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Effect of uniaxial strain on the excitonic properties of monolayer C3N: A symmetry-based analysis
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In recent years, the application of mechanical stress has become a widespread experimental method to tune the
electronic and optical properties of two-dimensional (2D) materials. In this work, we investigate the impact of
uniaxial tensile strain along zigzag and armchair directions on the excitonic properties of graphene-like C3N, a
single-layer indirect-gap material with relevant mechanical and optical properties. To do that, we develop a tight-
binding Bethe-Salpeter equation framework based on a Wannier-function description of the frontier bands of the
system, and use it to compute both dark and bright excitons of C3N for different applied strain configurations.
Then, we use this model approach to classify excitons of pristine and strained C3N according to the crystal
symmetry and to explain the appearance of bright excitons with intense optical anisotropy in strained C3N,
even at small strains. Finally, the effect of strain on the exciton dispersion at small center-of-mass momenta is
discussed, with special focus on the implications for 2D linear-nonanalytic dispersions.
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I. INTRODUCTION

Since its experimental realization [1,2], monolayer C3N
(ML-C3N) has been intensively studied from a theoretical
point of view, to fully characterize its electronic [3], opti-
cal [4,5], mechanical [6–8], and electrochemical properties
[9–13]. Among the interesting features of ML-C3N, we focus
here on its optical and mechanical response. As ML-C3N is
a 2D material, the combination of electron confinement and
enhanced electron-hole interaction (due to reduced electronic
screening) gives rise to strong excitonic effects, which char-
acterize its optical response [4,5]. At the same time, DFT
and molecular dynamics calculations [6] have predicted the
capability of ML-C3N to sustain strong uniaxial strains, up to
about 10%, without failure.

Motivated by recent advances in the experimental applica-
tion of relatively intense mechanical stresses to 2D materials
[14–16], in this work we discuss how the excitonic properties
of ML-C3N are modified by external uniaxial strain, when
applied along high-symmetry directions, such as zigzag and
armchair (see Fig. 1). As fully ab initio calculations of exci-
tonic effects are computationally very demanding, especially
for 2D materials, here we develop a simpler approach to solve
the Bethe-Salpeter equation (BSE) [17–19] and apply it to the
case of ML-C3N subject to different strain conditions.

As discussed in the following sections, this model de-
scribes the single-particle states involved in the lowest-lying
excitons through a tight-binding (TB) Hamiltonian and ap-
proximates the electron-hole interaction using quantities
derived from ab initio calculations [3,20–22].

*Corresponding author: matteo.zanfrognini@unimore.it

Based on this model, we discuss the appearance of exci-
tons in strained C3N with strong optical anisotropy, and we
have provided a rationale for this behavior through group
theory arguments. Further, taking advantage of the com-
putational simplicity of the model, we have analyzed the
small-momentum excitonic dispersion, both in pristine and
strained C3N, revealing the effect of uniaxial strain on the
small-momentum linear nonanalytic dispersion.

Our results show that the presence of a few percent strain
is already able to induce a strong anisotropy in the exciton
dispersion close to � regarding the direction of applied strain,
and furthermore leading to anisotropic brightening of some of
the low-lying excitons.

The article is organized as follows: In Secs. II and III, we
describe the approach used to solve the BSE and check the
validity of the adopted approximations, by comparing our re-
sults for pristine ML-C3N with those computed fully ab initio.
In Sec. IV we discuss how the bright excitons in unstrained
C3N are modified by the applied strain, while in Sec. V we
present a similar analysis for the lowest dark excitons in pris-
tine C3N. Finally, in Sec. VI we consider the effect of strain
on the exciton dispersion computed for small center-of-mass
momenta.

