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We consider critical eigenstates in a two-dimensional quasicrystal and their evolution as a function of disorder.
By exact diagonalization of finite-size systems we show that the evolution of properties of a typical wave function
is nonmonotonic. That is, disorder leads to states delocalizing, until a certain crossover disorder strength is
attained, after which they start to localize. Although this nonmonotonic behavior is only present in finite-size
systems and vanishes in the thermodynamic limit, the crossover disorder strength decreases logarithmically
slowly with system size, and is quite large even for very large approximants. The nonmonotonic evolution of
spatial properties of eigenstates can be observed in the anomalous dimensions of the wave-function amplitudes,
in their multifractal spectra, and in their dynamical properties. We compute the two-point correlation functions
of wave-function amplitudes and show that these follow power laws in distance and energy, consistent with
the idea that wave functions retain their multifractal structure on a scale which depends on disorder strength.
Dynamical properties are studied as a function of disorder. We find that the diffusion exponents do not reflect
the nonmonotonic wave-function evolution. Instead, they are essentially independent of disorder until disorder
increases beyond the crossover value, after which they decrease rapidly, until the strong localization regime
is reached. The differences between our results and earlier studies on geometrically disordered “phason-flip”
models lead us to propose that the two models are in different universality classes. We conclude by discussing
some implications of our results for transport and a proposal for a Mott hopping mechanism between power-law
localized wave functions, in moderately disordered quasicrystals.
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I. INTRODUCTION

The electronic properties of quasicrystals have continued
to pose fundamental problems ever since the discovery of
these materials by Schechtman et al. [1]. The question of
what constitutes “intrinsic” behavior of quasicrystals, and how
it is affected by disorder, is not yet clearly understood. The
reasons for this deficit of understanding lie in the fact that
the complexity of real materials, both chemical and structural,
render numerical computations difficult, and that analytical
tools lack for even the simplest two- or three-dimensional
cases. Many numerical studies have been carried out for sim-
plified tight-binding models on quasiperiodic tilings. These
indicate that single-particle electronic states are, typically,
multifractal for undisordered tilings (see review in [2]). The
generalized dimensions can in fact be exactly computed for
the ground states of two well-known tilings [3]. However, it
is not understood what happens to such multifractal states
in the presence of disorder. The nature of electronic states
in real quasicrystals, where a certain amount of disorder is
inevitably present, has remained an open question. While
the transition to Anderson localization has been studied in
detail for a one-dimensional (1D) quasicrystal, the Fibonacci
chain [4,5], the effects of disorder on eigenstates have not
been analyzed in detail for two- (2D) and three-dimensional
(3D) quasicrystals. This paper fills the gap by presenting a
comprehensive numerical study of the effects of disorder on

eigenstates of an eightfold-symmetric 2D tiling, the Ammann-
Beenker (AB) tiling [6]. A patch of this tiling, composed of
squares and 45◦ rhombuses, is shown in Fig. 1, along with
a typical critical state, represented by colored circles whose
radii are proportional to the amplitude on each site. We will
address here in detail the question of how such multifractal
or critical states evolve as a function of disorder into strongly
Anderson localized states.

In the study of disordered quasiperiodic tilings the exten-
sive literature on a variety of disordered systems provides
a valuable guide. Random matrix models [7] are important
reference systems which predict certain universal properties.
In particular, as we will describe, the Gaussian orthogonal
ensemble (GOE) which has the symmetry of the Hamiltoni-
ans we will consider here describes some spectral properties
of tilings for both the pure case and for weakly disordered
tilings of finite size. The best known reference system for
condensed matter is the Anderson model for localization in
random lattices [8]. In the Anderson model, it is well known
that a metal-insulator transition occurs for three-dimensional
lattices, in contrast to 2D or 1D lattices, where any disorder,
however small, suffices to localize all of the eigenstates [9].
These statements hold in an infinite system. However, if one
considers a finite system of linear dimension L, one can dis-
tinguish between two regimes of disorder: a weak disorder
regime, where states appear to be extended on the scale of the
system size, and a strong disorder regime, where the states are
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FIG. 1. A patch of the Ammann-Beenker tiling illustrating a crit-
ical wave function [for model (1) without disorder and E = 0.24t].
The magnitude and sign of the wave-function amplitude on each site
are represented by the circle radius and color, respectively.

clearly localized. The crossover occurs for a disorder strength
W� which corresponds to the localization length ξloc(W�) ∼ L.
Since in 2D the localization length diverges exponentially as
W → 0, the apparent metalliclike regime at weak disorder
extends up to very large system sizes.

We show here that, within the weak disorder regime, most
states display a nonmonotonic behavior as a function of the
disorder strength W . That is, states tend at first to delocalize
for very small W . Localization occurs only when the disorder
exceeds a crossover value W�, which depends on the energy
and system size. The nonmonotonic evolution of the localiza-
tion properties only exists for finite systems since the value
of the crossover disorder strength vanishes in the thermody-
namic limit. However, the characteristic disorder W� decreases
logarithmically with the system size and hence the nonmono-
tonicity is observed also for very large approximants. The
nonmonotonic behavior can be seen by plotting the inverse
participation ratio (IPR) as a function of disorder, but also
in the f (α) curve, which describes multifractal properties
of wave functions, and in the generalized dimensions of the
wave functions Dψ

q . This nonmonotonicity is particularly pro-
nounced for the states around zero energy, in the middle of
the spectrum. This is due to the fact that there is a zero-width
band of localized states at E = 0 in this model, analogous to
the E = 0 states present in the well-known Penrose rhombus
tiling [10,11]. All of these degenerate states are mixed as
soon as disorder is introduced, and they delocalize rapidly
for W �= 0. In contrast, the states lying near band edges and
the main pseudogap behave differently. They are the fastest to
localize and, up to numerical accuracy, their evolution under
disorder is monotonic.

To complete the description of electronic properties in the
disordered quasicrystal, we have carried out detailed studies
of two-point spatial correlation functions C(r, ω; E ). These
describe correlations of the amplitudes of two eigenstates of
energies close to E , having an energy separation ω, as a func-
tion of spatial distance r. We obtain these correlation functions

for increasing values of disorder, and show that for a large
range of disorder strength across the crossover regime, corre-
lations follow power laws over a broad range of distances. In
the crossover regime, the wave-function correlations are seen
furthermore to be enhanced by disorder.

Dynamical properties are then studied as a function of
disorder strength. We consider the spreading of wave packets
which are initially localized on clusters composed of a central
site of connectivity k (3 � k � 8 for the AB tiling) and all of
its nearest neighbors. The initial wave-packet energy is varied
by a parameter θ , which controls the initial wave-function
amplitudes on the center of the clusters and on the external
nodes. We study the probability of return to the origin (cluster
center) of such wave packets released at time t = 0, P(t ),
which is closely related to the Fourier transform of the correla-
tion function C(0, ω; E ) (computed for amplitudes at the same
spatial point, r = 0), and is found likewise to exhibit different
regimes of behaviors as a function of t . After an initial fast
decay for very short times, P(t ) shows a power-law decay in
a wide range of t and ultimately reaches a constant value at
very long times. The onset of this power-law regime moves to
shorter times with increasing disorder strength. The addition
of quenched disorder has therefore the effect of promoting the
spreading of the wave packet in the crossover regime. This
effect is particularly strong for small k. We next computed
the mean-square distance, given by the average over all initial
positions and over disorder realizations of 〈r2(t )〉 ∼ t2β . We
measured the effective diffusion exponents β (which depend
on k and θ ) as a function of disorder strength. When disorder
is turned on β as a function of W appears initially to remain
constant. It then drops quickly to zero when the localization
regime is reached for sufficiently strong W � W�.

A number of previous studies have investigated the effects
of geometrically disordered tilings. These models modify the
quasiperiodic structure by making local permutations of the
tiles at random locations, termed “phason flips.” Such mod-
els were studied both in 2D [12–16] and 3D [17]. These
studies of spectral and quantum diffusion properties con-
cluded that phason disorder tends to delocalize the electronic
states and promote quantum diffusion. The conductivity in
finite samples of the 2D Penrose tiling was computed using
Kubo formalism, and found to increase with a type of pha-
son disorder [18]. Grimm and Roemer carried out a recent
study of spectral properties and found that both the pure
and the phason-disordered tilings obey GOE statistics, im-
plying absence of localization [19]. The spectral properties
of phason-disordered models agree qualitatively with those of
our model, in the weak disorder limit. However the diffusion
exponent β in our model does not show an increase for weak
disorder, in contrast to the results reported in Ref. [13]. This
may imply that the effects of random onsite energies on quan-
tum diffusion and transport are different from those of phason
disorder. For phason-disordered models no localized phase
has been observed, contrarily to the onsite disorder model. It is
an open question as to whether one can achieve an Anderson
localized phase by phason disorder alone.

