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Universality of grain boundary phases in fcc metals:
Case study on high-angle [111] symmetric tilt grain boundaries
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Grain boundaries often exhibit ordered atomic structures. Increasing amounts of evidence have been provided
by transmission electron microscopy and atomistic computer simulations that different stable and metastable
grain boundary structures can occur. Meanwhile, theories to treat them thermodynamically as grain boundary
phases have been developed. Whereas atomic structures were identified at particular grain boundaries for
particular materials, it remains an open question if these structures and their thermodynamic excess properties
are material specific or generalizable to, e.g., all fcc metals. In order to elucidate that question, we use atomistic
simulations with classical interatomic potentials to investigate a range of high-angle [111] symmetric tilt grain
boundaries in Ni, Cu, Pd, Ag, Au, Al, and Pb. We could indeed find two families of grain boundary phases in
all of the investigated grain boundaries, which cover most of the standard fcc materials. Where possible, we
compared the atomic structures to atomic-resolution electron microscopy images and found that the structures
match. This poses the question if the grain boundary phases are simply the result of sphere-packing geometry or
if material-specific bonding physics play a role. We tested this using simple model pair potentials and found that
medium-ranged interactions are required to reproduce the atomic structures, while the more realistic material
models mostly affect the grain boundary (free) energy. In addition to the structural investigation, we also report
the thermodynamic excess properties of the grain boundaries, explore how they influence the thermodynamic

stability of the grain boundary phases, and detail the commonalities and differences between the materials.

DOI: 10.1103/PhysRevB.107.054103

I. INTRODUCTION

Grain boundaries (GBs) are defined by five macroscopic
degrees of freedom, describing the misorientation of the abut-
ting crystallites and the GB plane [1]. At the atomic scale, GBs
have additional microscopic degrees of freedom [1], meaning
that a GB with a specific misorientation and GB plane can
exhibit different atomic structures. These distinct structures
are called GB phases [2] or complexions [3—6] in analogy
to bulk phases, because they can be understood using a ther-
modynamic framework [5—10]. It should be noted, however,
that GB phases are not the same as bulk phases insofar they
can only exist at interfaces and not on their own, in contrast
to, e.g., bulk wetting phases or precipitates, which can also
appear at GBs [6,10]. GB phase transitions have been pro-
posed theoretically already from the 1960s onwards [11-13].
While such transitions can be driven by segregation, as for
example in Refs. [4,14-19], they also occur in pure materi-
als as demonstrated with atomistic simulations [20-29], and
experimentally by atomic-resolution (scanning) transmission
electron microscopy (TEM, STEM) [28-31]. Experimental
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observation, however, remains difficult because at least two
GB phases have to exist in stable or metastable states under
experimental conditions, which appears to be rare. Available
data suggest that GB phase transitions may influence dif-
fusivity [32-35], GB motion [36,37], intergranular fracture
[38—40], and electrical conductivity [41], among other mate-
rial properties.

In the case of pure metals, computer simulations have
been performed predominantly to demonstrate the existence
of different GB phases for example cases, such as for spe-
cific macroscopic degrees of freedom or for a single material.
Comprehensive studies have been attempted in the 1970s and
1980s, e.g., for tilt GBs of Al and Cu [42], but were limited
by the use of simple pair potentials and by mostly disregarding
metastable GB structures. More recently, GB phase transitions
have been simulated in a ¥5 GB for Cu, Ag, Au, and Ni
[21]; in Cu for different misorientations of [001] tilt GBs
[22-24,27]; in W for a variety of tilt GBs [25-27]; and in
Mg tilt GBs [27]. Apart from the early simulations on X5
GBs [21], where the same motifs were found for all metals, it
was not investigated if specific GB phases and their transitions
are generalizable to all fcc, bee, or hep materials, respectively.
Thus it is not clear to what extend GB phases are influenced
by, e.g., bonding, structure, or packing density and if they can
be correlated with bulk material properties.

It has, however, long been known for tilt GBs that certain
structural motifs exist over a range of misorientations, leading
to the development of the structural unit model [42—45]. This
model describes GB structures as combinations of motifs re-
sulting from certain delimiting boundaries, which are the GBs
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containing only a single motif and which serve as reference
structures for general GBs. A weakness of the model is the
assumption of a single, canonical structure for the delimit-
ing boundaries, which is in opposition to the existence of
metastable GB phases. Indeed, different ground states were
for example found in copper for the closely-related £19b and
¥37c tilt GBs [28,29], which make the original structural unit
model inapplicable. These shortcomings were addressed by
the development of a revised model that includes multiple—
possibly metastable—motifs for the delimiting boundaries
[46]. In atomistic simulations on tungsten [46], this model
demonstrates, on one hand, that the varying motifs and their
combinations lead to different stable GB phases with varying
misorientations. On the other hand, it reaffirms that the motifs
remain existent across variations of the macroscopic degrees
of freedom of the GBs, even if only in a metastable state.

Nevertheless, systematic and quantitative studies among
comparable materials are uncommon and the question re-
mains if specific GB phases are universal features (for
example, of a given lattice structure of the bulk crystal) or
very specific to a material. To that end, the present paper
is dedicated to atomistic computer simulations of symmetric
[111] tilt GBs in a range of fcc metals and expands on recent
results for £19b and X37c tilt GBs in copper [28,29]. While
some experimental data regarding the atomic structure of the
GB phases is available for Cu and Al [28,29,47], we will
expand the computer investigation to most of the fcc metals
for which reasonable interatomic potentials are available and
to a range of misorientations. In addition, we use pair po-
tentials to switch off environment-dependent bond energies
(bond order) and/or medium-ranged interatomic interactions
beyond the first neighbor shell. This tunability allows us to
study if the atomic structures of the GB phases are defined
more by packing geometry or the material-specific physics
of bonding. We present some common trends and differences
between the materials.

II. METHODS

We modeled GBs in bicrystals using embedded atom
method (EAM) potentials for Ni [48], Cu [49], Pd [50], Ag
[51], Au [52], and Al [53], as well as a modified EAM
(MEAM) potential for Pb [54]. The potential files were down-
loaded from the NIST Interatomic Potentials Repository [55],
except for the Pd potential, which we reproduced from the
data in the original publication, and the Al potential, which
was smoothed as described in the Appendix to overcome
numerical problems with free energy calculations. Molecular
statics and molecular dynamics (MD) simulations were per-
formed using the software LAMMPS [56,57].

In addition to the more realistic potentials, we also used
generic model pair potentials to evaluate how much material-
specific physics is required to reproduce the results of the
(M)EAM potentials. For these, we use reduced units in terms
of the equilibrium bond length ry in fcc and the corresponding
fcc cohesive energy E.qn per atom (which is by the convention
used for interatomic potentials related to the total energy in
the ground state via E.o, = —E(ﬁcc). Here, we considered a
Lennard-Jones potential with a cutoff of 2.5r( (corresponding
to 6 fcc next-neighbor shells), shifted so that the bond energy

at the cutoff is zero. The parameters oy = 0.91303r; and
ey = 0.12927915E,,, were chosen to obtain a lattice constant

of a*® = /2ry and Ef*® = —1E.. This parametrization has
a stable fcc and metastable hcp phase (energy difference of
roughly 0.001E.qp).

Furthermore, in order to investigate the difference between
medium-ranged and next-neighbor-only interactions, we con-
structed pair potentials of the form

cl(ce)™ ~ (c2)™]
E= Yt

J# 0

r < Rinner

Rinner < 7 < Rey ey
r > RCUU

with Rqy = 1.35r), so that only the first fcc neighbor shell is
included. It is

—1( Mpp o i)
C = eppripp(1pp — Mpp) (_) ) 2
Mpp

and we used n,, = 24, m,, = 14, 16, 18, 20, 22. This leads to
bond stiffnesses that are higher than the standard Lennard-
Jones potential (n,, = 12, mp, = 6), but this is required to
obtain a reasonably-shaped potential well inside the very short
cutoff range. The polynomial with cff, ¥, ciF, fF, cff is
defined so that the potentials are continuous up to the second
derivative at Rjne and both energy and force are zero at the
cutoff R.y. We used Rjpner = 1.17. We defined five different
potentials (different mp;) to see if the bond stiffness influences
the GB structures, but found that this is not the case here.
We consequently report only the results of the potential with
mpp, = 18 in the rest of this paper. All potential files are avail-
able in the companion dataset [58].

