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Exploring topological phases in interacting systems is a challenging task. We investigate many-body topo-
logical physics of interacting fermions in an extended Su-Schrieffer-Heeger (SSH) model, which extends
the two sublattices of the SSH model into four sublattices and thus is dubbed the SSH4 model, based on
the density-matrix renormalization-group numerical method. The interaction-driven phase transition from the
topological insulator phase to the charge density wave (CDW) phase can be identified by analyzing the variations
of the entanglement spectrum, entanglement entropies, energy gaps, CDW order parameter, and fidelity. We map
the global phase diagram of the many-body ground state, which contains nontrivial topological insulator, trivial
insulator, and CDW phases, respectively. In contrast to the interacting SSH model, in which the phase transitions
to the CDW phase are argued to be first-order phase transitions, the phase transitions between the CDW phase
and topologically trivial or nontrivial phases are shown to be continuous phase transitions. Finally, we also show
the phase diagram of the interacting spinful SSH4 model, where the attractive (repulsive) on-site spin interaction
amplifies (suppresses) the CDW phase. The models analyzed here can be implemented with ultracold atoms on
optical superlattices.
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I. INTRODUCTION

Understanding the topological properties of band insula-
tors and interacting topological insulators is one of the most
fundamental and challenging tasks in the studies of con-
densed matter materials and ultracold atomic gases [1–8].
As a highly controllable and disorder-free system, ultracold
atoms in optical lattices provide a powerful platform for quan-
tum simulation of topological states of matter [6–8]. One of
the most basic and easiest models in describing band topol-
ogy is the celebrated Su-Schrieffer-Heeger (SSH) model [9],
which has been experimentally implemented with ultracold
atoms in one-dimensional (1D) dimerized optical superlattices
[10–14].

The SSH model describes noninteracting quantum par-
ticles hopping in a 1D lattice with alternating hopping
coefficients. Varying the hopping ratio, a topological trivial
phase or nontrivial phase appears, depending on whether the
hopping term at the end of the SSH model is strong or weak
[15]. For a noninteracting topological insulator, edge degen-
eracy comes directly from the zero-energy edge mode, which
is protected by the topological invariants of the bulk crystal
through the bulk-edge correspondence. After considering the
interaction, the SSH model exhibits a rich phase diagram
[16–23] and interesting topological bound states [24], where
the single-particle picture is not applicable.
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On the other hand, stimulated by experimental progress,
many variations and extensions of the SSH model have
been proposed and explored, such as the driven SSH
model [25,26], SSH model with long-range hopping [27–31],
two-leg SSH model [32], Creutz ladder model [33–36], and
extended SSH model [37]. One typical extended example is to
change the site period of the unit cell from 2 to 4; thus one can
transform the standard SSH model into the considerably richer
SSH4 model with four hopping coefficients [37]. The wider
parameter space of the SSH4 model is useful for studying
topological properties of the system with higher dimensions
including synthetic dimensions [38–42]. The SSH4 model has
chiral symmetry and belongs to the same topological class
as the SSH model, and the winding number can characterize
its band topology [37]. With open boundary conditions, there
exist topological edge states at the boundary of the system
[43]. For a SSH4 model with infinite sites, the topological
trivial and nontrivial phases are determined by the tunneling
ratio. So far, the single-particle topological characterizations
of SSH4 have been investigated clearly [37,44,45]. However,
to the best of our knowledge, a detailed study of the interacting
SSH4 model is still lacking.

In this paper, we investigate interacting topological prop-
erties of spinless and spin-1/2 SSH4 models in 1D optical
superlattices, based on the density-matrix renormalization-
group (DMRG) numerical method [46,47]. For the interacting
SSH4 model, the topological invariant and classification
of interacting topological insulator (TI) become Z4, which
are different from the single-particle TI classified with the
Z group. The nearest-neighbor interaction can drive the TI
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FIG. 1. A sketch of the SSH4 model. Three superposed optical
lattices with lattice constants a/2, a, and 2a effectively realize an
SSH4 model. This model exhibits four sites per unit cell with four
tunnelings, which can be tuned independently by varying the three
lattice strengths and relative phase between the lattices.