II. METHODS

In this section we present the method used throughout
this work to study the excitonic properties of pristine and
strained ML-C3N. As previous works [3–5] have shown that
the valence and conduction states involved in the formation of
the lowest-lying excitons have π character, we have modeled
these bands through a TB Hamiltonian [23] focusing on the
2pz orbitals, once we define the xy plane as the monolayer
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FIG. 1. Left: Crystal structure of C3N, where yellow (light-blue)
spheres represent carbon (nitrogen) atoms. High-symmetry armchair
and zigzag directions where strain is applied are also highlighted.
Right: Hexagonal Brillouin zone of pristine C3N, with the high-
symmetry points considered in this work.

plane:

Hαβ (k) =
∑

R

eik·R〈α0|Ĥ |βR〉. (1)

In Eq. (1), R is a lattice vector, k is a point sampling the
2D Brillouin zone (BZ), and t (α0; βR) = 〈α0|Ĥ |βR〉 corre-
sponds to the hopping between a 2pz orbital localized on atom
α in the unit cell at R = 0 and a 2pz orbital localized on atom
β in the unit cell at R. The hopping parameters have been
evaluated fully ab initio adopting the following procedure: For
each strain configuration, we have computed single-particle
electronic states and energies at the DFT level (with GGA-
PBE [24] approximation for the exchange-correlation kernel)
using the plane-wave Quantum ESPRESSO [25,26] package.
Then, we have extracted maximally localized Wannier func-
tions (MLWFs) [23,27] with the Wannier90 code [28–30],
making use of the band disentanglement method [31]. As
expected, the obtained MLWFs exhibit a 2pz-like character,
as shown in Fig. 2. Finally, the hopping parameters appearing
in Eq. (1) have been obtained as the Hamiltonian matrix
elements on the computed MLWF basis. Details about DFT
calculations and Wannierization procedure are provided in
the Supplemental Material [32] (SM) (see also Refs. [33–36]
therein).

The diagonalization of Hαβ (k) gives access to single-
particle energies and states: More precisely, we have solved
the eigenvalue problem

∑
β

Hαβ (k)cβ (nk) = εnk cα (nk) (2)

FIG. 2. Example of maximally localized Wannier functions lo-
calized on carbon (a) and nitrogen atoms (b). The obtained Wannier
functions exhibit a 2pz-like character, with comparable spatial
spreads.

obtaining εnk (the energy of the nth band at point k) and
cα (nk), the projection of Bloch state |nk〉 on the MLWF α,
i.e.,

|ψnk〉 = 1√
Nc

∑
α

cα (nk)
∑

R

eik·R|αR〉, (3)

|αR〉 being the 2pz-like MLWF localized at τα + R, with τα

corresponding to the atomic site of atom α in the unit cell.
We notice here that the quantities εnk provide an accurate
description of the single-particle energies obtained at the DFT
level, as the hopping parameters were computed by Wan-
nierizing DFT bands. In this work we include the effect of
quasiparticle corrections using a scissor/stretching operator,
as in Ref. [5]. To reduce the computational complexity, in the
following we use the scissor/stretching parameters computed
in the pristine case for all the considered strain perturba-
tions, assuming a negligible dependence of the quasiparticle
corrections on the relatively small strain discussed in this
work. The BSE is solved within the resonant Tamm-Dancoff
approximation [18,19]; i.e., we compute exciton energies
and wave functions by diagonalizing the Hermitian excitonic
Hamiltonian:

HQ(vck; v′c′k′) =(εc,k+Q − εvk )δc,c′δv,v′δk,k′

+ Kd
Q(vck; v′c′k′) + Kx

Q(vck; v′c′k′),
(4)

where Kd
Q and Kx

Q are the direct and the exchange kernels
[18,19], respectively, and v, v′ (c, c′) the band indexes for
the valence (conduction) states included in the BSE. In the
following, we will always include the last occupied valence
and the two lowest unoccupied conduction bands in the con-
struction of the BSE kernel, as the lowest-energy excitons in
ML-C3N mainly involve transitions among those states. Q
represents the planar center-of-mass momentum of the exci-
tons. In the calculations presented in this work, we have used
a 121 × 121 × 1 Monkhorst-Pack [37] grid to sample the BZ,
which guarantees exciton energies converged within 1 meV.