A. Bulk properties of fcc crystals and
evaluation of the potentials

In order to evaluate the performance of the (M)EAM po-
tentials, we first computed the properties of the bulk fcc and
hcp phases (listed in Tables I and II). Ground-state energies
Ey (which by convention are related to the cohesive energy
via E.op = —Eé“) and lattice constants ag, ¢y at temperature
T = 0K were calculated using molecular statics calculations
on defect-free fcc systems, while vacancy formation ener-
gies Ey vae, (111) surface energies y(i11), and stacking-fault
energies ysp were calculated using systems containing the
relevant defects. Generalized stacking-fault curves were com-
puted using the procedure described in Ref. [64]. Unstable
stacking-fault energies yysp as well as the maximum shear
stresses 7sp along the stacking-fault curves are reported in
Tables I and II. We computed the elastic constants ¢;; and the
bulk modulus K for the fcc phase using the scripts distributed
with LAMMPS, which derive the stiffness tensor from the stress
tensor by systematically applying strains to a periodic fcc cell.

Melting points were computed with the method and soft-
ware from Ref. [65], which uses the interface method, i.e., a
crystal/liquid interface is constructed and simulated at differ-
ent temperatures with MD. The movement of the interface is
monitored to estimate the melting point.

Finally, we simulated the thermal expansion of the metals
by measuring the lattice constant at different temperatures
using MD simulations. We used the careful procedure from
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TABLE I. Material properties of fcc transition metals computed with the EAM potentials (Pot.) compared to literature values (Ref.). We
list experimental ground-state energies energies Egcc from Ref. [59]; experimental lattice constants ag“, elastic constants c;;, bulk modulus K,
and melting points Ty, from Ref. [60]; experimental vacancy formation energies Ey v, from Ref. [61] (note that the Pd data is only from a
single measurement and less reliable than the other data points); surface energies y(;11) from DFT calculations for the (111) surface that match
the average experimental values reasonably well [62]; experimental stacking-fault energies ysp and DFT values for the unstable stacking-fault
energies yysr as collected in the literature review in Ref. [63]; and DFT calculations of the maximum shear stress 7sr along the generalized
stacking-fault curve from Ref. [64].

Ni Cu Pd Ag Au

Pot. Ref. Pot. Ref. Pot. Ref. Pot. Ref. Pot. Ref.
E(g“' (eV/atom) —4.450 —4.44 —3.540 —-3.49 —-3.910 —-3.89 —2.850 —-2.95 —3.930 —3.81
a(f)CC A 3.520 3.524 3.615 3.615 3.890 3.890 4.090 4.086 4.080 4.078
Eé‘q’ (eV/atom) —4.428 —3.532 —3.878 —2.846 —3.929
agq’ (A) 2.482 2.556 2.719 2.896 2.886
chP A) 4.105 4.162 4.675 4.679 4.704
c11 (GPa) 241 248 170 168 239 227 124 124 183 192
ci» (GPa) 151 155 123 122 173 176 94 94 159 163
cus (GPa) 127 124 76 76 66 72 46 46 45 42
K (GPa) 181 186 138 138 195 193 104 104 167 173
Tnett (K) 1698 1728 1324 1358 1154 1828 1266 1235 1111 1337
E¢ voc (€V) 1.571 1.79 1.272 1.28 1.375 1.7 1.103 1.11 1.026 0.93
vain (/m?) 1.759 2.011 1.239 1.952 1.922 1.920 0.862 1.172 0.786 1.283
ysr (mJ/m?) 134.7 125-300 44.4 35-78 181.1 175-180 17.8 16-22 4.7 3045
yusr (mJ/m?) 297.6 269-350 162.1 158-210 211.7 265 114.9 190 95.7
tsr (GPa) 5.8 3.2 2.2 3.4 2.0 1.8

Ref. [66] to achieve high accuracy: Using a small timestep
of 6t = 0.5fs, a barostat at 0 Pa with damping parameter
0.5ps, and a Langevin thermostat with a damping parameter
of 0.05 ps set to maintain a total force of zero, we equilibrated
a simulation cell consisting of 20 x 20 x 20 unit cells in 50 K
increments up to the melting point at each temperature for
250 ps. Averaging of the lattice constant was performed over

TABLEII. Material properties of other fcc metals computed with
the (M)EAM potentials (Pot.) compared to literature values (Ref.).
Reference data sources are the same as in Table 1.

Al Pb

Pot. Ref. Pot. Ref.
E{* (eV /atom) —3.360 —-3.39 —2.040 —2.03
afe (A) 4.050 4.050 4.950 4.950
EJ® (eV /atom) —3.332 —2.037
a® (A) 2.819 3.497
b (A) 4.945 5.729
¢y (GPa) 114 107 56 50
c1» (GPa) 62 60 45 42
c1s (GPa) 32 28 19 15
K (GPa) 79 76 49 45
Tnete (K) 1042 933 686 601
Ef e (€V) 0.675 0.67 0.584 0.58
Yain (J/m?2) 0.871 1.199 0.362 0.321
¥se (mJ/m?) 145.5 135-200 9.0 25
yusr (mJ/m?) 167.3 175-224 57.1
tsr (GPa) 2.3 2.8 0.8

the last 60 ps. The corresponding raw data of the bulk property
calculations is available in the companion dataset [58].

The data provided in Tables I and II suggest that the Ni
[48], Cu [49], Ag [51], Al [53], and Pb [54] potentials repro-
duce the bulk properties well. The Pd potential [50] strongly
underestimates the melting point, while the Au potential [52]
both underestimates the melting point and the stacking-fault
energy. The latter should therefore be treated as a model po-
tential for the case of a very low stacking-fault energy. Surface
energies are not predicted well in general, but should not
affect the simulation of GBs. The Ni, Cu, and Ag potentials
are based on closed-form expressions that vary smoothly and
continuously as a function of, e.g., bond length. Apart from
bulk and defect properties, these potentials were also tested to
reproduce thermal expansion and phonon frequencies, which
are important for the GB excess free energy calculations.
The Al potential was produced with similar care, but it was
defined in terms of cubic splines. This can lead to different
behavior in different ranges of bond lengths, which manifests
for example in the GB free energy as shown later. The Au
and Pd potentials were defined to exactly follow an equa-
tion of state, which often leads to inferior results [49]. The
more well-known, older Pd potential by Foiles et al. [52]
has been found to perform worse, with the newer potential
used here [50] reproducing the bulk material properties and
stacking-fault energies quite well [67,68]. There exists to the
best of our knowledge no reasonable alternative for the Pb
potential. We also tried a Ca MEAM potential [69], but found
that we obtain negative excess volumes and excess entropies
for some GBs, which seems unreasonable for fcc materials,
indicating that the potential is not suitable for the simulation
of GBs.
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FIG. 1. In [111] tilt GBs in fcc, two symmetric variants exist.
Here, part of the dichromatic pattern of a £7 GB is shown. The solid
and dashed lines represent all possible symmetric GB planes (not
considering translations). Due to the threefold symmetry of the (111)
plane, all solid and dashed lines, respectively, are equivalent. In this
paper, we only investigate variant I.