and the topologically trivial insulator phases to the charge
density wave (CDW) phase, which is characterized with the
entanglement spectrum, entanglement entropies, energy gaps,
and CDW order parameter. We numerically work out the
many-body phase diagrams and show the typical features of
the quantum phases that appear. Although the phase diagram
is similar to that of the interacting SSH model, we find that
the phase transitions to the CDW phase are continuous phase
transitions, unlike those in the SSH model, which are argued
to be first-order phase transitions based on variational study
[48]. The central charges at the phase boundaries between
the CDW phase and the TI and trivial insulator phase are
shown to be 2 and 1, respectively. Furthermore, we analyze
the ground states of the interacting spinful SSH4 model. This
analysis shows that the repulsive on-site interaction of the
spin-1/2 SSH4 model can enhance the TI phase and suppress
the CDW phase, but the attractive on-site interaction plays
the opposite role. Our results may stimulate an avenue for
simulating interacting fermionic topological phases using cold
atoms in optical lattices.

II. MODEL AND HAMILTONIAN

In a cold-atom experiment, three superposed optical lat-
tices with lattice constants a/2, a, and 2a effectively realize an
SSH4 model, as shown in Fig. 1. The three optical lattices may
be obtained from a single laser working at λlaser = 1064 nm.
The a/2 optical lattice can be obtained by retroreflecting the
frequency-doubled laser, with a = λlaser/2. The a lattice may
be obtained by retroreflecting the laser λlaser. The lattice at 2a
may be obtained by crossing two λlaser beams with a small
angle [37]. This superlattice exhibits four sites per unit cell
(see Fig. 1) and hence is called the SSH4 model. The tight-
binding interacting SSH4 Hamiltonian can be written as

H =
L/4∑
j=1

[t1ĉ†
4 j−3ĉ4 j−2 + t2ĉ†

4 j−2ĉ4 j−1 + t3ĉ†
4 j−1ĉ4 j

+ t4ĉ†
4 j ĉ4 j+1 + H.c.] + V

L∑
j

n̂ j n̂ j+1, (1)

where ĉ j (ĉ†
j ) are fermionic annihilation (creation) operators

of the jth site, n̂ j = ĉ†
j ĉ j , tn are the tunneling rates, and V

measures the nearest-neighbor density-density interaction. In
this configuration, t1 = t3, but t2 and t4 can be tuned indepen-
dently by varying the three lattice strengths and relative phase
between the three lattices.

For single-particle items of Hamiltonian (1), the time-
reversal, particle-hole, and chiral symmetries exist; then the
topological insulator belongs to the symmetry class BDI of
the Altland-Zirnbauer classification and is characterized by
a Z invariant [4,49–51]. When t1 = t3 and t2 = t4, the SSH4
model reduces to the common SSH model. The SSH4 model
has four bands with more midgap states located inside the
three gaps. However, only the zero-energy state is protected
by the chiral symmetry and associated with the band topology.
Thus the winding number is defined to identify the property
of the two negative (or positive) energy bands, which all
contribute to its value. The winding number w = 1 when
|t1t3| < |t2t4|, and w = 0 when |t1t3| > |t2t4|. In the presence
of weak interaction V , the topological invariant becomes Z4

[52]. In the following, we focus on the two negative topology
bands with zero-energy states, which corresponds to the half-
filling occupation, i.e., N/L = 0.5, with the atom number N
and lattice length L.

The Hamiltonian (1) shows the spinless SSH4 model. In
a cold-atom experiment, the hyperfine states of the atoms
usually can be treated as components of spin. After consid-
ering the two hyperfine states, we can get the spin-1/2 SSH4
Hamiltonian, which can be written as

H =
L/4∑

j=1,σ

[t1ĉ†
4 j−3,σ ĉ4 j−2,σ + t2ĉ†

4 j−2,σ ĉ4 j−1,σ

+ t3ĉ†
4 j−1,σ ĉ4 j,σ + t4ĉ†

4 j,σ ĉ4 j+1,σ + H.c.]

+V
∑

j

n̂ j n̂ j+1 + U
∑

j

n̂ j,↑n̂ j,↓, (2)

where σ presents the spin (spin up and spin down, ↑,↓) for
a spin-1/2 fermion and U is the on-site interaction strength
between opposite spins due to s-wave scattering with n̂ j =∑

σ ĉ†
j,σ ĉ j,σ being the number operator. With the spin degree

of freedom, the model exhibits eight energy bands. The topo-
logical insulator is presented at the filling N/L = 1.