As stated at the outset, one of the motivations for this
study is to understand electronic properties of quasicrystals, in
particular, transport. Experimental measurements of electrical
conductivity of quasicrystals show that they are strikingly
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poor conductors compared to their constituent metals. One
of the contributing factors is that many quasicrystals dis-
play a strongly reduced density of states (DOS) at the Fermi
level compared to the parent materials: the “pseudogap.” The
second factor has to do with the nature of the eigenstates,
and the resulting anomalous diffusion in quasicrystals. Weak
localization theory and electron-electron interactions theory
have been invoked to explain the roughly linear increase of
conductivity with temperature observed in very high structural
quality icosahedral quasicrystals such as i-AlCuFe [20–22]. In
contrast, however, the low-temperature transport in i-AlCuRe
samples obtained by fast quench has given rise to much de-
bate. On the one hand, their DOS is very similar to that
of samples obtained by slow cooling [23,24]. Yet, there are
huge differences in transport, and the former have insulat-
ing behavior, as confirmed by recent transport measurement
which reported Mott variable range hopping (VRH) between
localized states at low temperatures. The answer evidently
lies in the disorder strength and differences of the resulting
electronic states in the two sets of samples. Based on our
study, we propose that for the more disordered samples it
may be possible to observe power-law conductivity due to
hopping between disorder-modified critical states. In addition,
there could occur a crossover to the usual Mott exponential
dependence for localized states at very low temperature Tco.

The paper is organized as follows: In Sec. II the model
is introduced, and the DOS is shown for different values of
disorder. Section III presents the disorder dependence of the
inverse participation ratio of the eigenstates, which show the
nonmonotonic behavior. In Sec. IV we focus on the anoma-
lous dimensions of wave functions’ amplitudes and on the
multifractal analysis of the singularity spectrum. Section V
discusses two-point correlation functions. Section VI con-
siders dynamical properties: the probability of return to the
origin and the power-law spreading of wave packets. Sec-
tion VII presents a discussion of transport based on the results.
Section VIII ends with a discussion and conclusions.

II. THE MODEL AND ITS DENSITY OF STATES

The tight-binding model we study is described by the
Hamiltonian

H =
∑

i

εic
†
i ci +

∑
〈i, j〉

(
ti jc

†
i c j + H.c.

)
, (1)

where i = 1, . . . , N are site indices, and 〈i, j〉 denotes pairs
of sites that are linked by an edge (see Fig. 1). Spin indices
are not written as they play no role aside from introducing
a factor 2. The systems considered are square approxi-
mants, tilings which are periodic but resemble the infinite
quasiperiodic tiling in their local geometry, generated from
a four-dimensional (4D) hypercubic lattice by the cut-and-
project method [25]. In addition to the eightfold symmetry
the tiling possesses a discrete scale invariance: a tiling of
edge length a can be transformed into a tiling of edge lengths
which are smaller by a scale factor λ = 1 + √

2 and vice versa
(called inflation and deflation transformations, see [6]). In our
computations, square approximants of total number of sites N
equal to 239, 1393, 8119, and 47 321 were considered. Peri-
odic boundary conditions were imposed in both directions.

FIG. 2. Density of states ρ(E ) for several values of the disorder
and for N = 47 321.

In the pure limit, all the onsite energies are taken to be
equal εi = ε0, and all hopping amplitudes to be equal ti j = t .
Without loss of generality, the origin of the energy is chosen
such that ε0 = 0, and energy units are chosen so that t = 1.
Since the tiling is bipartite (made from quadrilaterals) the
energy spectrum of this model is symmetric. Thus, all plots
are shown henceforth for the positive half of the spectrum
only. The scale invariance of the tiling has been used in renor-
malization group schemes for electronic states [26] and in the
calculation of ground-state properties of an antiferromagnetic
Heisenberg model [27]. Moreover, since the AB tiling can be
generated from a parent four-dimensional cubic lattice, the
Hamiltonian (1) can be related to a four-dimensional quantum
Hall system [28], and inherits certain topological properties
which will not, however, concern us here.

The density of states (DOS) of the pure quasiperiodic tiling
has a characteristic spiky shape (see Fig. 2 for W = 0). The
spiky local maxima and minima of the DOS are consequences
of the symmetries of the Hamiltonian (1), due to the proper-
ties of the underlying structure such as scale invariance and
repetitivity of environments.1 Among the sharp minima or
“pseudogaps,” the most prominent pair is located near E ≈
±1.95. The pseudogaps are expected to be located at special
values of the integrated density of states (IDOS) given by a
gap labeling scheme [29], with the main gaps corresponding
to IDOS values that approach the values λ−2 and its symmetric
1 − λ−2 as the system size increases.

In the pure model, additionally, one finds a delta-function
peak of the DOS exactly at E = 0, corresponding to a macro-
scopic number of“confined” states. Similar E = 0 states can
be found for other bipartite tilings including the well-known
Penrose tiling [10,11]. In the AB tiling, the smallest such
E = 0 state is a small ring, with nonzero amplitudes on the
eight nearest neighbors of sites with a coordination number 8.

1The repetitivity property says that local configurations are guaran-
teed to repeat throughout the tiling with a maximal and a minimal
allowed spacing, and generalizes the notion of strict translational
invariance present in periodic crystals.
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The degeneracy of this type of confined state is given by Nλ−4

as N → ∞. Other confined states can be similarly enumer-
ated. The spatial features of the set of confined states (which
can overlap) and their degeneracies are discussed in [30–32].
The support of these confined states is a finite fraction of sites
of the tiling. They are unstable with respect to most forms of
disorder.

Adding disorder by varying the parameters in (1), for ex-
ample, or by modifying the geometry by random phason flips,
breaks the symmetries of H , and singularities of the DOS
are progressively smoothed out. Roughly speaking, disorder
broadens the Bragg peaks of the structure, thus reducing quan-
tum interference due to backscattering.

A number of early studies considered the evolution of spec-
tral properties under phason-flip disorder via the analysis of
level statistics (see the review [33]). Grimm and Roemer have
[19] returned recently to the problem, performing a careful
analysis of the r-value (ratio of the gaps of consecutive levels)
statistics [34]. They reach the conclusion that states in both
the pure and the phason-disordered tilings were described by
the GOE ensemble. In other words, phason disorder did not
induce localization of states (in which case one would have
found not GOE but Poissonian statistics). From this, it seems
clear that the phason disorder does not suffice to drive the
system into the strong localization regime, at least, for the
system sizes considered.

In this work, instead, disorder is specifically introduced by
assuming the onsite energies to be random variables taken
from a box distribution of width W (i.e., εi are independent
and identically distributed random variables uniformly taken
in the interval [−W/2,W/2]). We expect that the addition
of quenched disorder also in the ti j yields the same results.
Differently from phason disorder, our model (1) allows one
to tune the disorder from very weak disorder (reproducing
effects seen for the phason-flip disordered model) out to ar-
bitrarily high disorder, when all states are strongly localized.

Results for the DOS of pure and disordered tilings obtained
from exact diagonalizations of H are presented in Fig. 2.
Ensemble averages are performed over several independent
realizations of the disorder, using, here and throughout the rest
of the paper, M copies of the system with M ≈ 64 for N =
47 321, M ≈ 256 for N = 8119, M ≈ 8192 for N = 1393,
and M ≈ 2 × 104 for N = 239.

As can be seen in Fig. 2, at small W the DOS is only
slightly modified by the perturbation. However, when W ex-
ceeds a characteristic scale (which for this size is about W� ∈
[0.1, 0.4]) the DOS is strongly affected by the disorder and
progressively smoothed out. For W = 16, which corresponds
to the strongly localized limit, it is easy to see that the DOS
is essentially given by the distribution of the random ener-
gies (i.e., a uniform box distribution), plus the exponential
so-called “Lifshitz tails” at the edges of the spectrum [35]
(which extend up to an energy equal to the spectral edge of
the pure case |E | ≈ 4.2 + W/2).