B. Finding GB phases with the y-surface method
and calculation of GB excess properties

Next, we constructed the bicrystals. There are two sets of
symmetric grain boundaries for the [111] tilt axis (Fig. 1).
Here, we only consider variant I, since two different GB
phases have been identified before for X19b (111) {178} [28]
and X37c (111) {11011} [29]. For the symmetric variant II,
only one GB phase seems to exist [47,70,71]. We thus chose
the symmetric ¥ boundaries listed in Table III. We follow the
convention from Ref. [9], where x corresponds to the tilt axis,
y to its orthogonal direction inside the GB plane, and z to the
GB normal [Fig. 2(a)].

When searching for GB phases, bicrystals are joined to-
gether at the desired GB plane and the microscopic degrees of
freedom [translations [B], Fig. 2(b)] are sampled (y-surface
method). We only sample [B;] and [B;] since this can always
be made equivalent to a full [B] vector by addition of DSC
vectors in our case [Fig. 2(c)]. Typically it is also necessary
to consider inserting/removing partial fcc planes at the GB in
order to discover all relevant GB structures [21,22,24]. This
can be expressed via the parameter

[n] = mod 1, 3

plane

where N corresponds to the number of atoms in the bicrystal
and Npjane to the number of atoms in a plane of the fcc structure
that is parallel to the GB. For the relevant £19b and X37c
GB phases, however, such search has found that all defect-free
GB phases have [n] = 0, i.e., no partial fcc planes [28,29].
We therefore assume that this is true for the other [111] tilt
GBs and used the simple y-surface method. We verified the
assumption of [rn] = 0 by MD simulations with open surfaces
at high temperature [21] for some example cases.

TABLE III. List of the bicrystalline samples used to construct
symmetric X tilt GBs and to search for GB phases.

CSL type Tilt axis Misorientation GB planes
>13b [111] 27.80° (725) (752)
7 [111] 38.21° (145) (415)
¥49 [111] 43.57° (21113) (11213)
219b [111] 46.83° (178) (718)
¥37c [111] 50.57° (11011) (10111

(a) A z-GBnormal (b) [V]c,’3[3B3]
top
crystallite
X bottom
[111] | crystallite
tilt axis ;
(c) d220)
d(224)1
3 H H E [10]
Mo o 0|0 o o] |oTe of
S o I e e S e e
' an . an . an ‘ ' an . an . an ‘ ' an . an . an ‘
et et LBt LR ]
I . an . an . - I . an . an . - I . an . an . -
, P PR PR T
l [B5]=[V] @Bl =(0,0,[V]- da2s))
Fanatd ) [B] = (~d(111), d(220), [V1)

FIG. 2. Geometry and excess properties of the bicrystals. (a) The
convention used for the coordinate system. (b) The two crystallites
are translated with regard to each other by a vector [B], which is
specific to a GB phase. Due to the boundary conditions (lengths in
x and y direction are fixed by the bulk phase and the system is free
to expand in z direction [9]), excess stresses [71], [722], and [72]
occur, while the microscopic translations of the top crystallite lead
to the excess volume [V] and the excess shears [B;] and [B;]. These
excess properties couple to externally applied stresses o3, 023, 033
and strains €11, €2, €12 (blue text). (¢) While the components [B]
and [B,] are simple displacements, [B3] consists of both the excess
volume [V] and accounts for the shift by full crystallographic planes
normal to the GB. Here, this is illustrated for a hypothetical 3 [1 1]
GB. Different markers indicate the three different (111) planes and
gray areas the interplanar distance d(;,4). The left side only has the
[V] component. (i) Removing a {112} plane (black atoms in the
middle), then leads to a shift downwards by d(4) (right side). (ii)
This shift can alternatively be expressed by another shift that only
changes the [B;] and [B,] components. The latter is always true in
our GBs.

The GB excess properties were defined and calculated
as described by Frolov and Mishin [8,9], except for the
microscopic, translational degrees of freedom [B], whose cal-
culation is described in Ref. [29] and in Supplemental Fig. 1
within the Supplemental Material (SM) [72]. Detailed defi-
nitions are also provided later in the paper together with the
results. Structures were visualized with ovITO [73]. Raw data
is available in the companion dataset [58].

C. Excess free energy

In the present paper, we are interested in the stability of GB
phases and GB phase transitions. In pure materials, such phase
transitions can occur under externally applied stress or strain,
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or with changing temperature. The GB phase transitions can
be predicted by computing the GB excess free energies of the
different GB phases, which we define here as [8,9]

y =[U]1—TIS] —oxlV]— ) _ [Bilos, )

i=1,2

where [U] is the excess internal energy, [S] the excess entropy,
o;; the externally applied stress tensor, and [V] the excess
volume. Here, [B|] and [B;] are excess shears, which are equal
to the microscopic, translational degrees of freedom when
no macroscopic stresses or strains are applied [Fig. 2(b)].
The excess volume [V] is not necessarily equal to [B3] as
defined here [see Fig. 2(c)], but only [V] enters the free
energy. In contrast to Refs. [8,9], we relax the formality of
the bracket notation for notational simplicity, intending them
only as indicators of GB excess values. We define all of them
as intrinsic values by normalizing [U], [S], and [V] by the
GB area. More details and definitions of the excess properties
are provided later in Sec. III B. The free energy at T = 0K
under applied stresses and strains can be obtained directly in
molecular statics by applying the given stress to the system
and computing [U], [V], and [B;].

The influence of temperature, however, cannot be calcu-
lated directly, because the entropy is not accessible via simple
molecular statics or MD simulations. Since we are dealing
with pure systems, the entropy is a vibrational entropy and can
be computed either via thermodynamic integration [66,74,75]
or with the quasi-harmonic approximation (QHA) [75,76].
Here, we chose the latter method for reasons of computational
efficiency. Force constant matrices were computed with the
dynamical_matrix command in LAMMPS, from which we
then obtained the phononic eigenfrequencies in real space.
The free energy F' was approximated by neglecting quantum-
mechanical effects as

FetT 3" In 5
8 ; e ©)
where v; are the phononic eigenfrequencies excluding the
three zero-valued eigenvalues. This describes the systems
modeled by MD, which are Newtonian systems, but we found
that including quantum-mechanical effects (mostly zero-point
vibrations and Debye-like thermal expansion at low temper-
atures) barely influences the GB free energies, especially at
room temperature and above [29]. The GB excess free energy
was calculated by subtracting the free energy of a defect-free
fcc slab containing the same surfaces and number of atoms
as the sample with the GB [77]. Raw data is available in the
companion dataset [58].

D. Corroborative MD simulations

In addition to calculating y (0;;, T'), we also verified some
example cases using MD simulations at elevated temperature,
with and without applied stress and strain. We used systems
roughly of size 6 x 16 x 20nm? (10 unit cells in tilt axis
direction) and a time integration step of 1fs. Temperature
was controlled with a Nosé—Hoover thermostat. We typically
ran the simulations for up to 40 ns, or until the expected GB
phase transition could be observed. Raw data is available in
the companion dataset [58].

For calculations probing the influence of the temperature
or the stress o33 normal to the GB, we used open boundaries
in y and z direction, while using periodic boundaries in the
tilt axis direction (x). A barostat at 0 Pa was applied in the
periodic direction.

For the influence of a tension or compression in y di-
rection (g2;), we kept the y direction periodic and instead
introduced open boundaries in the x and z directions. Strain
was applied in the periodic direction after scaling the system
to the appropriate lattice constant for the target temperature
and simulation cell length was subsequently kept constant in
the periodic direction.

E. Experimental sample preparation and STEM imaging

In order to verify the simulations, we also experimentally
investigated the atomic structure of a near-X49 GB in copper
in addition to the already published experimental structures
[28,29,47].

For this, a Cu thin film was deposited from a high purity
(99.999%) Cu target on (0001)-oriented sapphire substrate by
magnetron sputtering. The deposition was performed at room
temperature with a radio frequency power supply at 250 W,
a background pressure of 0.66 Pa, and 20 sccm Ar flow. We
obtained a nominal film thickness of 600 nm with a deposition
time of 45 min. The film was then annealed at 400 °C for 2h
within the sputtering vacuum chamber.