In order to quantitatively reveal the SSH4 models, we will
perform the DMRG numerical method with lattice length up
to L = 320 for the spinless SSH4 model and L = 128 for
the spin-1/2 SSH4 model, for which we retain 400 truncated
states per DMRG block and perform 30 sweeps with accept-
able truncation errors [53].

III. ORDER PARAMETERS

The strongly correlated topological properties can be well
described by the degeneracy in the entanglement spectrum of
the ground state, entanglement entropy, and excited energy
gap. The system is topological nontrivial if the entanglement
spectrum is degenerate since the entanglement spectrum is
associated with the energy spectrum of edge excitations [16,
54–59]. The entanglement spectrum is defined as a
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logarithmic rescaling of the Schmidt values [54]

ξi = − ln(ρi ), (3)

with ρi being the eigenvalue of the reduced density ma-
trix ρ̂l = TrL−l |ψ〉〈ψ |, where |ψ〉 is the ground-state wave
function of Hamiltonian (1) and l is the length of the left
block for a specific bipartition. The quantum criticality of the
interaction-driven topological phase transition can be charac-
terized with the von Neumann entropy [59–64]

SvN = −Trl [ρ̂l ln ρ̂l ], (4)

with l = L/2 being the half part of the lattice. It is believed
that the property underlying the long-range correlations is en-
tanglement [65] and, on the other hand, the correlation length
becomes divergent at the critical point of the continuous phase
transition [66]. The divergence of the von Neumann entropy
at the critical point thus indicates a continuous transition [57].
Besides, the von Neumann entropy also reveals the central
charge of the conformal field theory underlying the critical
behavior, which generally determines the effective field theory
and reflects the universality class of the phase transition [67].
For a critical system under periodic boundary conditions, the
von Neumann entropy of a subchain of length l scales as

SvN(l ) = c

3
ln

[
sin

π l

L

]
+ const, (5)

in which the slope at large distance gives the central charge
c of the conformal field theory [67–70]. The formula for the
case under open boundary conditions is obtained by replacing
3 by 6.

One also can use the fidelity of the wave function of the
ground states to identify the phase transition, which can be
defined as the modulus of the overlap between two states
(ψ ′, ψ) [71]

F (ψ ′, ψ ) = |〈ψ ′|ψ〉|, (6)

where |ψ〉 and |ψ ′〉 are the input and output states, respec-
tively, and both of them are normalized. The topological
ground state of the extended SSH model under periodic
boundary conditions is nondegenerate and separated from the
first excited state by a finite gap, which closes and reopens
across a topological phase transition. The excited energy gap
is defined as

�e = E p
e (N ) − E p

g (N ), (7)

where E p
e (N ) [E p

g (N )] is the first excited state (ground-state)
energy of N atoms under periodic boundary conditions. As
we all know, the nearest-neighbor interaction V can induce
the CDW phase, in which the CDW order parameters can be
defined as

C = 1

L

L∑
i=1

(−1)i〈n̂i〉. (8)

For a TI under open boundary conditions, the presence of
localized density of the edge mode is a typical feature. The
density distribution of the edge modes can be calculated as

〈�n̂ j〉 = 〈n̂ j (N + 1)〉 − 〈n̂ j (N )〉, (9)

with 〈n̂ j (N )〉 being the density distribution for N atoms under
open boundary conditions.

IV. MANY-BODY QUANTUM PHASES

A. Spinless SSH4

We first characterize the many-body properties of the spin-
less SSH4 Hamiltonian (1). Based on the experimental setup,
we here fixed t1 = t3 = t4 = 1 and vary t2. When increasing
t2 from 0 to 2 in the absence of interaction, the phase is a
trivial band insulator (BI) when t2 < 1 and a TI when t2 > 1
with critical point t c