III. INVERSE PARTICIPATION RATIO

One measure of the degree of delocalization of the wave
functions is provided by the generalized inverse participation

ratios Iq, defined as follows:

Iq(N, E ) =
〈∑N

i=1

∑N
r=1 |ψi(r)|2q δ(Ei − E )

〉
〈∑N

i=1 δ(Ei − E )
〉 , (2)

where |ψi(r)|2 is the value at position r of the ith normal-
ized eigenstate of H . The asymptotic scaling behavior of the
Iq’s allows one to distinguish between fully delocalized, fully
localized, and critical states. In fact, asymptotically Iq(N, E )
behaves as Iq(N, E ) ∝ N−τq , where the mass exponents τq are
defined as

τq =
⎧⎨
⎩

q − 1 for fully delocalized wave functions ,

0 for fully localized wave functions ,

Dψ
q (q − 1) for multifractal wave functions .

(3)
The Dψ

q ’s are called “generalized fractal dimensions.” In the
following we will mainly focus on the so-called inverse par-
ticipation ratio (IPR) I2, but similar results are found for other
moments of the wave-function coefficients. I2 is essentially
the measure of the inverse volume occupied by an eigenstate:
it is proportional to 1/N for fully delocalized plane waves, it
tends to a finite value (proportional to ξ−D

loc ) for exponentially

localized wave functions, and scales as N−Dψ

2 with 0 < Dψ

2 <

1 for critical states.
The evolution of the IPR upon increasing the disorder for

N = 8119 is shown in Fig. 3(a) for all eigenstates across the
whole spectrum. The figure shows that in absence of disorder
the critical eigenstates of the pure AB tiling are fairly extended
(as the value of the IPR is only about five times larger than the
minimal value 1/N realized for fully extended plane waves).
The states closer to the edge of the spectrum have typically a
slightly smaller IPR compared to the states close to the middle
of the band. The sharp peak of I2 near E = 0 is due to the con-
fined states in the middle of the band which delocalize when
W �= 0. Many smaller peaks are seen in Fig. 3(a), notably the
peak near the main pseudogap at E ≈ 1.95. We will consider
first the behavior of generic states in the band, and then that of
states near the band center, and states near the main pseudogap
and band edges which behave somewhat differently.

Generic states in the bulk of the band. In Fig. 5(a) we
show a closeup of the IPR data in the energy interval E ∈
[2.45, 2.63]. A close inspection of the curves indicates that I2

has a nonmonotonic behavior for the majority of the states: it
decreases initially and then starts to increase after reaching
a minimum roughly in the interval W� ∈ [0.07, 0.28]. Such
nonmonotonicity is also highlighted in Fig. 3(b), where we
plot I2 as a function of the disorder for four selected values of
the energy across the energy band, showing that I2 first slightly
decreases at small W and then increases sharply at larger W ,
resulting in a minimum at the characteristic scale W�.

The position of the minimum of I2 depends on the energy,
and varies in an irregular way, signaling the fact that the
responsiveness of different eigenstates to the random pertur-
bation fluctuates strongly. For N = 8119, we find that W� can
vary between 0.07 and 0.28 when varying E across the energy
band. Figure 4(a) shows a plot of I2 vs W for E = 0.447 for
three values of N . This plot shows that the minimum of I2 is
shifted to larger values of the disorder for smaller sizes. This
behavior can be understood as follows: The disorder scale W�
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FIG. 3. (a) I2 as a function of E for several values of the W and for N = 8119, across the whole spectrum. The IPR is averaged over several
realizations of the quenched disorder and few eigenfunctions in a sliding energy window [E − δ, E + δ], with δ = 0.02. The horizontal dashed
line corresponds to the minimal value of the IPR for fully extended plane-waves, I2 = 1/N . (b) log I2 as a function of W for N = 8119 and for
several values of the energy across the energy band, showing the nonmonotonicity.

corresponds to the value of W such that the 2D localization
length ξloc becomes of the order of the system size L = N1/2.
Since in 2D ξloc diverges exponentially for W → 0, the larger
is N the smaller is W�. More precisely, one expects that

W� ∝ [log N − c(E )]−2, (4)

where c(E ) is an energy-dependent parameter which depends
on the eigenvectors’ sensitivity to the random perturbation,
and fluctuates strongly from one eigenvector to another. This
scaling of W� is verified in Fig. 4(b), where we plot the evolu-
tion of W� as a function of the logarithm of the system size for
E = 0.447 (a similar trend with N is found for other values of
E in the bulk of the spectrum). The dashed line is a fit of the
data of the form of Eq. (4), which indeed reproduces well the
results. Since D = 2 is the lower critical dimension for Ander-
son localization, in our 2D model, the characteristic crossover
scale W� decreases exceedingly slowly with the system size,
and is still quite large even for very large approximants.

States near the band center. It is interesting to examine in
detail the behavior of confined states at E = 0 of the pure
model when disorder is added. Figure 5(b) shows a closeup
of the data of Fig. 3(a) near E = 0. One can see that the
nonmonotonicity of the IPR is very pronounced for E ≈ 0.

Consider states of energy exactly at E = 0: for the pure
system their IPR has a large value (I2 ≈ 0.1), which, as the
disorder is increased from W = 0 to 2, rapidly decreases by
two orders of magnitude down to I2 ≈ 10−3. At W = 2, the
confined states have an IPR of the same order of magnitude
as band states in this energy range. For stronger disorder,
beyond W = 2, the IPR shows a rapid increase. The rea-
son for this strong nonmonotonicity of I2 is quite evident.
The degenerate localized states at E = 0 in the pure system
give rise to high IPR values at W = 0. When the diagonal
random perturbation is turned on, the degeneracy is lifted,
the energies of these eigenstates are scrambled around in a
window of width W . At small W the onsite random ener-
gies have the effect of delocalizing the eigenstates, resulting
in a rapid decrease of their IPR by more than two orders
of magnitude. Upon increasing the disorder the IPR con-
tinues to decrease until W ≈ 2, and then starts to increase
rapidly due to standard Anderson localization at larger W .
Also interesting to note for weak disorder are the maxima,
or bumps, in the IPR curves in Fig. 3(a), which move to
higher energies as disorder is increased. The bumps arise due
to realizations of the disorder in which the random energies εi

have a nonzero positive or negative average value. For these

FIG. 4. (a) Size dependence of the I2 plotted vs W for E = 0.447. (b) Characteristic crossover scale W� (estimated from the position of the
minima of the data for E = 0.447) as a function of the system size. The dashed line is a fit of the data to the form written in Eq. (4). A similar
dependence on N is found for other values of E in the bulk of the spectrum (i.e., away from the pseudogap and the edges of the band).
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FIG. 5. Plots of I2 versus E for several values of the W in three selected regions of the spectrum, illustrating different behaviors (sample
size N = 8119). (a) Zoom into the interval E ∈ [2.45, 2.63] showing the nonmonotonic behavior characterizing the majority of states in the
bulk of the spectrum, where the minimum of I2 is attained either for W = 0.4 (red) (for the majority of the states) or for W = 0.1 (pink) (for
the states in the interval E ∈ [2.6, 2.62]). The nonmonotonicity is stronger for the states that have a higher I2 in the pure limit. In this interval
the only states for which the nonmonotonic behavior is absent are at E ∼ 2.51, for which the minimum of I2 is obtained for W = 0 (black).
(b) Zoom into the region E ≈ 0 showing a stronger dependence on W . The I2 of the localized states at zero energy first decreases rapidly to
the low values found elsewhere in the spectrum, before increasing. Note also how the peak of the IPR of localized states is shifted to higher
energies as W is increased. (c) Zoom into the region E ≈ 1.95 showing that in the vicinity of the pseudogap, I2 has no discernible initial dip
(i.e., the lowest curve is the black one, corresponding to W = 0) but seems to increase monotonically with W . The other characteristic of
the states close to the pseudogap is the development of a sharp peak of I2 as the disorder is increased above W ∼ 0.4, signaling their strong
sensitivity to the random perturbation.

realizations of the disorder the perturbation shifts the energy,
but the overlaps with other states are small. This leads to the
peak of the IPR for E ∼ W . This phenomenon is not partic-
ular to quasicrystals and can be seen (as we have checked
[36]) in other systems with localized states such as the dice
lattice [37].

IPRs near the pseudogap and the band edge. Figure 5(c)
shows a closeup of the IPR data in the region close to the
pseudogap at E ≈ 1.95. Here nonmonotonic behavior seems
to be absent, within our numerical accuracy. Yet, for these
states too, there is a characteristic crossover scale W� such that
for W � W� disorder has very little effect on the IPR, while for
W > W� the IPR grows rapidly. For the system size shown in
Fig. 5(c), W� ∼ 0.1. Figure 5(b) shows that a large peak of IPR
develops for moderate values of W near the pseudogap. This
behavior, the absence of nonmonotonicity and the appearance
of the peak, could arise due to an effect commonly seen at the
band edge: Studies of Anderson localization in many models
show that localization is strongly enhanced close to a band
edge, which is what the pseudogap is in a certain sense.2 A
similar monotonic increase of the IPR as a function of W ,
accompanied by the development of a strong peak, is also
observed at the spectrum edge E ≈ 4.2 [see Fig. 3(a)]. This
type of behavior of the states near the pseudogap and the band
edge has been observed also in the disordered 1D Fibonacci
chain [4,5]. In fact, whereas nonmonotonicity appears to hold
as a general rule in 2D, it is observed only for a small subset
of states in the 1D case. In 1D, most states localize monotoni-
cally like band edge states, and indeed for the 1D quasicrystal,
gaps are present throughout the spectrum.