We identified pure tilt high-angle grain boundaries using
electron backscattered diffraction imaging in a Zeiss Auriga
scanning electron microscope. In the next step, we lifted out a
349 (111) GB using a Thermo Fisher Scientific Scios2HiVac
dual-beam secondary electron microscope equipped with a
Ga™ focused ion beam (FIB). A plane-view sample was ex-
tracted and attached to a Cu grid. For the lamella thinning,
an initial current of 0.1 nA and voltage of 30kV was used,
reduced sequentially to 7.7 pA and 5kV. The FIB sample was
then transferred to a probe-corrected Thermo Fisher Scientific
FEI Titan Themis 80-300 (scanning) transmission electron
microscope. A high-brightness field emission gun at an accel-
erating voltage of 300 kV, semiconvergence angle of 17 mrad,
and probe current of 85 pA was used for imaging. The image
was recorded with a high-angle annular dark field (HAADF)
detector (Fishione Instruments, Model 3000) with a collec-
tion angle of 78 to 200 mrad. An image of 50 frames with
1024 x 1024 px? with a dwell time of 2 us and a step size of
12.45 pm was registered and overlaid using the drift compen-
sated frame integration (DCFI) method. The final image was
optimized using second-order polynomial background correc-
tion, Butterworth, and Gaussian filters. The misorientation
between both grains was measured from the angles between
{220} lattice planes of both grains, using an average of at least
ten different measurements.

III. STRUCTURES IN DIFFERENT FCC METALS

We performed a computational structure search with Ni,
Cu, Pd, Ag, Au, Al, and Pb (M)EAM potentials for the GBs
in Table III. We found that the possible structural motifs are
similar not only across different metals (Fig. 3(a) and Supple-
mental Fig. 3 in the SM [72]), but as well across different
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FIG. 3. (a) GB phases of X7 tilt GBs in a selection of fcc metals. The top row shows the domino phase (red colors), the bottom row the
pearl phase (blue colors). The scale bar is valid for all images and the axes indicate the crystal directions of the top and bottom crystallites,
respectively. The axes on the left are for the top views, the axes on the right for the side views. The coloring serves only to highlight the
structural motifs. (b) Different misorientations for copper GBs. The axes are equivalent to (a)—for the exact crystal directions see Table III.
Snapshots of the GB structures for all metals and misorientations can be found in Supplemental Figs. 2—6 in the SM [72].

misorientations from 27.80° to 50.57° (Fig. 3(b) and Sup-
plemental Figs. 2—6 in the SM [72]). Indeed, almost all of
these motifs resemble the “pearl” and “domino” structures
found previously in copper [28,29]. In some cases, additional
structures were found, which will be discussed later.

Viewed from the [111] tilt axis direction, the domino
phases consist of pairs of squares (light red motifs in Fig. 3),
which are distorted and arranged differently depending on the
misorientation. From the side, the (111) planes are approxi-
mately aligned, with offsets much smaller than the interplanar
spacing.

The pearl phases consist of a single square (light blue
motifs in Fig. 3) separated by varying amounts of pearl chains
(dark blue or purple) when viewed from the [111] tilt axis
direction. The (111) planes are shifted by approximately half
the interplanar spacing, in contrast to the domino phases.
Whereas the atomic structure of the domino phase seems to
be independent of the material [Fig. 3(a), upper row], slight
changes can be observed in the pearl phase [Fig. 3(a), lower
row]. In the X7 GBs, two different pearl variants exist, which
can be seen by comparing, e.g., Cu and Ag. The variant, which
occurs in Ag [Fig. 3(a)] and Pb (Supplemental Fig. 3 in the
SM [72]) appears mirror symmetric in the projection (called
aligned pearl from here on), while the variant in the other
metals appears asymmetric (called sheared pearl from here
on). This minor difference can best be seen by inspecting the
light blue square motifs. Furthermore, additional motifs occur
in the pearl phase of the ¥37c GB (Fig. 4 and Ref. [29]),
leading to three distinct pearl variants (pearl #1, #2, and #3).
Which of these variants has the lowest energy depends on the
material, as discussed later.

For the X13b and X7 boundaries, some additional low-
energy structures occur, which we simply name A, B, and
C (shown in Fig. 5). These look different from the pearl and
domino phases on visual inspection and are therefore listed
separately. We only consider structures that are thermodynam-
ically stable under some condition for at least one element
and will later provide a more quantitative analysis of the GB
phases, but will otherwise only discuss them where relevant.
The A phase of the £13b GB occurs in all metals except Au
and Pb, but only has a low energy compared to other GB
phases in Al. In the X7 tilt GBs, Pb has the B phase and the C
phase is a higher-energy phase in all metals.

Due to the varying quality of empirical potentials—
especially in the case of GB structures, which have not been
included in the fitting database for the respective potential—
an independent validation based on experiment or ab initio
methods is desirable. Unfortunately, the unit cells of the
high ¥ GBs are too big to allow the required high-accuracy
density-functional theory (DFT) simulations, especially when
one needs to avoid GB/surface elastic interactions by includ-
ing a sufficient amount of bulk material. In tests we found
that, e.g., the excess volume is very sensitive to such effects.
We thus limit ourselves here to a comparison to STEM im-
ages obtained for Cu and Al. For Cu ¥19b and ¥37c, see
Refs. [28,29]. For these GBs in Al, only the domino phase
has been found to date [47]. Additionally, Fig. 6 shows an
experimental STEM image of a 349 pearl phase in copper.
All of the structures in the experiments listed above agree
well with the simulated structures. Because of the similarity of
motifs across misorientations and materials, we are confident
that these structure predictions are therefore quite reliable.
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FIG. 4. Snapshots of the domino phase and the three variants of
the pearl phase in £37c. Here, the material is copper. The three pearl
variants differ in their motifs. In addition to the typical squares and
pearl chains, which are the same in all variants, we observe variations
that we denominate with a letter: either an 2 motif (pearl #1, green),
a B motif (pearl #2, orange), or an S motif (pearl #3, pink) occurs.
AtT = 0K, the lowest-energy pearl variants are pearl #1 for Cu, Ag,
and Au; as well as pearl #3 for Ni, Pd, Al, and Pb. The energies of
pearl #1 and pearl #2 are typically very similar, except for Pb, where
the pearl #2 structure is mechanically unstable.

We note that the structures of the [111] tilt GBs are rel-
atively complex compared to, for example, the more typical
kite structures in other (tilt) GBs [21,30,38]. Nevertheless,
visual inspection already indicates that—except for the special
case of the B phase in Pb—material-specific GB structures do
not exist and that the presented GB phases are universal in
fcc metals. This raises the question of how big the role of the
physics and chemistry of a specific material is and how much
of that material-specific information needs to be included in a
model to reproduce them. We will investigate this in the next
section and then proceed to a more quantitative comparison of
the GB phases in terms of excess properties.

A. Geometry or material physics?

As a first test, we used a Lennard-Jones pair potential as
a simplified, generalized model of a densely-packed metal.
Physically, pair potentials cannot reproduce the concept of
bond order, i.e., the strength of any interatomic bond simply
depends on the bond length and not on the atomic environment
(such as for example coordination number). By repeating the
structure search with this pair potential, we can nevertheless
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FIG. 5. Snapshots of the A, B, and C phases. The material is
copper for the A and C phases. The B phase only exists in lead.
Snapshots for all materials are provided in Supplemental Figs. 2 and
3 in the SM [72].
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find the same structural motifs in the GBs (see Fig. 7 for the
37 pearl phase).