2 = 1. Here we consider the topological
phase transition driven by the nearest-neighbor interaction
V for a fixed tunneling, i.e., t2 = 1.6. For zero and weak
nearest-neighbor interaction strength V , the lowest entangle-
ment spectrum ξi is twofold degenerate for finite lattice size
L = 320, as shown in Fig. 2(a). However, the ξi show different
features for noninteracting and weak interaction topological
insulators. For the noninteracting topological insulator, some
of the high levels of ξi show fourfold degeneracy. However,
all levels of ξi for weak interacting topological insulator are
twofold degenerate [see Fig. 2(b)]. Further increasing the
interaction strength V , ξi is no longer degenerate beyond a
critical interaction strength Vc ∼ 4.34, as shown in Fig. 2(a).
The von Neumann entropy SvN also exhibits a sharp peak at
around the critical point, as shown in Fig. 2(c). Moreover, the
excited energy gap �e under periodic boundary conditions
closes at the critical point and then reopens, as shown in
Figs. 2(d) and 2(e). In this processing of the phase transi-
tion, the CDW order parameter C goes to finite values from
zero when V goes beyond the critical strength Vc, as shown
in Fig. 2(f). Above all, one can conclude that the nearest-
neighbor interaction V drives the TI into the CDW phase
through a phase transition.

In the CDW phase, the chiral symmetry protecting the
nontrivial topological phase has been spontaneously broken
by the CDW order [48]. The ground states of the interacting
SSH model are approximately equivalent to that of a non-
interacting SSH model plus an additional on-site staggered
term in the CDW phase [48]. Hence the phase transitions
from the topologically trivial or nontrivial phases to the CDW
phase can be classified with Landau’s paradigm. Specifically,
the local order parameter characterizing the phase transition
is the CDW order defined in Eq. (8). Although the CDW
phase is a topologically trivial phase, evidenced by the lacking
of entanglement-entropy degeneracy, as shown in Fig. 2(a),
the phase transition to the CDW phase is not a standard
topological phase transition in the common sense, because it
can be described with local order parameters and accompa-
nies the spontaneous breaking of symmetries. It is consistent
with the transition from the topological band insulator to
the antiferromagnetic Mott insulator in the two-dimensional
Kane-Mele-Hubbard model [72], which is in the universality
class of the three-dimensional XY model that also accompa-
nies spontaneous symmetry breaking [73].

As expected from the previous literature [71], a sharp dip
in the curve of the fidelity |〈ψ (V )|ψ (V + δV )〉| (δV = 0.02)
accompanies the emergence of the quantum phase transition,
and the dip becomes sharper and sharper as the system size
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FIG. 2. (a) The lowest four levels in the entanglement spectrum ξi (i = 0, 1, 2, 3) as a function of the interaction strength V . (b) The 16
lower levels in the entanglement spectrum for two values of V = 0, 1. (c) The von Neumann entropy SvN and (d) the excited energy gap �e

vs V . (e) The finite-size scaling of the �e at the critical point; the red solid line is a linear fit with �e ∼ 0 in the large-L limit. (f) The CDW
order parameter C, (g) the fidelity 〈ψ (V )|ψ (V + δV )〉 (δV = 0.02) of finite lattice lengths, and (h) the derivatives of the ground-state energy
dnE/dV n (n = 2, 3) vs V . (i) The finite-size scaling of the inverse of the peak value of the fourth-order derivative of the ground-state energy
(not shown here). (j) The fitting central charge c (note that only at the critical point can c be defined, although we always can fit the formula
and obtain a value) as a function of the interaction strength V . (k) The scaling of the von Neumann entropy SvN(l ) as a function of subchain
l at the critical point. The green line is SvN(l ) = c

3 ln[sin(π l/L)] + const with c = 0.46 (extracted from the fitting of the mean values of SvN).
(l) The finite-size scaling of the critical point for the phase transition between TI and CDW with t2 = 1.6. The critical point Vc = 4.53 in the
thermodynamic limits. In all panels, we have t2 = 1.6 and L = 320 except the finite-size scalings. All panels are under periodic boundary
conditions.