We now provide the expressions of the direct and ex-
change kernels, obtained starting from our TB description
of the single-particle states, while a detailed derivation of
Kd

Q(vck; v′c′k′) and Kx
Q(vck; v′c′k′) is presented in the Sup-

plemental Material [32]. First, in order to simplify the
notation, we introduce the auxiliary quantities

ρp+G(nk; mk′) =
∑

α

e−iτα ·(p+G)cα (nk) c∗
α (mk′), (5)

where p = k − k′, the index α runs over the MLWF in the unit
cell, and τα identifies the position of the corresponding center.
Then, for the direct and exchange terms in the BSE kernel, we
obtain:
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Kd
Q(vck; v′c′k′) = − 1

4π2

∑
G

v2D(q + G)|F (q + G)|2Id (q + G)[ρ∗
q+G(c, k + Q; c′, k′ + Q)ρq+G(vk; v′k′)], (6)

Kx
Q(vck; v′c′k′) = 2

4π2

∑
G

v2D(q + G)|F (Q + G)|2Xex(Q + G)[ρ∗
Q+G(c, k + Q; vk)ρQ+G(c′, k′ + Q; v′k′)], (7)

where v2D is the 2D Coulomb potential, q = k − k′, and the
factor 2 in the exchange term indicates that we are only con-
sidering singlet excitons. In the above expressions, F , Id , and
Xex are functions explicitly defined below in Eqs. (11)–(13).

We now briefly summarize the approximations used to
obtain the direct and exchange kernels, as given by Eqs. (6)
and (7). First, we adopt a cylindrical approximation for the
2pz-like Wannier functions w(r − R − τα ), i.e.,

w(r − R − τα ) ≈ fα (r‖ − R − τα )hα (z) sgn(z), (8)

decoupling the in-plane components r‖ of the position vector
r from the out-of-plane component z [38]. The functions fα
and hα were obtained using the definitions

fα (r‖ − R − τα ) = A f
α

∫ +∞

−∞
dz|w(r − R − τα )|

= A f
α e−Bα |r‖−R−τα | [1 + Bα|r‖ − R − τα|]

(9)

and

hα (z) = Ah
α

∫
dr‖|w(r − R − τα )|

= Ah
α[|z|e−Bα |z|(1 + Bα|z|)], (10)

where A f
α and Ah

α are normalization constants.
In practice, fα is the average of the modulus of a 2pz orbital

along z at fixed planar coordinate r‖ − R − τα , while hα is its
plane average, for each z. Finally, Bα is a parameter related to
the spread of the MLWF, which depends on the atomic site τα

where the Wannier function is localized. As the spatial spread
obtained ab initio for N and C localized MLWF are very close,
with differences smaller than 10%, we have chosen Bα as the
average of the functions B obtained for the different Wannier
functions, so that the functional form of h and f does not
explicitly depend on the atom on which they are centered.
Using these definitions, we can write the expression of the
functions F , Id , and Xex appearing in the direct and exchange
kernels, Eqs. (6) and (7), as

F (q + G) =
∫

dr‖| f (r‖)|2ei(q+G)·r‖ , (11)

Id (q + G) =
∫

dz dz′ dz1 e−|q+G|·|z1−z′ | (12)

× |h(z)|2 ε−1
q+G(z, z1) |h(z′)|2,

Xex(Q + G) =
∫

dz dz′ e−|Q+G|·|z−z′ | (13)

× |h(z)|2 |h(z′)|2,
with G a vector of the 2D reciprocal lattice.

The function Xex has been computed by direct numerical
integration, using the analytical expression of h, while Id ,

which can be interpreted as an effective screening for the 2D
Coulomb potential v2D, requires the knowledge of the static
inverse dielectric function ε−1. The function ε−1 has been
computed within random phase approximation (RPA) using
the Yambo code [39,40], in the case of unstrained monolayer,
and then used to construct the function Id as outlined in the
Supplemental Material [32], starting from Eq. (12). As we
have assumed the effect of small strains on the electronic
screening to be negligible, we use the Id computed for the un-
strained monolayer for all the strain configurations considered
in this work. Furthermore, we remark that in order to obtain
the expression of Id given in Eq. (12) we neglect the in-plane
local field effects; i.e., we choose

ε−1(q + G, Gz; q + G′, G′
z ) ≈ δG,G′ε−1(q + G; Gz, G′

z ),

being G and Gz the in-plane and out-of-plane components
of a reciprocal lattice vector. Instead, the nonlocality with
respect to z of the inverse dielectric function ε−1 has been
fully taken into account, since it is fundamental to obtain
a proper description of electronic screening in 2D materials
[20,41].

