different CNs and the
average CN are presented in Table I. Most atoms have a CN of
4 and the percentage of these atoms increases from 95.72% to
98.09% as the quenching rate decreases from 5 × 1012 K s−1

to 1011 K s−1. This trend is in good agreement with that
from GAP18 [26]. The results here again indicate that a lower
quenching rate leads to a more locally ordered a-Si sample.
At the lowest quenching rate here, the averaged CNs from
our NEP model and GAP18 are both close to 4. In contrast,
the experimentally annealed a-Si samples prepared by ion
implantation have an averaged CNs of 3.88 [35]. This can be
understood by noting that the experimental a-Si samples are
1.8% less dense than the crystalline precursor that has a CN
of 4 due to the appearance of vacancy defects.
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FIG. 3. (a) Pair-correlation function g(r) and (b) angular-
distribution function p(θ ) of 64 000-atom a-Si at 300 K generated
using different quench rates. The vertical dashed lines in (a) and
(b) mark the first peak of g(r) at 2.36 Å and that for p(θ ) at 109.5◦,
respectively. Experimental measurements [34,35] and theoretical
predictions for g(r) [20] and p(θ ) [26] from GAP18 are presented
for comparison.

C. Medium-range order

Apart from the short-range order as characterized by the
PCF, ADF, and CN, we also characterize the medium-range
order. Ring motifs involve the sequential connections of co-
ordination tetrahedra and can be used to characterize near or
intermediate medium-range order that is the next length scale
following the short-range domain [7]. We compute the ring
distribution in Fig. 4(a) using shortest-path algorithm [36].
For crystalline diamond silicon, all atoms are connected to one
another in the cyclohexanelike six-membered units with one
ring per atom. For a-Si, the most energetically favorable six-
membered rings still dominate but seven- and five-membered
rings are also energetically viable and exist with a consid-
erable amount as defected motifs in the three-dimensional
network of a-Si [26]. With decreasing quench rate, the average
number of six-membered rings increases, which indicates an
increased near or intermediate medium-range ordering.

The structure factor S(Q), one of the most common exper-
imental structural probes, is typically regarded as a signature
of medium-range ordering [7,37,38]. Computationally, S(Q)
is typically derived as the Fourier transform of the PCF,
i.e., S(Q) = 1 + 4πρ

∫ ∞
0 r2(sin Qr/Qr)[g(r) − 1] dr. For the

comparison with diffraction experiments, we also calculate
the static S(Q) in Fig. 4(b) using the ISAACS package [39].
The first peak usually gives an indication of intermediate
or far medium-range ordering [26,37,38], and we see that it

FIG. 4. (a) Number of N-membered rings per atom and (b) struc-
ture factor S(Q) as a function of the wave vector Q for a-Si with
64 000 atoms at 300 K. Experimental data [34,35] and prediction
from GAP18 [26] are given for comparison.

strengthens [in terms of increased S(Q) value] at about 2 Å−1

with decreasing quenching rate. Specifically for a-Si, there
is a direct connection between the first peak in S(Q) and
the second peak in the PCF, which corresponds to second-
neighbors distances [40]. Also, the shoulder peak at about
Q = 7 Å−1 features more clearly for lower quenching rate [see
inset of Fig. 4(b)]. Indeed, Laaziri et al. [35] observed exper-
imentally that annealed a-Si samples exhibit a more featured
shoulder peak than as-deposited ones. The quantitative differ-
ences between the results from NEP and GAP18 as shown
in Fig. 4 are most likely due to the different simulation cell
sizes.