2Indeed a true gap can be opened at this location by adding a small
potential energy term to the hopping Hamiltonian.

IV. ANOMALOUS DIMENSIONS OF THE
WAVE-FUNCTION AMPLITUDES AND THE

SINGULARITY SPECTRUM

The nonmonotonic crossover of the generalized inverse
participation ratios of the wave functions can be characterized
in a more quantitative way by computing the flowing fractal
dimensions Dψ

q associated to the scaling of the moments of
the wave functions’ amplitudes. In order to do this we follow
the approach of Ref. [38] which we detail below: The first step
consists in covering the lattice with Nl boxes of linear size l .
The probability to find the particle in the kth box Bk is simply
given by

μk (l ) =
∑
r∈Bk

|ψ (r)|2 , k = 1, . . . , Nl .

The μk (l ) constitutes a normalized measure for which we can
define the qth moment as

υq(l ) =
Nl∑

k=1

μ
q
k (l ) .

The moments υq can be considered as the generalized inverse-
participation ratios Iq, defined in Eq. (2), for the integrated
measure μk (l ). The general assumption underlying multifrac-
tality is that within a certain range of values for the ratio
ζ = n/N , where n is the number of sites within the boxes of
size l , the moments Iq show a power-law behavior indicating
the absence of length scales in the system,

υq(ζ ) ∝ ζ τq , (5)

with the mass exponents τq defined in Eq. (5).
The numerical analysis is essentially based on an averaged

form of the scaling law (5) in the limit ζ → 0. The scaling
exponents are then computed as

τq = lim
ζ→0

〈log υq(ζ )〉
log ζ

≡ (q − 1)Dψ
q , (6)
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FIG. 6. Relative change of the fractal dimension Dψ

2 (W )/Dψ

2 (0)
plotted against W for two different energies, showing their nonmono-
tonicity. [Numerical estimations based on Eq. (6) for N = 47 321.]

and can be obtained from the extrapolation at small ζ of the
slope of the linear fit of 〈log υq(ζ )〉 versus log ζ .3 Here 〈. . . 〉
denotes the arithmetic average over many independent realiza-
tions of disorder. The numerical results for Dψ

2 = τ2 obtained
for the biggest tiling N = 47 321 using this procedure are
shown in Fig. 6. The figure shows the ratio Dψ

2 (W )/Dψ

2 (0)
plotted against W , for two different values of the energy
(similar results are found for other values of q and N). This
plot indicates that Dψ

2 has a nonmonotonic behavior as a func-
tion of W , and reaches a maximum around the characteristic
disorder scale W� which corresponds to the value of W such
that the 2D localization length ξloc becomes of the order of the
system size L = N1/2, Eq. (4), and is consistent with the one
found in the right panel of Fig. 5. As said earlier in Sec. III, the
position of W� at fixed N depends slightly on E and varies in
an irregular way across the energy band. In the W → 0 limit
Dψ

2 is quite close to 1 and depends only weakly on E , thereby
confirming that in the pure limit the eigenstates are critical but
fairly extended. Above the crossover scale W�, Dψ

2 decreases
very sharply and approaches 0 very fast, as the system enters
in a strongly localized regime due to standard Anderson local-
ization. Although the nonmonotonic behavior is more or less
pronounced depending on the value of E (as discussed above
the nonmonotonicity is very pronounced for E ≈ 0), it seems
that most of the states exhibit a maximum of Dψ

2 . However, as
seen for the IPR, the nonmonotonic behavior of Dψ

2 disappears
in the region of the pseudogap, and sufficiently close to the
band edges.

From the exponents τq one can also compute the singularity
spectrum f (α), defined as a Legendre transformation of the
mass exponents τq:

αq = dτq

dq
, q = df

dα
,

fq ≡ f (αq) = αqq − τq .

Here, f (α) denotes the fractal dimension of the set of points
where the wave-function intensity is |ψ (r)|2 ∝ N−α , i.e., the

3We have checked numerically that using the logarithm of the
average moments log〈υq(ζ )〉 instead of the typical ones 〈log υq(ζ )〉
yields essentially the same results but with larger statistical errors.

number of such points scales as N f (α). The singularity spec-
trum f (α) is a convex function of α, and it has its maximum at
α0 � 1, where f (α0) = 1. One also has that f (α1) = α1 and
f ′(α1) = 1. For fully delocalized wave functions the singu-
larity spectrum becomes narrower and eventually converges
to one point f (1) = 1. On the other hand, for fully localized
wave functions the singularity spectrum broadens, and tends
to converge to the points f (0) = 0 and f (∞) = 1. Numeri-
cally the singularity spectrum is obtained as [38]

αq = lim
ζ→0

1

log ζ

〈 Nζ∑
k=1

δk (q, ζ ) log δk (1, ζ )

〉
,

fq = lim
ζ→0

1

log ζ

〈 Nζ∑
k=1

δk (q, ζ ) log δk (q, ζ )

〉
,

where δk (q, ζ ) = μ
q
k (ζ )/υq(ζ ) is the normalized qth power of

the integrated measure μk (ζ ).
The numerical results for f (α) are shown in Fig. 7, where

we plot the multifractal spectrum for many different values of
the disorder, for the approximants with N = 8119 [Figs. 7(a)
and 7(b)] and N = 47321 [Figs. 7(c) and 7(d)], and for four
values of the energy across the spectrum as indicated in
the caption. The nonmonotonic behavior of the generalized
inverse-participation ratios and of the fractal exponents dis-
cussed above is clearly reflected in the evolution of f (α) with
W : At small enough disorder, W < W�, f (α) first slightly
shrinks when the disorder is increased, indicating that the
eigenstates tend to become more delocalized, and then starts
to broaden again rapidly for W > W�, when the system enters
in the strong disorder regime dominated by standard Ander-
son localization. The information contained in Fig. 7 can be
summarized as follows:

(i) Typical band states. Figures 7(a) and 7(b) correspond
to two values of E in the bulk of the spectrum, E = 0.74 and
E = 2.25 (similar results are found for other values of E far
from the pseudogap or the spectral edges, and far from the
middle of the band), and for N = 8119. For this choice of the
parameters f (α) is the narrowest for W� ∈ [0.4, 0.8].

(ii) Confined states. Figure 7(c) shows the singularity
spectrum of the eigenstates close to the middle of the band,
E = 0 (and for N = 47 321). As we have pointed out, for
these states, the nonmonotonic crossover is much stronger. In
fact, since these eigenstates are genuinely localized in the pure
limit, f (α) is quite broad for W = 0. The effect of the addition
of the random perturbation is thus much more pronounced,
as it produces a strong shrinkage of the singularity spectrum
which is the narrowest for W� ∼ 2. For larger values of the
disorder f (α) rapidly gets broader again as the system enters
in the strong Anderson localized regime. This passage from
“confined” state to band states has been observed in a different
context, when a tiling is subjected to a perpendicular magnetic
flux. Depending on the local geometry, there can be confined
states, for special values of the magnetic flux, and these decon-
fine when the flux is modified, with the corresponding changes
of their multifractal spectrum as computed in [39].

(iii) Pseudogap states. Figure 7(d) shows the results for
the eigenstates close to the pseudogap, E = 1.9 (and for
N = 47 321), for which the nonmonotonic behavior is either
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FIG. 7. Singularity spectrum f (α). Different colors correspond to different values of W , as indicated in the legends. The vertical dashed
lines correspond to the singularity spectrum in the limit of fully delocalized eigenstates f (α) = δ(α − 1). (a) Eigenstates considered are
(a) E = 0.74, (b) E = 2.25, (c) E = 0, and (d) E = 1.9. System sizes are N = 8119 [(a) and (b)] and N = 47321 [(c) and (d)]. The multifractal
spectrum is the narrowest for W � 0.8 in (a) and (b), for W � 1 in (c), and for W � 0.04 in (d).

absent of very weak [see Fig. 5(b)]. The plot shows that the
left branch of f (α) (for α < 1) is essentially independent of
W at small disorder, and only the right branch of the curve
exhibits a slight narrowing as W is increased up to W�. For
larger disorder once again we observe that the singularity
spectrum approaches rapidly the one corresponding to the
strongly localized regime.