The computational advantage of our method is twofold:
First, the use of a TB model for single-particle states permits
an accurate mapping of single-particle states and energies on
small matrices, with dimension equal to the number of used
Wannier functions, from which electronic states and energies
can be obtained by simple diagonalizations at all k points in
the BZ. Second, modeling the dielectric screening through the
function Id permits obtaining electron-electron interaction on
very fine grids, without explicit calculations for all scattering
q vectors. We point out that the presented approach can be
extended to other 2D systems, by defining proper approx-
imations for the obtained atomic Wannier functions, in the
calculations of the functions Id and F .

Finally, the absorption spectra of pristine and strained C3N
have been evaluated computing the imaginary part of the
dielectric function defined as

ε(ω) = 1 − 8π

V

∑
λ

Dλ

ω − Eλ + iη
, (14)

where V is the unit cell volume, λ is an index running over
excitons with null momentum Q, and Dλ is the oscillator
strength (OS) of the exciton λ, given by

Dλ = lim
Q→0

1

|Q|2
∣∣∣∣
∑
vck

〈vk|e−iQ·r|ck〉Aλ(vk; ck)

∣∣∣∣
2

, (15)

where Aλ(vk; ck) is the envelope function of exciton λ, and
Q = |Q| ĵ. Notice that Dλ depends on the polarization di-
rection, as the limit in Eq. (15) is performed by letting the
momentum Q go to zero along the direction ĵ, which is chosen
as the in-plane polarization direction of the incoming light.
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FIG. 3. Absorption spectrum of monolayer C3N computed with
the model described in Sec. II. The continuous blue line (dashed red
line) represents the spectrum computed with (without, independent
particle IP) the electron-hole interaction in the BSE kernel. The green
dotted line is the fully ab initio BSE spectrum obtained in Ref. [5],
while the vertical dashed black line indicates the position of the
quasiparticle direct band gap corresponding to the onset of indepen-
dent particle (IP) absorption. These spectra were computed assuming
light polarization along the zigzag direction, and analogous results
were found for different polarizations. k-resolved contributions to
the exciton wave functions are shown for the first five lowest energy
excitons, and for the resonances responsible for the higher-energy
absorption peak at about 2.2 eV. All the spectra have been convoluted
with a Lorentzian broadening of 10 meV. The labels ei indicate the
excitation energies in ascending order.

III. MODEL VALIDATION

We now test the validity of the approximations discussed
in the preceding section, by comparing the ab initio results re-
cently obtained [5] for Q = 0 excitons in unstrained ML-C3N
with those obtained by the TB-BSE approach here presented.
In Fig. 3 we show the absorption spectrum computed with
and without the electron-hole interaction in the BSE kernel
(continuous blue line and dashed red line, respectively), to-
gether with fully ab initio BSE results of Ref. [5] shown
as a dotted green line. In agreement with previous results
[4,5], we find an optical spectrum dominated by a single
intense peak which corresponds to a pair of degenerate ex-
citons, e4,5, exhibiting a large binding energy, of about 0.6 eV.
These excitons are mainly due to valence-conduction tran-
sitions located along the �M directions, as visualized by
considering the k-resolved contributions to the exciton wave
functions:

A(k) =
∑
vc

∑
λ

|Aλ(vk; ck)|2, (16)

where the summation over the exciton index λ is present only
for degenerate excitons and Aλ(vk; ck) is the exciton envelope
function, whose square modulus indicates the weight of the
single-particle transition (v, k) → (c, k) to exciton λ. These
functions are shown for the lowest resonances in the insets of
Fig. 3.

A second structure at a higher energy of 2.219 eV appears
in the optical spectrum, due to a pair of degenerate excitons

TABLE I. Comparison between ab initio BSE and TB-BSE ex-
citation energies of the first five lowest excitons.

Method e1,2 e3 e4,5

Ab initio BSE [5] 1.821 1.854 1.957
Model TB-BSE 1.848 1.866 1.967

e14,15. This structure is also present in the ab initio absorp-
tion spectrum, at a slightly smaller energy (2.18 eV). This
exciton pair will not be further discussed in the following. At
energies below the e4,5 intense peak, we also find three dark
excitations, i.e., a pair of degenerate excitons e1,2 and a single
resonance e3.