IV. HEAT TRANSPORT IN AMORPHOUS SILICON

A. Effects of size and quenching rate on thermal conductivity

After generating and thoroughly characterizing the struc-
tures of the a-Si samples, we study their heat transport
properties. There are numerous methods for computing ther-
mal conductivity at the atomistic level [41], but MD in
particular is efficient for strongly disordered systems. Among
the various MD-based methods for thermal conductivity cal-
culations, the HNEMD method has been proven to be the
most efficient one [19]. In this method, one applies an external
driving force

Fext
i = Fe · Wi, (1)
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FIG. 5. (a) Cumulative average of the thermal conductivity κ as
a function of the HNEMD production time. The thin lines represent
results from three independent a-Si samples, and the thick and dashed
lines represent the average and error bounds. In this case, the simu-
lation cell size is N = 64 000 and the quenching rate is α = 1011

K s−1. (b) Distribution of the block-averaged κ values (each with
0.3 ns) from the HNEMD calculations. (c) κ as a function of the a-Si
sample size (indicated as N as well as the linear size of the cubic
cell) with α = 1011 K s−1. (d) κ as a function of inverse quench-
ing rate α−1 with N = 64 000. In all the cases, the temperature is
T = 300 K.

to create a nonzero heat current. Here Fe is the driving force
parameter with the dimension of inverse length and Wi is the
3 × 3 per-atom virial tensor (not necessarily symmetric for
many-body potentials) [18,42,43] defined as

Wi =
∑
j �=i

ri j ⊗ ∂Uj

∂r ji
, (2)

where ⊗ denotes tensor product between two vectors, Uj is
the site energy of atom j, and ri j is defined as r j − ri, ri

being the position of atom i. In the linear-response regime,
the nonequilibrium ensemble average (denoted by 〈. . . 〉) of
the heat current J is proportional to the the driving force
parameter:

〈Jα〉 = TV
∑

β

καβFβ
e , (3)

where T is the temperature and V is the volume. Here the
instant heat current is calculated based on the definition
[18,42,43]

J =
∑

i

Wi · vi, (4)

where vi is the velocity of atom i. The thermal conductivity
tensor καβ can thus be extracted from Eq. (3). The judicious
choices of the magnitude of Fe for the systems here are
presented in Fig. S1 of the Supplemental Material (SM) [44].

Figure 5(a) shows the cumulatively averaged κ versus
time in the HNEMD simulations for three independent a-Si

samples with N = 64 000 atoms obtained with a quenching
rate of α = 1011 K s−1 and a final temperature of T = 300 K.
We see that κ converges nicely with the simulation time. For
temperatures T < 100 K, we use six a-Si samples due to the
worse ergodicity in MD simulations with decreasing temper-
ature. In all the cases, we treat the trajectories for different
samples as a whole and divide them into about 100 equally
sized blocks and calculate a proper estimate of the statistical
error (measured as the standard error). Figure 5(b) presents
the distribution of the block-averaged κ values.

The HNEMD method is physically equivalent to the
Green-Kubo method and thus has similar finite-size ef-
fects as in the Green-Kubo method [41], which come from
two competing effects [45]: a finite cell truncates some
long-wavelength vibrations and also ignores some scattering
events. In disordered materials, the former should dominate
and we expect that κ will increase with increasing simulation
cell size. This is indeed the case for our results shown in
Fig. 5(c) (see Fig. S2 in the SM [44] for the time convergence
of κ for each cell size), where we can see that it requires a
system size of N = 64 000 atoms (or a linear size of 11 nm in
a cubic cell) to almost converge κ . This is the size we use for
all the subsequent calculations except for those in Sec. IV D,
where we explore the effects of finite simulation domain size
in more depth.

Similar to the structural properties, κ in a-Si is also sensi-
tive to the quenching rate α, increasing with decreasing α and
converging to about 1.82 W m−1 K−1 at about α = 2 × 1011

K s−1 [see Fig. 5(d)] (see Fig. S3 in the SM [44] for the time
convergence of κ for each quenching rate). That is, a more
ordered structure from a lower quenching rate conducts heat
better. Based on the short- and medium-range characteriza-
tions, it seems α = 1011 K s−1 is a safe choice that is also
computationally affordable. We thus use this quenching rate
in all the subsequent calculations.