V. EIGENSTATE CORRELATIONS

An important statistical characteristic of a disordered sys-
tem is the spatial correlation of different (but relatively close
in energy) eigenstates, defined as

C(r, ω; E )

≡ 1

N2ρ
(
E − ω

2

)
ρ
(
E + ω

2

)
×

〈∑
i, j

|ψi(r1)ψ j (r2)|2δ
(

E−ω

2
− Ei

)
δ
(

E+ω

2
− Ej

)〉
,

where r = |r1 − r2| is the spatial distance and ω = E1 − E2

is the energy separation between the states. The denominator
counts the number of pairs of states entering in the sum in
the numerator. 〈. . . 〉 here denotes the average over several
independent realizations of the disorder, and all pairs of sites
of the lattice at fixed distance (i.e., we assume translation
and rotation invariance on average). This correlation function
encodes a lot of information about the structure of the wave

functions and the spectral statistics. To simplify the analysis
in the following we start by studying correlations of the same
wave function (i.e., ω = 0) at different points in space, and
of wave functions at different energies but at the same point
in space (i.e., r1 = r2). Once the behavior of these objects
is established, we will also address the correlations of the
amplitudes of different eigenstates taken at different points of
the lattice.

A. Same wave function, different positions

We consider first the autocorrelation of the amplitudes of a
given wave function (ω = 0) measured at different positions:

G(r; E ) ≡ 1

Nρ(E )

〈∑
i

|ψi(r1)ψi(r1 + r)|2δ(E − Ei )

〉

= lim
ω→0

C(r, ω; E ).

Let us recall the behavior of G(r; E ) for some limiting cases.
For fully delocalized eigenstates described by the GOE en-
sembles, G(r; E ) = 1/N2 identically since the amplitudes ψi

correspond to random vectors on the unit sphere. For fully
Anderson localized eigenstates, G(r; E ) decays exponentially
over the localization length as G(r; E ) ∼ e−r/ξloc . Finally, for
multifractal and critical eigenstates one expects that G(r; E )
decays algebraically, G(r; E ) ∼ r−γ . Note that for r = 0 the
function simply boils down to the IPR, that is, G(0; E ) =
I2(E )/N .
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FIG. 8. Log-log plot of the correlation function G(r; E ) for several values of the disorder and for two system sizes. (a), (b) Show results
for N = 8119 for the energies E = 0.373 (a) and E = 3.8 (b). (d), (e) Show result for N = 47 321 for E = 0 (d) and E = 1.9 (e). The dashed
straight lines are power-law fits of the data of the form G(r; E ) ∼ r−γ , with a disorder-dependent effective exponent γ . The dashed-dotted
lines are exponential fits of the form G(r; E ) ∼ e−r/ξloc . The horizontal full line corresponds to 1/N2. In (c) and (f) the exponent γ extracted
from the fits of the data of (a), (b), (d), (e) is plotted as a function of W , showing a nonmonotonic behavior on the characteristic crossover scale
W� for N = 8119 (c) and N = 47 321 (f).

The numerical data for G(r; E ) are plotted in Fig. 8. In
Figs. 8(a) and 8(b) we show the results for N = 8119 and
for two values of the energy in the bulk of the spectrum. In
Figs. 8(d) and 8(e) we plot G(r; E ) for the largest available
size N = 47 321, and for eigenstates in the middle of the band,
E = 0, and close to the pseudogap, E = 1.95, respectively.
We find essentially the same results for the approximants of
size N = 8119 and 47 321, although the latter are more noisy
due to poorer statistics for this larger system. One sees that
for all cases, at small enough disorder, G(r; E ) decays as a
power law (dashed lines), with a disorder-dependent effective
exponent γ . For large disorder, instead, G(r; E ) decays expo-
nentially (dashed-dotted lines). Figure 8 shows, in turn, that
the qualitative differences noted in the behavior of the IPR
and of the multifractal spectrum in the previous section are
also to be seen in these results for G(r; E ). We see again three
types of behavior as follows:

(i) For eigenstates in the bulk of the spectrum [Figs. 8(a)
and 8(b)], the effective exponent γ has a nonmonotonic be-
havior as a function of W on the characteristic crossover scale
W�: It first slightly decreases as W is increased (corresponding
to wave functions that become more extended as the disorder

is increased), and then it increases with W for W > W�, until
the power-law decay transforms into an exponential decay.
Such nonmonotonic behavior is highlighted in Figs. 8(c) and
8(f) of the figure, where we plot the values of γ extracted
from the power-law fits of G(r; E ) as a function of the
disorder.

(ii) For eigenstates close to the middle of the band the non-
monotonic crossover is strongly enhanced [E = 0, Fig. 8(d)].
For these states the exponent γ decreases in a very pro-
nounced way as W is increased from 0 to 1 [see Fig. 8(f)].

(iii) Nonmonotonicity is not observable (up to numerical
accuracy) for eigenstates close to the pseudogap [E = 1.95,
Fig. 8(e)], for which the exponent γ seems to be independent
of W at small disorder but increases sharply after W∗.

B. Same position, different energies

A valuable probe of the level statistics and of the statistics
of wave-functions’ amplitudes is provided by the spectral
correlation function K2(ω; E ) between eigenstates at different
energy, but on the same site, which allows one to distinguish
between ergodic, localized, and multifractal states [40–44]:

K2(ω; E ) ≡
〈
N

∑
i, j

∑
r |ψi(r)ψ j (r)|2δ(E − ω

2 − Ei
)
δ
(
E + ω

2 − Ej
)〉

N2ρ
(
E − ω

2

)
ρ
(
E + ω

2

) = N2C(E ; 0, ω). (7)

Let us begin by recalling the expected behavior of K2(ω; E )
for some well-studied cases. For random GOE matrices

K2(ω; E ) = 1 identically, independently of ω on the entire
spectral bandwidth. On the other hand, in a standard metallic

054206-9



ANURADHA JAGANNATHAN AND MARCO TARZIA PHYSICAL REVIEW B 107, 054206 (2023)

FIG. 9. Overlap correlation function K2(ω) for several values of the disorder, for N = 8119, and for two values of the energy, E = 0.373
(a) and E = 3.8 (b). The horizontal line represents the GOE limit K2(ω; E ) = 1, while the vertical dashed lines spot the value of the energy
separation corresponding to the mean level spacing at W = 0.

phase (e.g., in the extended phase of the Anderson tight-
binding model in D � 3) K2 has a plateau at small ω, for ω

smaller than a characteristic energy scale ωAS, followed by a
fast decay which is described by a power law, with a system-
dependent exponent [42]. The height of the plateau is larger
than one, which implies an enhancement of correlations com-
pared to the case of independently fluctuating Gaussian wave
functions. The energy scale ωAS is the so-called “Altshuler-
Shklovskii” energy, defined as the Thouless energy at the scale
of the lattice spacing (ωAS = D/a2 = NETh, D being the dif-
fusion coefficient), which plays a role of the ultraviolet cutoff
for the diffusion theory, separating the plateau region (cor-
responding to long times) and the the power-law decay (for
shorter times). The width of the plateau at ω � ωAS remains
finite in the thermodynamic limit and moves to larger energies
as one enters further into the metallic phase, and corresponds
to the width of the energy band over which one expects to
find GOE-like correlations [43]. For multifractal states the
plateau is usually present only in a narrow energy interval,
and ωAS shrinks to zero in the thermodynamic limit, still
staying much larger than the mean level spacing. Beyond ωAS,
eigenfunctions have less and less overlap with each other and
the statistics is no longer Wigner-Dyson, and thus K2(ω; E )
decays to zero [44]. Note that in the limit of vanishing energy
difference, the function simply boils down to the IPR, that is,
limω→0 K2(ω; E ) = NI2(E ).