To quantify more precisely the comparison between the
model and the ab initio results, in Table I we collect the
excitation energies of the first five excitons in monolayer C3N
computed with ab initio methods and with the TB-BSE ap-
proach. We note that the model reproduces with high accuracy
the ab initio results, with a small blueshift of exciton energies,
which is anyhow smaller than 40 meV.

Having validated the TB-BSE model, we now turn our
attention to the effect of mechanical strain on these five lowest
excitonic resonances, dividing them according to their optical
activity in the unstrained monolayer. In particular, in Sec. IV
we discuss the behavior of bright excitons e4,5, while in Sec. V
we consider the dark excitons e1,2 and e3.

IV. EFFECT OF STRAIN ON BRIGHT EXCITONS

We now consider in detail the effect of uniaxial strain on
the pair of bright excitons e4,5, responsible for the intense
absorption peak in pristine C3N. In Fig. 4 we plot the absorp-
tion spectra for zigzag [panel (a)] and armchair [panel (b)]
strains, with strengths in the range 0%–3.5%. We consider
the polarization along both the zigzag (continuous red lines)
and armchair (dashed blue lines) directions. We point out that,
within our choice of the reference system, the zigzag direction
X coincides with the Cartesian direction x while the armchair
axis Y corresponds to the direction y in the monolayer plane
(see Fig. 1).

The effect of strain is twofold: First, the double degeneracy
observed in pristine C3N is removed, with the appearance of
two excitations whose splitting increases linearly with strain,
at a rate of about 6.0 meV

% for both strain directions. Second,
these two resonances exhibit a strong optical anisotropy: In
the case of zigzag strain the lowest-energy exciton (here called
e4) is bright for light polarization along x, while it is dark if
the incoming electric field is oriented along the y direction.
Differently, the highest-energy exciton e5 can only absorb
photons with polarization along the armchair direction. This
strain-induced optical anisotropy, also proposed in Ref. [42]
within a single-particle description of C3N optical properties,
is therefore also present once excitonic effects are included.
The situation is exactly the opposite in the case of armchair
strain, where e4 (e5) becomes dark for incoming light polar-
ization along the zigzag (armchair) direction.

The observed strain-induced optical anisotropy is further
highlighted by computing the oscillator strengths D4 and D5
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FIG. 4. (a) Absorption spectra of ML-C3N under uniaxial strain
along the zigzag direction: Continuous red lines correspond to light
polarized along the zigzag (X) direction, while dashed blue lines to
light polarized along the armchair (Y) direction. Spectra for different
values of applied strain are rigidly shifted vertically to make the plot
more readable. The black dashed lines highlight the splitting of the
twofold degenerate exciton e4,5 in pristine C3N into two separate
excitons, here called e4 and e5. All the spectra are convoluted with
a Lorentzian broadening of 10 meV. (b) Same as (a), for externally
applied strain along the armchair direction.

as a function of the polarization angle with respect to the
zigzag direction. This is shown in Fig. 5, where we consider
a strain of 2.0% for both cases. We see that with zigzag strain
these two excitons have an oscillator strength characterized
by a two-lobed angular pattern, with e4 having a nodal line
along the y direction and e5 along the x direction. Analo-
gously, in the case of armchair strain the OS patterns have
similar features, but the profiles for the two split excitons are
exchanged. We remark that the observed optical anisotropy
does not depend on the value of the applied strain, as, also for
larger strains, the nodal lines at which the OS becomes zero
are always present: As shown in the Supplemental Material
[32], for a larger strain of 3.0% the polar plots have similar
properties.

To properly characterize the excitons e4 and e5 we com-
puted the corresponding transition distribution functions A(k),
as defined in Eq. (16). These are shown in Fig. 6 in the
case of a 2.0% strain along both the zigzag and armchair

directions (we checked that the following considerations are
valid independently of the value of the applied strain within
the considered range). In the case of zigzag strain, the exciton
e4 is mainly due to transitions along the �M direction, while
e5 is characterized by a wave function A(k) peaked for k along
�M ′ direction. On the other hand, in the case of armchair
strain, the function A(k) for the lowest-energy exciton e4 is
nonzero along �M ′, while for e5 is mainly localized along the
�M direction.