It is worth noting that experimentally measured ther-
mal conductivity of a-Si varies from 1.6 to 4 W m−1 K−1

[3–6,46,47] at room temperature. This large variation is most
likely due to the structural differences of the a-Si samples:
more ordered samples tend to have higher thermal conduc-
tivity according to our results above. For example, Liu et al.
[46] reported a thermal conductivity of 4 W m−1 K−1 for
a 80-µm-thick a-Si film deposited by the hot-wire chemical
vapor deposition (CVD) method at room temperature, and
they confirmed that their a-Si structures are more ordered
and possess higher medium-range order than typical ones.
Using another flavor of CVD, the vapor-liquid-solid mediated
low-pressure CVD, Kwon et al. [47] also obtained a thermal
conductivity up to 4 W m−1 K−1 for a 1.7-µm-thick a-Si
film at 300 K. On the other hand, a-Si samples prepared by
physical vapor deposition (PVD), such as sputtering deposi-
tion [3,5], electron-beam deposition [4], and self-implantation
[34,35], tend to be more disordered. Particularly, the a-Si
samples by Zink et al. are of high purity without crystallinity
[4]. Our numerical a-Si sample prepared by the melt-quench-
anneal protocol resembles the PVD ones [34,35] as has been
shown above. Therefore, we will mainly compare our thermal
conductivity results against those by Zink et al. [4], which
span a large range of temperature (from a few K to a few
hundred K).
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FIG. 6. Thermal conductivity κ as a function of temperature
T for a-Si from our calculations as compared to the experimental
values by Zink et al. [4], Kim et al. [6], and Calhill et al. [3]. The
quasiharmonic Green-Kubo (QHGK) results by Isaeva et al. [12] and
the theoretical results by Zhang et al. [15] based on a particlelike and
wavelike (“p + w”) decomposition are also shown for comparison.
The sample thickness in the heat transport direction is indicated as L,
where L = ∞ means the bulk limit.

B. Quantum-statistical correction

After determining the converged N and α, we calculate
κ for a-Si at different temperatures and compare the results
with experimental ones (see Fig. 6). Figure S4 in the SM [44]
presents the time convergence of κ for each temperature. The
HNEMD results (triangles) only agree with the experimental
ones around and above room temperature, significantly over-
shooting at low temperatures.

Considering the fact that MD simulations follow classical
statistics and the relatively high Debye temperature of sili-
con (about 487 K) [4], we expect that this overshooting is
mostly due to the missing quantum-statistical effects in the
MD simulations. To study this in detail, we note that there is
a feasible quantum-correction method based on the spectral
thermal conductivity in the HNEMD formalism [19]. In this
formalism, one can obtain the spectral thermal conductivity
κ (ω, T ) as a function of the vibrational frequency ω and
temperature T with a Fourier transform of the so-called virial-
velocity correlation function [19,43], which is a generalization
of the spectral heat current approach [48,49] from interface
to bulk materials. The virial-velocity correlation function is
defined as [19,43]

K(t ) =
∑

i

〈Wi(0) · vi(t )〉. (5)

The summation is over the atoms in a control volume V of
interest, and 〈. . . 〉 indicates the average over different time
origins. The spectral thermal conductivity is then calculated
as

κ (ω, T ) = 2

V T Fe

∫ ∞

−∞
dt eiωt K (t ). (6)

This κ (ω, T ) is classical but it can be quantum corrected by
multiplying it with a ratio between quantum and classical

FIG. 7. Classical and quantum-corrected spectral thermal con-
ductivity of a-Si at (a) 1000, (b) 500, (c) 300, (d) 100, (e) 30, and
(f) 10 K. Integrated thermal conductivity values are indicated in each
panel.

modal heat capacity [50–52]

κq(ω, T ) = κ (ω, T )
x2ex

(ex − 1)2
, (7)

where x = h̄ω/kBT , h̄ is the reduced Planck constant, and kB

is the Boltzmann constant. The effectiveness of this quantum-
correction method for amorphous systems originates from the
fact that the population of vibrations has negligible effects
on elastic scattering processes. This is in sharp contrast with
crystals, where inelastic phonon-phonon scattering dominates
and the overpopulated high-frequency phonons in classical
MD can reduce the lifetime of the low-frequency phonons and
a simple correction of the phonon population usually leads to
an underestimated thermal conductivity [53].