increases, as shown in Fig. 2(g). This behavior is associated
with the dramatic change in the ground state in the critical
regime. It is argued that the phase transition to the CDW
phase in the interacting SSH model is a first-order phase
transition when the difference between the alternating hop-
ping coefficients is not too large, based on a variational study
[48]. In contrast, we find that this transition in the interacting
SSH4 model considered here is a continuous (third-order)
phase transition, as directly evidenced by the discontinuous-
ness of the third-order derivative of the ground-state energy
[see Fig. 2(h)]. Actually, the sharp peak in the entanglement
entropy shown in Fig. 2(c) also indicates that the phase tran-
sition is continuous. Note that the discontinuousness of the
third-order derivative of the ground-state energy does not look
so obvious in the figure due to the system size being finite
in the numerical calculation, but it obviously shows a sharp
jump at around the critical point. As shown in Fig. 2(i), the
finite-size scaling indicates that the fourth-order derivative of
the ground-state energy moves toward the divergent regime in
the thermodynamic limit (the relatively large deviation is due
to the fact that the derivatives are calculated with numerical
difference order by order). This observation further confirms
that the third-order derivative of the energy is not continuous
and the CDW phase transition is a third-order phase transition.

At the critical point between the TI and CDW, the energy
spectrum is gapless in the thermodynamic limit [i.e., �e = 0;
see Fig. 2(e)], and the scaling of the von Neumann entropy
SvN(l ) = c

3 ln[sin(π l/L)] + const with a central charge c =
0.46, as shown in Figs. 2(j) and 2(k). The critical line is the
Luttinger liquid with central charge c = 0.46. By using finite-
size scaling, we get the critical points of interaction-driven
Landau phase transitions between TI and CDW Vc = 4.53
when t2 = 1.6 in the thermodynamic limit for the interacting
SSH4 model, as shown in Fig. 2(l). We use similar methods to
identify the critical points Vc for several t2.

According to the calculated degeneracy of the entangle-
ment spectrum, entanglement entropy, energy gaps, CDW
parameter order, fidelity, and derivatives of the ground-state
energy, we can draw the phase diagram in the t2-V plane, as
shown in Fig. 3(a). This phase diagram contains three phases:
TI, BI, and CDW. By scaling the von Neumann entropy SvN(l )
of the critical lines, we find that the critical line between TI
and CDW (BI) is the Luttinger liquid with central charge
c = 0.46. For large nearest-neighbor interaction strength V ,
the density profile 〈n̂ j〉 of the ground state always modulates
along real lattice space with a period of 2; the correspond-
ing phase is CDW, as shown in Fig. 3(b). For weak V , the
ground state is TI (BI) when t2 > 1 (t2 < 1). The TI not only
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FIG. 3. (a) The phase diagram of the spinless SSH4 Hamiltonian
(1) in the t2-V plane in the thermodynamic limit under periodic
boundary conditions, which contains topological insulator (TI), band
insulator (BI), and charge density wave (CDW) phases. The critical
line between TI and CDW (black line with circles) is the Luttinger
liquid with central charge c = 0.46. The critical line between TI and
BI (red line with diamonds) is the Luttinger liquid with central charge
c = 0.46. (b) The density profile 〈n̂ j〉 of the CDW with t2 = 1.2
and V = 5.0 under periodic boundary conditions. (c) and (d) The
edge-model density distributions 〈�n̂ j〉 of the twofold degenerate
TI with t2 = 1.6 and V = 2.0 under open boundary conditions. In
(b)–(d), we have L = 320 and N = 160.

exhibits a twofold degenerate entanglement spectrum but also
has a twofold degenerate ground state under open boundary
conditions, in which only one edge mode is occupied on
one edge side for each degenerate ground state, as shown
in Figs. 3(c) and 3(d). For BI, the density profile is uniform
(i.e., 〈n̂ j〉 = 0.5), and the entanglement spectrum is almost
completely nondegenerate, which are not shown.

B. Spin-1/2 SSH4

Here, we consider the spin-1/2 SSH4 Hamiltonian (2),
which contains the on-site interaction. Similarly to Fig. 3,
we calculate the entanglement spectrum, entanglement en-
tropy, energy gaps, CDW orders, fidelity, derivatives of the
ground-state energy, and central charge, as shown in Fig. 4.
Combining with the finite-size scaling, we map out the phase
diagram of the spin-1/2 SSH4 model, as shown in Figs. 5(a)
and 5(b). For the filling N/L = 1, the atoms fully occupy the
lower half of the eight energy bands in the BI and TI regimes.
The repulsive on-site interaction favors less density on the
same site, while the CDW phase has twice the density com-
pared with the uniform BI and TI cases. Therefore repulsive
on-site interaction enhances the TI (BI) phases and suppresses
the CDW phase. In contrast, the attractive on-site interaction
suppresses the TI (BI) phases but enhances the CDW phase.