In the past, hypothetical GB structures have also been
constructed using the assumption of hard spheres due to the
lack of realistic interatomic potentials [78]. We used our next-
neighbor pair potential to explore how realistic the results are
under the assumption of very short-ranged interactions. For
this, we took the set of all distinct GB structures obtained
using all the other potentials and reminimized them with
the next-neighbor potential. While both energy minimization
using the next-neighbor pair potential and rigid displacement
of hard spheres (as performed by Frost et al. [78]) lead to
quite open GB structures, the former are at least able to repro-
duce some of the motifs produced by longer-ranged potentials
(Fig. 7). The two bonds drawn in Fig. 7 are longer with the
next-neighbor pair potential than with the Cu and Lennard-
Jones potentials. This indicates that longer-ranged interactions
and the resulting local bond relaxations are crucial to describe
GB structures well. The more realistic, medium-ranged po-
tentials predict an offset between (1 1) planes. A look at the
side view of the structure modeled with the next-neighbor pair
potential reveals that there is almost no such offset. The hard
sphere model interestingly predicts the offset but not the other
structural motifs. This is not necessarily the case for all mis-
orientations, but the example of the X7 tilt GB highlights that
neither assumptions of next-neighbor interactions nor of hard
spheres will be sufficient to capture complex GB structures
and their excess properties.

We can conclude here that the GB phases are the result
of the fcc geometry and medium-ranged interatomic inter-
actions, but that the GB motifs are still densely packed,
otherwise the Lennard-Jones potential would not be able to
model them. This purely visual inspection is limited, however,
which is why we will continue with an examination of the
excess properties for a more quantitative analysis.

B. Excess properties

A good definition of separate GB phases is that the cor-
responding atomic structures have distinct excess properties.
If the excess properties are very close in value, we would
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FIG. 6. Comparison between a STEM image of a pearl structure
in the 49 tilt GB in copper and simulations. (a) HAADF-STEM
image of a X429 tilt GB (misorientation 43.3° & 0.3°). Note that there
is a defect (disconnection) on the right side of the image, where only
one blue square is located in between the yellow motifs and where
the rightmost yellow motif is mirrored. An image of a longer stretch
of the GB can be found in Supplemental Fig. 7 in the SM [72]. (b) It
can be seen that the structure from the MD simulation is the same.
The colors in these images highlight that the ¥49 GB consists of
alternating motifs from the X7 GB (yellow) and the ¥19b GB (blue).

rather define the structures as defective or as microstates of
a GB phase [24,28,29,79]. Furthermore, the excess properties
influence the GB thermodynamics [Eq. (4)] and are therefore
important quantities. We will thus now discuss the individual
excess properties introduced in Sec. II C in detail for our GB
phases.

Figure 8(a) shows the normalized excess volumes [V]/ag
of all £7 GB structures (data for other GBs are shown in
Supplemental Figs. 8(a)-12(a) in the SM [72]) with

Vos — NQ

V] =
V] Acn

(6)

where Vgg is the volume of a region of the simulation cell
containing a GB (but no surfaces), N is the number of atoms in
that region, 2 is the atomic volume in a defect-free fcc phase,
and Agg is the area of the GB. The normalization by the fcc
lattice constant ag at T = 0 K makes these volumes unitless
and comparable between materials.

In general, domino phases have higher excess volume than
pearl phases as indicated by the lines in Fig. 8(a). This trend
is reproduced by the Lennard-Jones potential, but not by
the next-neighbor pair potential. As already visible in the
snapshots and as generally expected, this indicates that the
relaxation inside the GB is influenced by several neighbor
shells.
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FIG. 7. Visual comparison of the X7 pearl structure modeled
using the copper EAM potential (Cu), a Lennard-Jones pair potential
(L-J), and a next-neighbor pair potential (PP1). For comparison, the
data from Frost et al. [78] (rigid displacement of hard spheres) was
also reproduced here, but does not exhibit any of the pearl or domino
structures. The scale bar for the model potentials is given in reduced
units of the equilibrium fcc bond length ry. The axes are the same as
in Fig. 3(a).

Figure 8(b) shows the microscopic, translational degrees of
freedom [B] of the ¥7 GB, which are the relative rigid-body
displacements between the two crystallites (data for other GBs
are shown in Supplemental Figs. 8-12 in the SM [72] and an
illustration of the concept can be found in Fig. 2). [B] =0
represents the case when coincidence sites in the dichromatic
pattern actually overlap (which is how the dichromatic pattern
is typically plotted), while [B] # 0 means that no coincidence
sites exist in the dichromatic pattern, i.e., —[B] represents the
shift required to obtain coincidence sites (see also Supple-
mental Fig. 1 in the SM [72]). Due to this, [B] vectors are
equivalent if they can be obtained by adding or subtracting
DSC vectors. The components [B;] and [B;] are also called
excess shears and enter the GB excess free energy by coupling
to externally applied shear stresses [Eq. (4)]. Due to the sym-
metry of the present bicrystals with symmetric tilt GBs, [B;]
and —[B;] are degenerate states of the same GB phases. This
is not the case for [B,], where —[B] ] corresponds to switching
the top and bottom crystallite.

A typical feature of the pearl phases is that the (111)
planes of the abutting crystallites are not aligned, but shifted
by approximately a half-plane in tilt-axis direction. This is
described by [B;]. All pearl variants are united by this half-
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FIG. 8. Excess properties of the £7 GBs. Colors of data points correspond to the material, shapes to the GB phase. (a) The normalized
excess volumes of all relevant GB phases are shown. The connecting lines highlight the difference in excess volume between the lowest-energy
pearl phase and the domino phase and reveal that the domino phases typically have higher excess volumes. Note that the upper part of the graph
uses a different scale in order to be able to better discern the data from (M)EAM models. (b) The microscopic, translational degrees of freedom
[B] of the X7 phases. The gray box shows the DSC unit cell, whose repetition is indicated by gray lines. The data are presented such that
[B;] = [V] in order to show the data unambiguously. Data points lie outside of the projected DSC unit cell, because this unit cell is triclinic: To
move the data points inside the unit cell, DSC vectors with an out-of-plane component are required, such that [Bs] # [V] (see Supplemental
Fig. 9 in the SM [72] for more details and different visualizations of this). (c) Two components of the excess GB stress normalized by lattice
constant and bulk modulus. The general trend of tensile excess stresses for domino and compressive excess stresses for pearl can be seen. The
C phase is distributed around [7;] = 0 with tensile excess stresses in [72;]. Data for all GBs are provided in Supplemental Figs. 8—12 in the

SM [72].

plane shift. The domino phases, in contrast, are characterized
by [B;] & 0. The shift [B,] parallel to the GB plane has two
different behaviors in the case of the ¥7 GB. Both domino
(diamond symbols) and the aligned pearl variant (pentagon
symbol) have a fixed value, while the sheared pearl (cir-
cles) has material-dependent values, i.e., exhibits some excess
shear. The difference in this shift describes the amount of
shear that the pearl motifs undergo. An aligned pearl variant
was thus found in Ag and Pb in the X7 GBs, and universally
in the £19b GBs. The X13b pearl phases are mostly aligned,
except for a small asymmetry in Ag, Pb, and the Lennard-
Jones model, which we do not identify as a separate pearl
variant. For 249 and X37c, only sheared pearl variants exist.

Figure 8(c) and Supplemental Figs. 8(f)-12(f) in the SM
[72] show the normalized excess GB stresses [7;;]/(aoK) with

GB

0,;7°VgB
[tij] = ——. 7
N Acs
where alg’B corresponds to the average of the relevant stress

tensor component in the region containing the GB. This
definition allows the easy calculation of strain energy via
fAGB[rij]ds [cf. Eq. (10)], meaning that the excess stresses
are expressed in J /m?. Here, the [11] excess stress acts along
the tilt axis and [t2] along its orthogonal direction within
the GB plane [see also Fig. 2(b)]. The normalization by the
ground-state fcc lattice constant ag and the bulk modulus K
makes these stresses unitless and comparable between mate-
rials.