Figure 7 shows the classical and quantum-corrected spec-
tral thermal conductivity at different temperatures. Quantum
corrections are large at low temperatures and high frequen-
cies, which is consistent with the fact that the populations of
the vibrational modes in these conditions are artificially high
in classical MD simulations. The total quantum-corrected
thermal conductivity κq(T ) is then obtained as an integral of
κq(ω, T ) over the frequency as

κq(T ) =
∫ ∞

0

dω

2π
κq(ω, T ). (8)

At room temperature, κq(T )/κ (T ) is close to unity at 94%,
while it becomes as small as 8.1% at 10 K. The strong
quantum-statistical effects make the classical MD results to
fail to describe the experimental measurements at low temper-
atures. After applying the quantum correction, the HNEMD
results (squares in Fig. 6) are much closer to the experimental
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FIG. 8. (a) Vibrational density of states ρ(ω), (b) classical bal-
listic spectral thermal conductance G(ω) at 20 K, and (c) vibrational
mean-free path λ(ω) of a-Si as a function of the vibrational frequency
ω/2π at 20 K. (d) Quantum-corrected thermal conductivity κq(L, T )
as a function of thickness L of a-Si film in the transport direction.
Standard errors are given as dashed lines. Experimental values of
ρ(ω) in (a) are taken from Kamitakahara et al. [54].

ones by Zink et al. [4], but are still slightly too large at the
low-temperature limit. We note that if κ (ω) is not available,
one may attempt to make a quantum correction based on the
vibrational density of states (VDOS) ρ(ω):

κ̃q(T ) = κ (T )

∫ ∞
0

dω
2π

ρ(ω) x2ex

(ex−1)2∫ ∞
0

dω
2π

ρ(ω)
. (9)

This is, however, not quantitatively correct because ρ(ω)
does not contain the information of heat transport that is
contained in κ (ω) and weights more for the high-frequency
part than κ (ω), as can be seen from a comparison between
Figs. 8(a) and 7. Therefore, the quantum correction based on
ρ(ω) results in too small a ratio κ̃q(T )/κ (T ) as compared

FIG. 9. Vibrational mean-free path λ(ω) with three simulation
domain lengths (from 11 to 99 nm) at 300 K. Previous results from
Sääskilahti et al. [51] are added for comparison. See Figs. S7 and S8
in the SM [44] for details on the HNEMD and spectral decomposition
results.

to the correct one κq(T )/κ (T ) from the quantum correction
based on κ (ω), as can be clearly seen from Fig. 6 (diamond
symbols).

C. Length dependence of thermal conductivity

To understand the overestimation of thermal conductivity
in the low-temperature limit using the statistical quantum
correction (7), we note that the experimental samples are of
finite thickness in the transport direction, being L = 130 nm
[4], while L in our HNEMD simulations should be regarded
as infinite. Strong length dependence of κ has been exper-
imentally observed in amorphous silicon thin films [55] or
through MFP spectroscopy [56]. To enable a more proper
comparison with experiments, we need to compute κ at a
finite L. A conventional approach is to perform heterogeneous
nonequilibrium molecular dynamics (NEMD) simulations at
different L. However, a more computationally efficient and
elegant way is to first perform a single NEMD simulation in
the ballistic limit (low T and short L) that is equivalent to the
atomistic Green’s function approach [57], and then employ the
same spectral decomposition method as in HNEMD [19] to
obtain the spectral thermal conductance G(ω) [see Fig. 8(b)]:

G(ω) = 2

V �T

∫ ∞

−∞
dt eiωt K (t ). (10)

Here �T is the temperature difference between the heat
source and heat sink in the NEMD setup. After this, one
can obtain the spectral MFP as λ(ω, T ) = κ (ω, T )/G(ω) [see
Fig. 8(c)], and then obtain the quantum-corrected thermal
conductivity at any thickness as [see Fig. 8(d)]

κq(L, T ) =
∫

dω

2π

κq(ω, T )

1 + λ(ω, T )/L
. (11)

Setting L = 130 nm as in the experiments [4], our predicted
results (circles in Fig. 6) finally agree well with the experi-
mental ones from room temperature down to 10 K.