Figure 9 shows numerical results for the overlap correla-
tion functions obtained for the approximant of size N = 8119,
for several values of the disorder strength W . The two plots
correspond to two values of the energy chosen within the
bulk of the spectrum E = 0.373 [Fig. 9(a)] and close to the
band edge E = 3.8 [Fig. 9(b)]. The crossover to localization
clearly manifests itself in the behavior of K2(ω; E ). In the
pure limit W = 0, the plateau region shows small oscillations,
which reflect the correlations between eigenstates belonging
to different symmetry sectors [19]. These oscillations tend
to disappear as W is increased since the disorder mixes the
wave functions belonging to different sectors. The height
of the plateau slightly decreases at first and then starts to
increase again for W > W�, indicating that in the crossover
regime the addition of quenched disorder enhances correla-
tions between eigenstates. As explained above, the plateau
observed at small energy separation corresponds to the energy
scale (the so-called Altshuler-Shklovskii energy, defined as

the Thouless energy at the scale of the lattice spacing) within
which eigenstates exhibit GOE-like correlations. The plots
thus show that in fact at small disorder the width of the energy
window within which spectral correlations are GOE like is
much larger than the mean level spacing (vertical dashed
lines). This result is in full agreement with the recent findings
of [19], which indicate that the statistics of the gaps between
states belonging to the same symmetry sector are described
by the GOE ensemble. As one considers states closer to the
spectral edges (right panel), the Altshuler-Shklovskii energy
gets larger and the height of the plateau gets closer to the
GOE universal value K2(ω) = 1, indicating that in the small
disorder limit the eigenstates close in energy near the edges
are less correlated compared with eigenstates close in energy
in the bulk of the band. For energy separation larger than the
Altshuler-Shklovskii energy K2(ω) shows a power-law decay,
K2(ω) ∼ ω−μ, with a disorder-dependent exponent which in-
creases as W is increased. As the disorder is increased above
W� the plateau shrinks. Eventually at strong enough disor-
der the plateau disappears (i.e., it becomes smaller than the
mean level spacing), and the standard localized behavior is
recovered.

C. Different wave functions, different positions

Having characterized and interpreted the behaviors of
G(r; E ) and K2(ω; E ), we now investigate the spatial corre-
lations of the coefficients of different eigenstates. Figure 10
shows data for a typical case corresponding to E = 1 (similar
results are observed for other band energies), and for three
values of the disorder. The computations have been done
for the approximant of size N = 47 321. Figures 10(a) and
10(b) are log-log plots, so as to show the power-law regime
(dashed lines) more clearly, while Fig. 10(c) is a linear-log
plot so as to show the exponential behavior. Figure 10(a)
corresponds to W = 0.1 ≈ W�, where the eigenstates are the
most extended. Figure 10(b) corresponds to W = 2, in the
crossover regime. Figure 10(c) corresponds instead to W =
16, in the strongly localized regime. For W = 0.1 and 2 we
observe that C(E = 1; r, ω) decays as a power law at small
enough energy separation C(E = 1; r, ω) ∼ r−δ(ω), with an
exponent which depends strongly on the energy separation
(dashed line). The figures show that the correlations become
weaker and weaker as the energy separation is increased, in
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FIG. 10. Correlation functions C(E = 1; r, ω) between eigenstates of energy E ± ω/2 as a function of the distance r = |r1 − r2| for W =
0.1 (a), W = 2 (b), and W = 16 (c), and for N = 47 321. Different colors correspond to different energy separations ω, measured in units
of the mean level spacing � = 1/[Nρ(E = 1)] [where the average DOS ρ(E = 1) is measured at W = 0]. In (a) and (b) a log-log scale is
used to highlight the effective power-law regime in which the correlations decay as C(E = 1; r, ω) ∼ r−δ(ω) (dashed lines), while (c) is in a
lin-log scale to highlight the exponential decay. (d) Shows the evolution of the effective exponent δ(ω) as a function of the energy separation
(measured in units of the mean level spacing) for W = 0.1 and 2.

agreement with the fact that, as discussed above, K2(ω; E ) is
a decreasing function of ω (see Fig. 9). Figure 10(d) shows
the evolution of the effective exponent δ, extracted by fitting
the data of the top panels with power laws, as a function of the
energy separation ω [measured in units of the mean level spac-
ing � = 1/(Nρ(E ))]. When the energy separation becomes
much larger than �, the effective exponent δ(ω) becomes
very small and C(r, ω; E = 1) approaches 1/N2, correspond-
ing to uncorrelated wave functions. Note that at W = 2 the
correlation function is much larger than at W = 0.1, indi-
cating once again that in the crossover regime the quenched
disorder has the effect of enhancing the correlations among
eigenstates. At strong disorder [W = 16, Fig. 10(c)], deep into
the strong Anderson localized regime, C(r, ω; E = 1) decays
exponentially with the localization length ξloc (for this value
of W = 16, ξloc ≈ 5 in our units). Again, as noted in the
case of the K2 function, the correlations between different
eigenfunctions become weaker as their energy separation is
increased.

To conclude this section, we have seen that the correla-
tions between states in the disordered 2D quasicrystal can
be understood in terms of a qualitative picture as follows.
For weak disorder and for a typical band energy, two states
having a small energy difference ω � � remain correlated
at short distance, after which the correlations fall off as a
power law. Increasing the disorder in the crossover regime
increases the correlations, while also widening the range of
the power-law decay. Upon increasing the disorder strength

beyond the crossover value, the correlations fall exponentially
rapidly.

VI. DYNAMICS

The evolution of states under disorder and their nonmono-
tonic behavior at the characteristic crossover scale W� can be
expected to have a strong impact on relaxation, transport, and
diffusivity. In particular, it is natural to expect that for W close
to W�, where the eigenstates appear to be more delocalized
compared to the pure limit due to the effect of the random
perturbation, transport and relaxation might be enhanced and
accelerated. To check these ideas we run a few dynamical
experiments in which a wave function |φ0〉 localized in a
small spatial region spreads under the unitary evolution. If one
chooses the initial amplitude to be localized on a single point
this corresponds to a wave packet of energy E = 〈H〉 ≈ 0 in
the weak disorder regime (E = 0 in the pure limit). However,
in this case the presence of a macroscopic number of confined
states can be expected to affect dynamical properties. In the
following we will instead consider initial conditions where
the wave packet is localized on“star clusters,” corresponding
to nonzero energies. This is done by identifying all nodes of
the lattice having k neighbors (3 � k � 8 for the AB lattice,
see Fig. 1) and pick one of those nodes at random. The initial
state is one in which the wave function is localized on this
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FIG. 11. Return probability (9) as a function of time (in units of h̄) for several values of the disorder and for N = 8119. The four panels
correspond to different choices of the initial conditions corresponding to star states described by Eq. (8) with E = 1.564 (a), E = 1.684 (b),
E = 1.765 (c), and E = 1.903 (d).

node (index i0) and its k neighbors i� as follows:

|φ0〉 = C
(

cos θ |i0〉 ±
k∑

�=1

sin θ |i�〉
)

, (8)

where the amplitudes are controlled by the parameter θ ∈
[0, π/2]. C = 1/

√
1 − (k − 1) sin2 θ is the normalization

constant. Decomposing the Hamiltonian (1) as H = H0 + D,
where H0 is the kinetic term (t times the adjacency matrix of
the AB tiling) and D the diagonal random potential, the energy
of the initial star cluster state can be computed as a function
of k and θ as

E = 〈φ0|H |φ0〉 = E0 + ED,

E0 = 〈φ0|H0|φ0〉 = C2tk sin 2θ,

ED = 〈φ0|D|φ0〉 = C2

(
cos2 θ εi0 + sin2 θ

k∑
�=1

εi�

)
.

ED is a random number of average zero and variance of order
(k + 1)W 2. The wave-packet energy can be varied by varying
k and/or θ . Note that Ref. [13] considers initial wave packets
localized on a single site of coordination number k, which
correspond to setting θ = 0 in the equation above.

The time evolution of the wave function at time t , |φ(t )〉,
can be written in terms of the eigenvalues Ea and the eigen-
functions |ψa〉 of the Hamiltonian:

|φ(t )〉 = C
N∑

a=1

(
cos θψa(i0) ±

k∑
�=1

sin θψa(i�)

)
e−itEa/h̄|ψa〉.

Distances on the AB tiling are measured in units of a, the
edge length of tiles. (To simplify the notation we set h̄ = 1
throughout.)

A. Probability of return to the origin

The first observable we focus on is the so-called return
probability, defined as the probability that a particle start-
ing from a star state (8) at t = 0 is found on the central
node i0 after time t . This is a measure of how fast the wave
packet spreads on the lattice and decorrelates from the initial
condition:

P(t ) = 〈|〈i0|φ(t )〉|2〉, (9)

where the large angular brackets 〈. . . 〉 denote the average
performed over several realizations of the random potential,
and several realizations of the initial condition (i.e., several
choices of the central site i0 among all the nodes with k
neighbors). In the limit t = 0, this definition of the return
probability gives P(t = 0) = C2 cos2 θ < 1, while in the t →
∞ limit P(t ) approaches a plateau value closely related to
the IPR.