There is a tendency for [71;] < 0 and [72,] < O for pearl
and [71;] > 0 and [122] > O for domino. Similar trends are
observed in all GBs. That means that the pearl phase with

lower excess volume is under compression in the in-plane
directions of the GB, while the domino phase with higher
excess volume is under tension. However, there are several
exceptions, such as Al, where the GBs generally tend more
towards tensile stresses. The next-neighbor pair potential is
once again unable to capture this trend. We will therefore not
discuss it any further. The excess stresses of the pearl variants
for £37c GBs are very similar within the same material, with
the exception of Al (see Supplemental Fig. 12(f) in the SM
[72]), indicating again that they are closely related.

Supplemental Figs. 812 in the SM [72] show that the A,
B, and C phases are characterized by a [B;] offset of half an
interplanar spacing (similar to pearl), but positive [15;] (simi-
lar to domino), which is why we label them as individual GB
phases. We make the distinction between A and B/C because
they appear at different CSL boundaries, and differentiate B
and C in Pb by their different values of excess shear [B,] and
excess stress [12;].

IV. THERMODYNAMIC STABILITY

A. Ground-state stability

For each of the investigated tilt GBs we showed that at least
two GB phases (domino and pearl) exist. In order to evaluate
which of these GB phases will actually occur, we have to
investigate their thermodynamics. We first consider the case
of T = 0K and no externally applied stress or strain. Here,
the ground-state GB free energy is

Egp — NE[*®

=[U]=
Yo Acn

: ®)
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FIG. 9. Ground-state GB energy difference Ay = ygomin® — y}

pearl

. Positive values mean pearl is stable, negative values that domino is

stable. These values are for 7 = 0 K and the difference between the lowest-energy pearl variant and the lowest-energy domino variant is used.
For X13b, Al is omitted and for X7 Pb is omitted. This is due to other low-energy phases occuring that cannot be classified unambiguously
as domino or pearl. (a) GB energy difference as a function of misorientation. The lines are guides for the eye. (b) Correlation between the
normalized stacking-fault energy ysr and Ay. The normalization ensures that the plotted values are unitless and comparable between different
materials. The line represents a linear regression of the data points and the Pearson correlation coefficient r, is reported. More data and the
same plot without normalization is provided in Supplemental Fig. 14 in the SM [72].

where Egg is the potential energy of a region of the simulation
cell containing a GB (but no surfaces), N is the number of
atoms in that region, Ef* is the ground-state energy per atom
of the defect-free fcc phase, and Agp is the area of the GB.
Note that the internal energy is equal to the potential energy in
this section, because we simulate a classical, Newtonian sys-
tem at zero temperature, i.e., with zero kinetic energy. All GB
energies are plotted in Supplemental Fig. 13 in the SM [72].

Figure 9(a) and Supplemental Fig. 14 in the SM [72]
show the energy difference Ay = ydomine — P 4 7 — 0K
between the domino and pearl phases. In many cases, the
pearl phase is stable, with the highest energy difference being
observed for the X19b GB, except for Ni (highest energy
difference for X49). The X19b GB often also has the lowest
overall GB energy, although for Pd, Al, and Pb the ¥7 GB has
a lower energy (Supplemental Fig. 13 in the SM [72]). The
domino phase is stable in the ¥£37c GB in many materials,
and seems to also become more favorable again towards lower
misorientation angles. Apart from domino and pearl, the A, B,
and C phases are usually high-energy GB phases. Exceptions
are the A phase in Al, which is quite close in GB energy to the
pearl phase, and the B phase in Pb, which is the lowest-energy
GB phase in X7. The C phase only plays a role at higher
temperatures, as discussed later in Sec. IV C.

The Lennard-Jones potential, in contradiction to the more
realistic (M)EAM potentials, always predicts that the domino
phase is stable (see Supplemental Fig. 14(a) in the SM [72]).
This indicates that the Lennard-Jones potential is not a good
“generalized” model for most metals: While it is able to cap-
ture structural motifs and their excess properties qualitatively,
the material-specific physics play a bigger role in the rela-
tive thermodynamic stability of the GB phases. This is also
important for the evaluation of early simulation work on GB
structures [42]: The present results suggest that it is likely that

such simulations predicted the wrong ground state because
they used pair potentials instead of more realistic material
models.

For the (M)EAM potentials, we tried to find a simple
predictor of the relative GB phase stability as a function of
the material properties, and focus here on the stacking-fault
energy ysp. This is a tempting quantity, because both GBs
and stacking faults are planar defects and because ysp is
indirectly related to the energy of coherent twin GBs. If we
normalize both the stacking-fault energy of the metal and
the GB energy difference Ay between domino and pearl by
the respective fcc lattice constant and cohesive energy, we
find that low stacking-fault energies tend to be associated
with a preference for the pearl phase and high stacking-fault
energies with a preference for the domino phase [Fig. 9(b)]
(see also Supplemental Fig. 14 in the SM [72]). This trend
is not very convincing, however, since for example nickel
deviates quite strongly from the correlation. The data for
the X£13b and X37c GBs is also quite scattered, exhibiting
a tendency for an increased stability of domino. A further
relation between stacking-fault energy and structure is that
the high stacking-fault-energy metals Ni, Pd, and Al have
lower energies for the pearl #3 variant in X37c, while the
low stacking-fault-energy metals Cu, Ag, and Au (as well as
the Lennard-Jones potential) favor pearl #1 or #2. Yet, this
relation is undermined by Pb, whose stacking-fault energy is
low, but whose ground-state pearl variant is #3. Other material
properties have even weaker or no correlation with Ay.

Ultimately, the relative energies of GB phases have to be
computed with sophisticated models (such as EAM potentials
or DFT) and simple rules based on bulk properties will be
incomplete. This is especially true since the GB energy differ-
ences are often small and on the order of 10 mJ/ m2, although
they can be as high as approximately 120 mJ/m? [Fig. 9(a)].
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B. Stress-dependence of the free energy

The excess free energy at 7 = 0K under applied stresses
033, 023, and o3 can be described as [9]

y =[Ul—oxlVl— ) [Bloy ©)

i=1,2

in the case of tilt GBs [see Fig. 2(b) for a sketch of the stresses
and strains]. The excess free energy under applied strain &y,
can be calculated by integrating the work done by the excess
stress [9] as

1 €22

Ag
y=vo ot

Acs  Acs Acg(e) [t2](e)de,  (10)

where Ay is the GB area before deformation. The calculation
for €11 and €1, is equivalent. Because the additional work is
converted fully into excess internal energy, we can simply
express the GB free energy as

y =1U], QY

without need for the integration.

Because the domino phase universally has a higher excess
volume than the pearl phase [Fig. 8(a)], it stands to reason
that it can be stabilized by a tensile stress o33 normal to the
GB, while the pearl phase can be stabilized by a compressive
stress. Figure 10 and Supplemental Figs. 15—-19 in the SM [72]
show that this is the case, but that the required stresses are
usually very high (on the order of gigapascals) and sometimes
exceed the range of values that were investigated. One inter-
esting exception is for example the Pd 349 GB [Fig. 10(c)],
where the ground-state energy difference between the domino
and pearl phases is close to zero. We thus validated this
case by MD simulations at 7 = 900K and o33 = 1 GPa,
starting once from a pearl phase and once from a domino
phase. In less than 8 ns, the systems under compression tran-
sitioned to the pearl phase and the systems under tension to
the domino phase, as expected (see Supplemental Fig. 20 in
the SM [72]).