In Fig. 6, we also present previous theoretical results by
Zhang et al. [15] and Isaeva et al. [12]. The methods in these
works have been well benchmarked against their respective
MD simulations, but the agreement with experimental data is
less satisfactory. These two works have used the Stillinger-
Weber [58] and Tersoff [59] empirical potentials, respectively,
indicating that these traditional potentials that reproduce pris-
tine Si may not be accurate enough for a-Si. It would thus be
interesting to study if combining these methods and our NEP
model can improve the results, although this is beyond the
scope of this paper.

Finally, to further confirm the reliability of our predictions,
we considered possible external stress that can intentionally
or accidentally exist in experiments and find that there is no
stress dependence of κq in a-Si (see Figs. S5 and S6 in the SM
[44] for details).

Note that we have considered temperatures up to 1000 K in
our calculations, but as far as we know there are no available
experimental data at such high temperatures. Based on our re-
sults, κ in a-Si at 1000 K is significantly reduced as compared
to the room temperature. The validity of this prediction is yet
to be confirmed by future experiments. We stress that while
the possible contribution to heat conduction by electrons has
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FIG. 10. Quantum-corrected thermal conductivity κq(L) of a-Si
film at 300 K as a function of the film thickness L calculated with
three simulation domain lengths (11 to 99 nm).

been ignored in this work, it should not be significant below
the melting point of a-Si.

D. Low-frequency limit and finite-size effects

The existence of large vibrational MFPs around 1 THz
is a manifestation of the existence of propagons [11]. These
propagating phononlike modes contribute a significant portion
to the thermal conductivity, which is consistent with ex-
perimental measurements [5,55,56] and previous predictions
[14,15,60,61]. We note that the MFPs in Fig. 8(c) drop in
the low-frequency limit, which is caused by the finite simula-
tion domain length. According to the effective group velocity
vg ≈ 8 km/s of the propagons [61,62], a domain length of
D = 11 nm can only support vibrations with frequency down
to vg/D ≈ 0.7 THz. By considering a domain length up to
99 nm, the lower limit of the frequency that can be probed is
pushed down to about 0.08 THz, as can be seen in Fig. 9. We
also observe that, in the low-frequency limit, the MFPs scale
as λ(ω) ∝ ω−2. However, the VDOS scales as ρ(ω) ∝ ω2

[Fig. 8(a)], leading to a constant contribution to the thermal
conductivity. By increasing the domain length from 11 to
99 nm, the total thermal conductivity is only increased by
about 15%, but the thickness convergence of the thermal con-
ductivity is extended from about 1 to 10 microns (cf. Fig. 10).

V. SUMMARY AND CONCLUSIONS

In summary, we have studied heat transport in a-Si us-
ing extensive MD simulations with an accurate and efficient
MLP constructed using the NEP approach. Realistic a-Si
samples were first generated using the melt-quench-anneal
process. Based on detailed structural analyses and heat trans-
port calculations, we found that both short- and medium-range
structural order increase with reduced quenching rate, and
the calculated thermal conductivity accordingly increases. A
quenching rate of 1011 K s−1 is determined to be appropriate
to generate realistic a-Si samples and converged thermal con-
ductivity. The thermal conductivity calculated from HNEMD
simulations also exhibits notable finite-size effects, requiring a
simulation cell with a linear size of 11 nm to reach asymptotic
convergence. Based on spectral decomposition techniques, we
verified the importance of both quantum statistical effects and
a finite sample length commensurate with experiments on the
predicted thermal conductivity of a-Si. With a correction to
the classical spectral thermal conductivity based on quantum
statistics, we obtained good agreement with experiments from
10 K to room temperature using the same sample length.
Finally, we also demonstrated that an approximate quantum-
correction scheme based on the density of states is inaccurate
for a-Si.

The inputs and outputs related to the NEP model training
are freely available at the Gitlab repository [63]. The inputs
and outputs of all the MD simulations are freely available at
Zenodo [64]. The source code of GPUMD is available in [65]
and the related documentation can be found in [66].
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