The reason why in zigzag strained ML-C3N the lowest
exciton is mainly confined along �M, while in the case of
armchair strain it becomes localized along �M ′, can be under-
stood by considering the effect of strain on the electronic band
structure. In Fig. 7 we present the electronic bands computed
at the DFT-PBE level for zigzag (a) and armchair (b) strain,
both equal to 2.0%, compared to pristine C3N, represented by
solid black lines. Considering the DFT bands, we see that one
of the main effects of uniaxial strain (in both directions) is to
induce different electronic band dispersions along the �M and
the �M ′ directions, otherwise equivalent by symmetry in the
pristine case.

The connection with the excitonic transition distribution
becomes clearer by looking at Figs. 7(c) and 7(d) where we
report the difference εc(k) − εv (k) for the last occupied va-
lence band v and the first unoccupied conduction band c along
the path M-�-M ′ in the BZ. We see that in zigzag strained
C3N the lowest transition energies εc(k) − εv (k) occur along
�M. Therefore, the exciton involving transitions along this
direction (i.e., e4) has a smaller excitation energy than the
exciton e5, mainly composed by single-particle transitions
along �M ′. Analogously, by looking at Fig. 7(d), we can
see that for armchair strain the minimum of εc(k) − εv (k)
falls along �M ′ so that we effectively expect the lowest-
energy exciton to be mainly composed by transitions along
this direction. We point out that the relative energy differences
among the directions �M and �M ′ could be affected by the
addition of quasiparticle effects, but the dispersions along the
two directions are expected to remain different as a result of
the symmetry breaking effect of applied uniaxial strain. Fur-
thermore, this strain induced change of the electronic bands
along �M and �M ′ directions can also justify the observed
increasing of the splitting among excitons e4 and e5 as a
function of strain. Considering the case of zigzag strain, by
increasing strain we observe that the difference between the
minima of εc(k) − εv (k) computed for k along �M and �M ′
progressively increases: As the exciton e4 is mainly composed
by v-c transitions along �M while e5 is localized along �M ′
their energy splitting will increase as a consequence of the
increased energy splitting among the single-particle states
involved in the two excitons. Similar reasoning can be done
in case of armchair strain.

Symmetry analysis

Having described how the main absorption peak in pristine
C3N is modified by the application of strain, we now classify
the two resulting excitons e4 and e5 in terms of their sym-
metry properties, starting from the symmetry characterization
of excitons in pristine C3N and then focusing our attention
on the strained monolayer. The point group of pristine C3N
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FIG. 5. Polar plot of the oscillator strengths Dλ defined in Eq. (15) for excitons e4 and e5, in the case of zigzag strain (a) and armchair strain
(b) of 2.0%, as a function of the in-plane light polarization direction, measured starting from the zigzag (X) axis. Concentric lines represent
isovalues for the modulus of the exciton oscillator strength |Dλ|.

is D6h, which contains the in-plane symmetries of a hexagon
combined with the mirror symmetry operation σh with respect
to the monolayer plane. Within our approach, we describe
the electronic properties (and therefore the excitonic ones)
of the system with an effective tight-binding model, which is
purely planar. Therefore, analogously to the work of Galvani
et al. [43], in the following we classify excitons considering
only the in-plane symmetry operations contained in the point
group D6h, which form the subgroup C6v . Once strain is ap-
plied to ML-C3N, the symmetry of the system is lowered and
the full point group becomes D2h. Following the reasoning
just outlined, we will then classify excitons according to the

FIG. 6. Functions A(k) defined in Eq. (16), computed for exciton
e4 (a) and e5 (b) in the case of zigzag strain of 2.0%. (c) and (d) cor-
respond to the same quantities shown in (a) and (b), but evaluated for
ML-C3N strained along the armchair direction.

irreducible representations of the subgroup C2v , only com-
posed by in-plane symmetries.

We start by discussing the degenerate excitons e4,5 of
pristine C3N. In order to understand which is the irreducible
representation of C6v which transforms as these excitons, for
each symmetry operator Ŝ representing a class of C6v we have
computed the character:

χ [Ŝ] =
∑

λ={e4,5}
〈λ|Ŝ|λ〉, (17)

where the sum over λ runs on the two degenerate excitons
e4,5. This quantity is the trace of the symmetry operator Ŝ on
the 2D space spanned by these excitons and its evaluation is
described in Appendix A.