Another interesting excess property is the excess stress
[t22] in the GB plane, since it indicates if the GB phase is un-
der compression or tension. Since typically [12;] < O for pearl
and [12,] > O for domino, it seems reasonable that a compres-
sive & would favor domino, while tension would favor pearl
[see Eq. (10)]. Figure 11 and Supplemental Figs. 21-25 in the
SM [72] show that this is indeed a general trend. Exceptions
are some GBs in Ni, Al, and Pb. For those GBs, however,
the value of [1y;] is positive for the pearl phase, suppressing
a clear trend for a GB phase transition under applied strain.
For X13b GBs in Cu, Ag, or Pb; X7 Gbs in Cu or Ag; ¥49
GBs in Pd or Al; X19b GBs in Al; and X37c GBs in Cu
or Ag, the required strains for the GB phase transitions are
relatively low and could reasonably be observed experimen-
tally (Supplemental Figs. 21-25 in the SM [72]). We tested
this by performing MD simulations for the ¥7 GB in Cu
with £0 = —2%, +1%. We ran the simulations at 7 = 900 K
in order to accelerate the transition kinetics. A GB phase
transition can be observed after less than 4 ns, obtaining the
domino phase under compression and the pearl phase under
tension (Supplemental Fig. 26 in the SM [72]).
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FIG. 10. GB free energies as a function of an applied stress o33
normal to the GB for some selected GBs. (a) In copper X7 GBs,
the domino phase becomes stable under tension. (b) The Al potential
also predicts that pearl becomes stable under very high compressive
stresses. Furthermore, it exhibits some changes of the curvature of y
for the pearl phase, which are associated with small rearrangements
of the atomic motifs, leading to the prediction that pearl can addition-
ally become stable at very high tensile stresses. This is likely due to
the Al potential being described by cubic splines (the change of cur-
vature representing a transition to another polynomial in the spline).
Other potentials do not show such behavior, suggesting that this is
most likely an unwanted and unphysical feature of the potential at
high stresses/strains. (c) The Pd £49 GB represents an interesting
case due to the low stresses required to transition between pearl and
domino. Data for all GBs is available in Supplemental Figs. 15-19
in the SM [72].

In addition to externally applied stresses, the rigid-body
displacements between the two crystallites could also be de-
termined by restrictions on GB sliding in polycrystals or by
the bonding to a substrate in the thin film case [79]. Then,
however, [B] in Eq. (9) no longer corresponds to the dis-
placement, but the excess displacement over the defect-free
crystal subject to the same stress o3; [8,9]. Thus, knowledge
of the resulting, system-size-dependent stress state would be
required to be able to calculate the free energy, necessitating
mesoscale modeling.
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FIG. 11. GB free energies as a function of an applied strain &,.
(a) The domino phase in the £7 GB in Cu can be stabilized under
compression. (b) In Al, domino remains stable independent of the
applied strain. This is due to both GB phases having positive excess
stresses of similar magnitude, meaning that their excess free energy
change due to strain is comparable. (c) In the £19b GB, however, the
excess stresses of domino and pearl in Al have opposite signs and a
phase transition is possible. The gaps in the curve represent points at
which the atoms slightly rearrange within the domino motifs, leading
to small jumps in the excess free energy. Data for all GBs is available
in Supplemental Figs. 21-25 in the SM [72].

Finally, we found that the A, B, and C phases are not stable,
except for the A phase in Al, which becomes stable under
compression normal to the GB plane or under tensile ¢5,, and
the B phase in Pb, which is the lowest-energy GB phase in X7
even without applied stress or strain.

In summary, our simulations show that the GB phase
transitions both under stress and under strain can be well
predicted by the excess properties in the ground state. The
GBs thus obey Le Chatelier’s principle and counteract the
applied stresses and strains via GB phase transitions.

C. Temperature dependence of the free energy

The excess free energy without applied stresses or strains
is

y =W0]1-TI[S] (12)
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FIG. 12. GB free energies as a function of temperature for some
selected X7 GBs. (a) In copper, the pearl phase is stable, until the
high-energy, high-temperature C phase becomes stable at around
650K. (b) In Al, domino transitions to pearl at around 400K,
(c) while in Pd the domino phase remains stable at all temperatures.
In the latter cases, the C phase is always metastable. The noise in the
data is a result of numerical issues with the interatomic potentials, see
Appendix. Data for all GBs is available in Supplemental Figs. 27-31
in the SM [72].

for finite temperatures. Note that for 7 > 0K, the potential
energies £ in Eq. (8) have to be replaced by (E), which
are the average total energies at the given temperature. The
excess entropy [S] is not easily accessible to MD simulations.
The change of excess free energy y(T) = yo + Ay(T) can
instead be calculated using either thermodynamic integration
[66,74,75] or from the phonon eigenfrequencies using the
QHA [75,76]. We chose the latter due to the lower computa-
tional demands. In previous papers, both methods were found
to give equal results [29,75].

In most cases, the pearl phase remains stable over the
whole temperature range (Fig. 12 and Supplemental Figs. 27—
31 in the SM [72]). If the domino phase is stable at low
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temperatures (X 13b: Pd, Al; X7: Pd, Al; ¥49: Al; ¥37c:
Cu, Pd, Ag, Al, Pb) it usually transforms to pearl at higher
temperatures, except for £7 Pd (domino is always stable). In
2 13b Pb, as well as £19b Ag and Pb, pearl transforms to
domino at higher temperatures. In 349 Pd, both phases have
approximately equal free energy. Some limited experimental
data is available for copper (Refs. [28,29] and Fig. 6) and
supports the modeling. In Al, only the domino phase has
been found to date [47]. That contradicts the data obtained
with the Al potential for the £19b GB (but not the others).
The predicted energy differences between domino and pearl
are small, however, which complicates the comparison to
experiment: Either the relative stability of the GB phases is
predicted incorrectly by the potential or small residual strains
in the experiments, which were performed on thin films, could
potentially destabilize the pearl phase.

The only non-domino/non-pearl phases that become stable
with increasing temperature are the A phase in Al X13b
GBs and the C phase in Cu and Ag X7 GBs (Fig. 12 and
Supplemental Figs. 27 and 28 in the SM [72]). In general,
the investigated GBs mostly exhibit domino and pearl phases,
with A, B, and C being the exceptions.

In order to furthermore exclude the existence of additional
GB phases and to validate the QHA calculations, we ran MD
simulations for up to 40 ns with the GBs in contact with open
boundaries at elevated temperatures [21] for some example
cases. We chose high temperatures to enable GB phase tran-
sitions on MD timescales. No additional GB phases were
discovered. For the X7 GBs, we found that Ni (7 = 1300 K)
and Al (T = 900 K) transition to the pearl phase at high tem-
peratures independent on the starting structure, as expected
(Supplemental Figs. 32 and 36 in the SM [72]). The Al sample
contained many defects after the heat treatment. Both Cu
(T =1100K) and Ag (T = 1100K) quickly transitioned to
the pearl phase if starting from domino and slowly nucleated
the C phase, also as expected (Supplemental Figs. 33 and 35
in the SM [72]). In the latter case, however, C and pearl phases
often appear to coexist, hinting that the C phase is some
variant of the pearl phase. The only case that could not confirm
the QHA calculations was the Pd ¥7 GB: Neither systems
containing pearl, nor containing domino would undergo phase
transitions when heated to 900 K (Supplemental Fig. 34 in
the SM [72]). This is likely due to the small free energy
differences between the GB phases and possibly a result of the
low mobility of the phase junction between the two GB phases
[28]. Apart from the X7 GBs, we also annealed a Ni X37c
GB at 1000 K (Supplemental Fig. 37 in the SM [72]). The
QHA calculations predict that the pearl #3 variant is stable
at low temperatures and pearl #1 and #2 at high tempera-
tures, the latter GB phases having almost equal free energies
[Supplemental Fig. 31(a) [72]]. We could indeed observe this
transition between pearl variants, although the result at high
temperature still contained several pearl #3 motifs. This is not
surprising, since these structures should most likely be treated
as microstates of a pearl GB phase [29].

Due to the rough tendency of pearl being stable at higher
temperatures, it is tempting to treat the pearl structure as a
high-entropy GB phase. But while it is universal that domino
has higher excess volumes and thus couples to o33, a higher
entropy of the pearl phase cannot be observed in the majority

of cases. When pearl is stable over the whole temperature
range, the slope of y (T') is often similar for pearl and domino,
indicating approximately equal excess entropies. In pure ma-
terials, the excess entropy is vibrational and results from the
GB phonon modes. This means that the GB vibrations are
therefore quite material dependent.