The numerical results (for N = 8119) are plotted in Fig. 11
for four different choices of the initial conditions correspond-
ing to star states with k = 3, 4, 5, 8 neighbors given in Eq. (8)
and for θ ≈ 0.741. Figures 11(a) and 11(b) for k = 3 and 4
show that for these energies, disorder leads to a marked de-
crease of the return probability at intermediate and long times,
as long as W � W�. This implies that introducing randomness
indeed has the effect of speeding up the relaxation dynamics
and the spreading of the wave packet. In particular, one sees
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FIG. 12. (a) Diffusion exponent β in the pure limit W = 0 as a function of the parameter θ [Eq. (8)], for all the values of the coordination
number k (N = 8119). (b) Mean-square displacement as a function of time (in units of h̄) for several values of the disorder, for N = 8119,
and for initial star states with k = 3. The dashed straight line is a power-law fit of the superdiffusive behavior as 〈r2(t )〉 ∝ t2β . (c) Values of β

obtained in the weak disorder regime W � W�, for θ = π/8 and k = 4 (similar results are obtained for other values of k and θ ).

that adding disorder produces a regime at moderately large
times, t ∈ [102, 104], in which P(t ) has an apparent power-law
decay as a function of time. Such power-law regime starts
at earlier times upon increasing the disorder. We recall that
when the initial wave packet is localized on one site, the return
probability is the Fourier transform of the spectral correlation
function K2(ω), and both have a power-law dependence, given
by the exponent μ of Sec. V B. For our star-cluster initial con-
ditions (8), the return probability is obtained upon averaging
over correlation functions. The resulting P(t ) still shows a
power-law behavior at intermediate times, as a consequence
of the power laws at intermediate energy separation of K2(ω).
However, the exponent of the time decay of P(t ) is no longer
simply related to that of K2. If the disorder is further increased
above W�, then the infinite time plateau value of P(t ) increases
significantly due to localization and the particle gets stuck in
a small region of space around the initial state.

Figures 11(c) and 11(d) show that the above-described
disorder-induced acceleration of dynamics becomes weaker
for k = 5 [Fig. 11(c)], and it disappears completely for k = 8
[Fig. 11(d)].

B. Mean-square displacement and diffusion exponent β

Another frequently studied quantity associated with quan-
tum transport is the mean-square displacement. This is defined
as the average square distance from the central node of the
initial star state i0 traveled by the particle between time 0
and t :

〈r2(t )〉 =
〈

N∑
j=1

|ri0 − r j |2|〈 j|φ(t )〉|2
〉
, (10)

where again the average is performed over several indepen-
dent realizations of the disorder and several initial star states,
when the central node is picked at random among all kth-order
nodes of the lattice. If one defines the diffusion exponent β by
〈r2(t )〉 ∝ t2β , it can be easily shown that β = 1 for ballistic
motion (as in periodic crystals), while β = 1

2 for classical
diffusion (as in metals in the weak localization regime). In
a system with localized states, the mean-square displace-
ment ceases to increase at large t and β = 0. Numerous
quasiperiodic and random tiling models have been studied in
the literature, with values of β found to lie between 0 and

1, indicating a wide range of behaviors from superdiffusive
to subdiffusive motion depending on the model parameters
[13,45–51].

We start by studying how the diffusion exponent β in the
pure limit (W = 0) depends on the local environment, and
on the wave-packet energy, governed by θ . To this aim in
Fig. 12(a) we plot the value of β as a function of the angle
θ and the coordination number k (for system size N = 8119).
We find that in all cases 1

2 < β < 1, corresponding to a su-
perdiffusive behavior. This plot shows that β increases with
both θ (in the interval [0, π/2]) and k (except when going
from k = 3 to 4). The exponent is bigger for larger coordina-
tion number, as there are more channels to diffuse outwards.
The exponent is smallest for small θ , when the wave-packet
energy is close to zero, and the dynamics is governed by the
more localized states at the band center. Our results agree
fairly well with the early results of Ref. [13], which corre-
spond to the θ = 0 limit. However, there are differences even
in this limit. We find, for example, that for θ = 0 the β values
for k = 4 and 5 coincide. In contrast, Passaro et al. found β

values were the same for k = 5 and 6. Figure 12(a) shows that
as the wave-packet energy increases, clusters continue to have
different diffusion coefficients, with the exception of k = 3
and 4 when the curves of β seem to converge as θ is increased.

We next investigate the effect of quenched onsite disorder
on the mean-square displacement and on the exponent β.
Figure 12(b) shows r2(t ) for initial star-cluster states (8) with
k = 3 and θ = 0.741. These illustrate that for small disorder
W � W�, the superdiffusive behavior is maintained at short
times with an essentially unchanged power law with respect to
the pure case. Then, for larger t the particle hits the boundaries
so that 〈r2(t )〉 becomes of the order of L2 and saturates. As
the disorder is increased above W�, the short time diffusivity
is clearly diminished, and 〈r2(t )〉 saturates at large times to
the square of the localization length that becomes significantly
smaller than L.

In contrast to the return probability, the value of the diffu-
sion exponent β obtained from fitting the power-law regime
of 〈r2(t )〉 does not exhibit any nonmonotonic behavior in the
weak disorder regime. On the contrary, β is essentially insen-
sitive to disorder up to W� within our numerical accuracy (and
possibly even decreases very weakly with W ). For W � W�,
finally, β starts to decrease steeply and vanishes at strong
disorder in the localized regime. This behavior is shown in
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Fig. 12(c), where we plot β vs W for θ = π/8 and k = 4
(similar results are obtained for other values of k and θ ).

The above result for β at weak disorder is to be contrasted
with previous works on the effects of phason-flip disorder
on dynamical spreading. In [13], it was found that phason
disorder tends to speed up quantum diffusion, as seen by the
fact that the globally averaged β value was thereby increased
from 0.78 to 0.81. This discrepancy between their results and
ours seems to indicate that the nature of the disorder plays
an important role that onsite disorder and phason-flip disorder
may have different effects on the spreading of the wave packet
and on quantum transport. Indeed, an important difference
between the two forms of disorder is that, in our model with
energetic disorder, sites conserve their connectivity, and the
structure remains invariant under an inflation (tile rescaling)
transformation. In contrast, phason flips lead to modifications
of connectivities of sites and the loss of self-similarity under
inflation in a geometrically disordered tiling.

C. Exponents and inequalities

In the 1D case, a number of bounds have been proposed for
diffusion exponents in terms of the generalized dimensions
of the spectrum Dq and the wave functions Dψ

2 . A num-
ber of these have been generalized to 2D models, such as
quasilattices generated by products of chains [52,53]. These
bounds have not, however, been checked for the 2D systems
such as Ammann-Beenker and Penrose. It is nonetheless in-
teresting to compare our results for the AB tiling with the
bounds proposed in the literature. In the case of the hopping
model on the pure AB tiling, it is believed that the spec-
trum is continuous and we expect therefore that Dq = 1. The
same is almost certainly true of the weakly disordered tilings.
The Guarneri inequality [54] generalized to dimension D > 1
reads as β > D1/D = 0.5. Thus, this inequality is certainly
obeyed in weakly disordered tilings whatever the energy E
since β � 0.8. Another inequality, due to Ketzmerick et al.
[55], namely, β � D2/2Dψ

2 ≈ 0.56 is also seen to hold in the
present model.