We would like to note that, in contrast to the spinless
case, the interspin nearest-neighbor interaction terms in the
spinful case also enhance the CDW phase, even when the

FIG. 4. Similar to Fig. 3. (a) The entanglement spectrum ξi vs U . (b) The several lower levels in the entanglement spectrum for two values
of U = 0, 5. (c) The von Neumann entropy SvN and (d) the excited energy gap �e vs U . (e) The finite-size scaling of the �e at the critical
point. (f) The CDW order parameter C, (g) the fidelity 〈ψ (U )|ψ (U + δU )〉 (δU = 0.02), and (h) the derivatives of the ground-state energy
dnE/dU n (n = 2, 3) vs U . (i) The finite-size scaling of the inverse of the peak value of the fourth-order derivative of the ground-state energy.
(j) The fitting central charge c as a function of the interaction strength U . (k) The scaling of the von Neumann entropy SvN(l ) as a function of
subchain l at the critical point. (l) The finite-size scaling of the critical point for the phase transition between TI and CDW. In all panels, we
have t2 = 1.6, V = 2.0, and L = N = 128 except the finite-size scalings. All panels are under periodic boundary conditions.
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FIG. 5. The phase diagram of the spin-1/2 SSH4 Hamiltonian
(2) (a) in the t2-U plane with V = 2 and (b) in the V -U plane
with t2 = 1.6 in the thermodynamic limit under periodic boundary
conditions. The edge-model density distributions of different spin
〈�n̂σ

j 〉 (c) σ = ↑ and (d) σ = ↓, with t2 = 1.6, U = 5.0, V = 2.0,
and L = N = 128 under open boundary conditions. In (c) and (d),
the numbers in the figure legends label different degenerate ground
states.

on-site interaction is absent. The spinful case thus has a lower
critical value of nearest-neighbor interaction for the CDW
phase transition. For example, as shown in Fig. 5 (Fig. 3), the
spinful (spinless) system already enters (has not entered) the
CDW phase when U = 0 and V = 2 (V = 2).

For the TI in the repulsive on-site interaction regime, only
the one-component atoms can be localized at one side of the
edge. The TI features fourfold degeneracies in the ground
state with fourfold localized density distributions at the edge,
such as |↑〉 located at the left edge, |↑〉 located at the right
edge, |↓〉 located at the left edge, and |↓〉 located at the
right edge, as shown in Figs. 5(c) and 5(d). For the TI in the
attractive on-site interaction regime, both the two-component
atoms with equal number are localized at one side of the edge.
The ground state has twofold degeneracies: One is |↑ + ↓〉
located at the left edge, and the other is |↑ + ↓〉 located at the
right edge.

V. CONCLUSIONS

In conclusion, we have studied theoretically the interacting
SSH4 models at half filling using the DMRG method. We
find that the nearest-neighbor interaction can drive the TI
(BI) phase to the CDW phase. Varying the tunnelings, there
exists the topological phase transition between TI and BI.
The critical lines of the topological phase transitions corre-
spond to the Luttinger liquids with integer central charges.
We have calculated the entanglement spectrum, entanglement
entropy, energy gaps, and CDW order parameter, to iden-
tify the interaction-driven CDW phase transitions and phase
diagrams. The phase transition to the CDW phase driven
by interaction is shown to be a continuous phase transition.
The central charges at the phase boundaries are fixed. We
also have studied the topological properties of the spin-1/2
interacting SSH4 model and find that the repulsive on-site
interaction can enhance the TI and suppress the CDW phase.
However, the attractive on-site interaction plays the opposi-
tive role. We also investigate the edge model of the TIs. In
experiment, the entanglement entropy can be measured using
quantum interference of many-body twins of ultracold atoms
in optical lattices [64]. The CDW phase can be detected by
time-of-flight measurements in cold-atom experiments. Our
work provides insights into the many-body physics in systems
with topological properties and may stimulate the quantum
simulation of strongly correlated topological insulators with
cold atoms in optical superlattices.
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