D. Latent heat and order of the GB phase transition

Finally, we will shortly discuss the order of the GB phase
transition. According to the Ehrenfest classification, first-
order phase transitions are those that have a discontinuity in
the first derivative of the relevant thermodynamic potential.
Alternatively, first-order phase transitions have a latent heat.
In bulk materials, these definitions are virtually equivalent and
the latent heat is the difference in enthalpy AH = AG + T AS
of the phases, with G being the Gibbs free energy and S the
entropy. By definition, it is AG = 0 at the transition point 7;,
allowing us to write AH = T; AS. The entropy of the system
in equilibrium is discontinuous at 7; for AS # 0 due to the
change from one phase to another with different entropy. This
means that the phase transition is also of the first order ac-
cording to Ehrenfest because the entropy of a phase is the first
derivative of the free energy (S = —9dG/dT) at constant pres-
sure. Equation (12) with Ay = 0 leads to a similar result for
GBs, namely A[H] = A[U] = T, A[S] for 03; = 0 (no work
is done by the system on its surroundings without externally
applied stresses, only heat is exchanged). The excess entropy
can be calculated as

d)/ dSij
Sl=——2+ Y (] —8y) =2, 13
[S] IT +ij=1 2([f,] iV (13)

(see Eq. 14 of Ref. [9], noting that we already normalize [S]
by the GB area) where the strains ¢;; correspond to the thermal
expansion of the grains, which result in work being done by
the grain boundary against the expansion, even without exter-
nally applied stress. (Note that this work term does not come
into play when defining the latent heat as A[H] = A[U], be-
cause the phase transformation takes place at constant 7 = T,
and thus constant g;. It is only required to calculate [S].)
For cubic systems, we can replace d¢;;/dT with the isotropic
thermal expansion coefficient o7 and simplify to

1=~ L berGal +leal =2p). (4)
We ignore the weak temperature dependence of the excess
stresses in further calculations. Figure 13 shows an example
for the X7 GB in Al. At the transition temperature of around
405K, the excess free energy of the system in equilibrium
changes slope and the entropy is discontinuous, resulting in a
finite latent heat. Equivalent results would be obtained for the
other GB phase transitions. The GB phase transitions in this
paper are thus first-order phase transitions.

V. SUMMARY AND CONCLUSIONS

Simulations using (M)EAM potentials reveal that a range
of high-angle, symmetric [111] tilt GBs in fcc metals exhibit
mainly two GB phases, here called domino and pearl. We
found that the domino and pearl phases, respectively, have
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FIG. 13. Order of the GB phase transition for the Al X7 GB.
The solid lines indicate the stable GB phase. (a) In equilibrium, the
domino phase is stable at low temperatures, while the pearl phase
is stable above T ~ 406 K. (b) This results in a discontinuity of
the entropy, resulting in a latent heat of A[H] = 31.5mJ/m?. This
value approximately corresponds to the difference in ground-state
GB energies yP*" — ydomino — 30.8 mJ /m?.

comparable structures and thermodynamic excess properties
across different ¥ boundaries with misorientations from 27.8°
to 50.6° and for all of the seven investigated fcc metals.
Indeed, the structures seem universal enough to be modeled
using simple pair potentials, although medium-range inter-
atomic interactions are required to recover the trends of the
excess properties. The thermodynamic stability as a function
of stress, strain, or temperature, however, is more specific to
the material:

(i) In many cases the pearl phases are stable at 7 = 0K
and if they are not, they often become stable at higher temper-
atures due to their higher excess entropy. This is not universal,
however, suggesting that the GB vibrations are material de-
pendent.

(ii)) There does not seem to be a clear predictor of which
GB phase is the ground state, although there is some weak
correlation with the stacking-fault energy, with low stacking-
fault energy favoring pearl.

(iii) The domino phases have higher excess volumes in
almost all cases, meaning that they are stabilized by tension
applied normal to the GB, while the pearl phases are stabilized
under compression.

(iv) The pearl phases tend to exhibit negative excess
stresses in the GB plane ([71;] and [72,]), while the domino
phases exhibit positive excess stresses. This predicts their
thermodynamic stability quite well: compression in the GB
plane stabilizes domino, while tension stabilizes pearl, oppo-
site to the previous case of stress applied normal to the GB.

(v) The required stresses for GB phase transformation can
exceed 5 GPa and would be unlikely to occur in real materials.
In some cases, however, stresses below 1 GPa or even close to
zero, as well as strains below 1%, are sufficient. We confirmed
some of the latter cases with MD simulations.

While there are always some exceptions to the above rules,
the present results suggest that GB structures and phases dis-
covered for one material are likely generalizable to a whole
class of materials (in this case fcc metals). It remains to be
seen if that is a feature of densely-packed metals or if it is
also true in, e.g., covalently or ionically bonded materials. The
addition of alloying elements is also likely to lead to more
material-specific GB thermodynamics.
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APPENDIX: NUMERICAL ISSUES OF
THE INTERATOMIC POTENTIALS

The calculation of free energies in the QHA depends on the
force constant matrix, which is closely related to the Hessian
of the potential energy. This requires that the interatomic
potential is smooth up to the second derivative, otherwise the
resulting free energy is noisy. In MD simulations, only first
derivatives of the potential energy are used and any noise is
averaged out due to the natural thermal fluctuations of the dy-
namic simulation, making numerical issues with the potential
unnoticeable. In the present paper, we found that the Pd, Au,
and Al potentials result in noisy free energy data in our QHA
calculations.

For Al, this is not due to the formalism of the potential, but
a consequence of limited precision of the tabulated potential
data in the file distributed via the NIST Interatomic Potentials
Repository [55]. In LAMMPS, EAM potentials are tabulated—
typically with dense sampling of data points—in text files and
interpolated during simulation. In current numerical simula-
tions, floating point numbers are usually represented using
the IEEE 754 double-precision format, which corresponds to
a precision of at least 15 significant digits in decimal repre-
sentation. The text files used to produce the Al potential file
contain fewer significant digits. We tested the potential by us-
ing the ¥19b domino GB phase and isotropically straining the
simulation cell, while recording the potential energy (Supple-
mental Fig. 38 in the SM [72]). Taking numerical derivatives
of the potential energy, we obtain smooth curves up to the first
derivative, but see noise from the second derivative on. This
is not surprising, since numerical derivatives are particularly
sensitive, even to small noise. We then recovered the origi-
nal nodal points, reproduced the potential, and constructed
a tabulated EAM potential file with full machine precision
(see companion dataset [58] for details and the potential file).
This leads to smooth results up to the third derivative of the
potential energy (Supplemental Fig. 38 in the SM [72]) while
preserving the properties of the potential (we verified this for
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the bulk properties listed in Table II, as well as the excess
properties of the GB phases).

Additionally, the construction of the Al potential from
cubic splines leads to changes of curvature of the GB free
energy [visible for example in Fig. 10(b) at high stresses or
in Fig. 12(b) at around 550 K]. This indicates a shortcoming
of the fitting with cubic splines to a limited reference database.
It seems that the flexibility of representing the EAM functions
with splines would require more strained reference data points
in order to correctly model highly strained systems.

For Pd and Au, the first and second derivatives of the
potential energy are sufficiently smooth (Supplemental Fig. 39

in the SM [72]). The problem comes from the cutoff function
in these cases. It appears that the cutoff functions are relatively
abrupt. This works well for the defect-free crystalline struc-
tures, where interatomic distances are usually smaller or larger
than the cutoff distance. In the case of our GBs, however, bond
lengths around the cutoff distance can appear and certain bond
lengths can cross this distance during thermal or mechanical
straining. As depicted in Supplemental Fig. 39 in the SM [72],
this can lead to discontinuities in the forces and thus jumps
and/or noise in the second derivatives. It is nontrivial to im-
prove the existing potentials without changing their properties
and we therefore use the unchanged potentials here.
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