VII. HOPPING CONDUCTIVITY IN QUASICRYSTALS

In this final section we discuss some of the implications of
our results for transport in three-dimensional systems. Many
of our results can be expected to carry over to 3D although
there are expected to be some important differences. In con-
trast with 2D, a genuine transition, rather than a crossover, is
expected to occur in 3D systems for some W = Wc, beyond
which all states will be localized. However, for finite 3D
systems (as when there are domain walls which introduce
cutoff length for the quasiperiodic structure), one should see
a similar evolution of states with disorder as we found in
2D. That is, for weak disorder the critical states of the pure
3D quasicrystal should initially delocalize, as is indeed ob-
served by numerical studies [17,56]. These wave functions
then start to localize, and for a range of intermediate disorder
strengths, based on our results, we expect that there will be
a power-law regime for wave-function correlations. In this
regime, transport of charge could occur via a variable range
hopping mechanism for power-law decaying wave functions

as was discussed first for disordered semiconductors [57]. The
probability of hopping between two states near the Fermi level
centered on two sites r1 and r1 + R and having an energy
difference of ω can be estimated as

phop ∝ R−φe−βω, (11)

where β = (kBT )−1 is the inverse temperature. The nonuni-
versal, disorder-dependent exponent φ supposed positive
characterizes the spatial decay of the wave functions near the
Fermi energy, and is related to the exponent γ of the function
G(r; E ) by φ = γ − D. Making the reasonable assumptions
that (i) the states are uniformly distributed in the sample
volume LD, and (ii) assuming a locally flat DOS ρ(EF ), which
is true for intermediate disorder though not for pure systems,
the mean energy difference between states is given by the
condition ωρ(EF )RD ∼ 1 where D is the space dimension.
The maximization of the hopping probability then leads to the
most probable hopping distance as a function of temperature
Rmp given by

Rmp ∼
(

D

ρ(EF ) kBT φ

) 1
D

, (12)

which decreases with the temperature. The resulting hop-
ping conductivity is proportional to ( T

T0
)φ/D, where T0 =

[kBρ(EF )]−1 is a temperature scale determined by the DOS
at the Fermi energy, which can be quite low due to the pres-
ence of a pseudogap. Eliminating T0 in this expression, one
concludes that the ratio of conductivities at two temperatures
T1 and T2 within this temperature regime is

σVRH(T1)

σVRH(T2)
=

(
T1

T2

)φ/D

. (13)

This power-law VRH hopping conductivity σVRH(T ) can be
expected in samples which are disordered enough that γ is
large. If they are localized states, the necessary condition is
that the localization length ξloc be larger than the most prob-
able hopping distance Rmp at the temperature T . However,
when T is lowered, such that Rmp becomes larger than ξloc, the
standard exponential Mott VRH conductivity formula σ Mott

VRH ∼
exp[−(T0/T )1/4] should hold. We thus predict that, for disor-
dered samples where ξloc is large, one should see a crossover
between power-law and exponential dependence when T de-
creases, as sketched in Fig. 13. This type of crossover is in fact
seen for the most highly resistive (quench cooled, polygrain)
samples of AlPdRe measured in [24]. We should add that
the power-law hopping mechanism we have described here
is not expected to apply for perfect quasicrystals contrarily
to some proposals in the literature [58]. The reason is clear:
in a pure quasicrystal, the multifractal states are in general
not localized around any particular position, and the notion of
most probable hopping distance is undefined.

VIII. DISCUSSION AND CONCLUSIONS

We have investigated disorder effects in quasicrystals by
performing numerical studies in the 2D Ammann-Beenker
tiling [6]. We expect our findings to be valid at least quali-
tatively for other 2D quasiperiodic Hamiltonians with critical
states, such as the Penrose rhombus tiling. Considering finite
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FIG. 13. Sketch of the expected crossover of the temperature de-
pendence of conductivity ln σ (T ) is plotted versus T −0.25 (arbitrary
units), showing the transition from an intermediate T power-law
VRH behavior (red curve) to a low T exponential Mott VRH (blue
curve). The crossover temperature Tco corresponds to the condition
Rmp(Tco) ∼ ξloc.

samples and starting from weak disorder, we have shown how
the critical states of the pure model evolve as a function of
the disorder strength. The main conclusion reached is that, for
the majority of states, there is a nonmonotonic evolution of
spatial properties. They tend to delocalize initially at weak
disorder but then localize as expected for strong disorder,
with localization lengths becoming smaller than the sample
size. This interpretation is based on calculations of the gen-
eralized dimensions and on the multifractal spectrum f (α),
for selected energies. We also computed two-point correlation
functions as a function of position and energy. These show
that the multifractal character of wave functions is preserved
for weak out to moderate disorder in finite-size samples. For
fixed system size, the crossover to strong localization occurs
for a strength disorder W�, which depends on the energy and
on system size N .

The initial tendency to delocalization of wave functions
due to disorder in quasicrystals is a robust phenomenon which
is independent of the specific kind of disorder. This effect
has been seen in previous studies of phason-disordered tilings
[12–17]. It is an open question as to whether one could to
reach the strong disorder regime solely by means of phason
flips. It is possible that phason-flip disorder, which preserves
the chiral symmetry of the model, does not lead to localiza-
tion, as has been observed in a different context in [59].

The above-described disorder dependence of the eigen-
states’ spectral properties and correlations has an impact on
the quantum dynamics when starting from a wave function
initially localized in a small region of space. In particular,
the time dependence of the return probability of wave packets
P(t ) was seen to have different regimes. After an initial slow
decay, P(t ) has a power-law decay at intermediate times, and
finally saturates at a value (basically the IPR) at very long
times. The transition to power-law behavior occurs at time
t�, which moves to shorter times as disorder W increases. As
disorder is increased, the interval corresponding to power-law
decay shrinks, and the return probability saturates at higher
values, showing the onset of strong localization. We have also
studied the diffusion exponent β for different initial condi-
tions. In the pure tiling, the diffusion depends on the initial
cluster size (is larger for sites with larger coordination num-
ber k) and increases as the wave-packet energy moves away

from the band center. In contrast with the expectation based
on earlier studies, we do not find a change of β with weak
added disorder. In the weak disorder regime, the exponent
remains unchanged. An abrupt change of behavior is seen
at the crossover disorder value W∗, beyond which β drops
steeply. For larger W the strong localization regime is attained
(β = 0). These results are in contradiction with earlier studies
on the effect of geometrical disorder due to phason flips on
dynamical spreading of wave packets. Our study of dynamical
spreading of wave packets seems once again to indicate that
models with phason disorder are in a different universality
class than the onsite disorder model. This question remains
to be addressed in future studies, as well as questions of
how the diffusion exponent depends on local environment and
wave-packet energy.

Interestingly, the states around the pseudogap behave dif-
ferently from typical states within the band in that they do
not show the initial tendency towards delocalization (up to
our numerical accuracy) under weak disorder. Beyond a cer-
tain crossover disorder strength, these states evolve rapidly
towards a strongly localized form. This is the case for the
band edge states as well. In the disordered quasicrystal, as
well as in Anderson disordered models, states at band edges
are the first to show strong localization. This behavior of the
pseudogap states could be pertinent for real quasicrystals:
depending on the position of the Fermi level with respect to
band edges, adding weak disorder could either enhance or
diminish transport. The eigenstate behaviors observed in the
2D model have also been observed in a 1D quasicrystal, the
Fibonacci chain [4]. The main difference from 2D is that in
1D, nonmonotonicity is seen only for a small subset of states.
In 1D most of the states can be considered as band edge states
(quasiperiodicity results in gaps being opened throughout the
spectrum) and thus do not display nonmonotonicity.

As we said in the Introduction, one of the motivations
for this study is the problem of transport in quasicrystals.
Our study provides some ideas for how transport depends on
disorder in realistic 3D systems. We expect that, whereas in
1D and 2D, there is only a crossover from weak to strong
disorder regimes for W = W�, for 3D, a “metal”-insulator
transition (MIT) should occur for some value W = Wc, where
the term “metal” signifies that there are no truly extended
states. It is therefore more accurate to call this an “ergodic
to nonergodic transition.” For W < Wc, one should find a
mobility edge separating exponentially localized states for
E > Ec(W ) from critical states for E < Ec(W ). In future
work, it would be interesting to investigate properties of
such a MIT by carrying out simulations for 3D quasiperiodic
tilings. Based on our analysis of the 2D case, we propose a
hopping mechanism which gives a prediction for the conduc-
tivity at low temperatures in disordered quasicrystals. This
mechanism results in a crossover at some temperature Tco

from an exponential Mott VRH conductivity to a power-law
conductivity. This type of crossover appears to be observed
experimentally [24] for polygrain quasicrystal i-AlCuRe sam-
ples. To understand transport better, it will be necessary to
carry out systematic measurements of the transport as a func-
tion of disorder strength. These are particularly challenging
in this family of materials, which are difficult to synthesize.
Samples are characterized by chemical and structural inhomo-
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geneities, resulting in a number of controversies over the years
[60,61].

Finally, the eigenstate correlation functions, and their evo-
lution under disorder, have implications for numerous other
electronic properties of tilings. The effects of disorder on
the charge distributions studied in [62], on Kondo screening
of impurities [63], valence fluctuations [64], or properties of
superconducting [65,66] and magnetic phases [67,68] have
not been addressed, with the exception of phason-disorder
effects in a Heisenberg antiferromagnet [69]. It would be
interesting to study how the charge distribution evolves with
disorder. Last but not least, there are possibilities for realiz-

ing a 2D quasicrystal with cold atoms [70] and for studying
interacting 2D models with quasiperiodicity [71] indicates
that such finely controlled and tunable systems could pro-
vide valuable new insights on the effects of disorder in
quasicrystals.
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