Our calculations give the characters summarized in Ta-
ble II. From these results, we can associate the doublet e4,5 to
the irreducible representation E1 of C6v , consistently with their
bright nature. In fact, an exciton λ is bright only if the matrix
element 〈0|D̂|λ〉 is nonzero, being |0〉 the excitonic vacuum,
D̂ the exciton dipole operator (here assumed as constrained
in the ML plane). The operator D̂ behaves like an in-plane
vector, which, in turns, transforms as the E1 irreducible rep-
resentation of C6v , while the excitonic vacuum belongs to the
fully symmetric representation A1. Therefore, the matrix ele-
ment 〈0|D̂|λ〉 will be different from zero only for the excitons
transforming according to irreducible representations � of C6v

TABLE II. Characters χ , evaluated for each class of symmetry
operations of the point group C6v , considering the bright degenerate
excitons e4,5 of pristine ML-C3N. Direct comparison with character
table of C6v indicates that this excitonic doublet transforms as the
representation E1.

E 2C6 2C3 C2 3σv 3σd

χ 2 1 −1 −2 0 0
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FIG. 7. (a) DFT-PBE band structure of ML-C3N in the pristine case (solid black lines) and with a zigzag strain of 2.0% (dashed red
lines); (b) same as (a), but for a 2.0% strain along the armchair direction. (c) Energy difference εc(k) − εv (k) between the lowest unoccupied
conduction c and the highest occupied valence v for k along the path M-�-M ′ for the unstrained case and for a 2.0% zigzag strain; (d) same as
(c) for an armchair strain.

such that the direct product E1 ⊗ � contains the representation
A1. Straightforward application of group theory rules [44] for
the direct product between irreducible representations of the
same group indicates that the only representation satisfying
this constraint is E1, in agreement with our numerical results
summarized in Table II.

Considering the presence of uniaxial strain, the pair of
excitons e4,5 transforming as E1 in unstrained C3N will now
be split into two excitons as there are no irreducible repre-
sentations with dimension larger than 1 in C2v , in agreement
with our numerical findings. In order to classify these two
excitons, we can apply the “great orthogonality theorem”
of group theory [44] to decompose the E1 representation
of C6v into irreducible representations of C2v: Each repre-
sentation of C2v contained in E1 then corresponds to each
exciton e4 and e5, as obtained in the presence of strain.
Using the character tables of the C2v group, we obtain
E1(C6v ) = B1(C2v ) ⊕ B2(C2v ).

We now associate exciton e4 and e5 to the irreducible
representations B1 and B2. In order to do this, we could
compute the characters for each exciton as discussed before
for the degenerate pair e4,5 in pristine C3N. Instead, in this
case we use a simpler approach, which consists in studying
the wave function of these excitons in real space. Therefore,

we compute the quantity �
α,β

λ (R) defined as

�
α,β

λ (R) = 〈rh = τα; re = τβ + R|λ〉, (18)

i.e., the probability amplitude to find, for the exciton λ, the
electron localized in the 2pz state on atom β in the unit cell R
and the hole on the orbital 2pz on atom α in the cell at R = 0.
The detailed procedure for its evaluation within the TB-BSE
formalism is reported in Appendix B.

In Fig. 8 we show the excitonic wave function for the states
e4 and e5 in the presence of a uniaxial strain of 2.0% applied
along the zigzag [(a), (b)] and armchair [(c), (d)] directions.
In all cases, we assume the position of the hole to be fixed
on a carbon atom denoted by the black dot and located on the
symmetry plane σyz (represented by the dashed black line).
Further, this function is generally complex valued: in this case
we have properly chosen its global phase so that it assumes
real values for all τβ + R [positive values red dots, negative
values blue dots, diameter of a circle proportional to the
modulus |�α,β

λ (R)|]. With zigzag strain, the lowest exciton
e4 turns out to be odd with respect to the mirror reflection σyz,
while the exciton e5 is even: As B1(C2v ) is odd and B2(C2v )
is even under σyz operation, we can therefore assign e4 to B1

and e5 to B2 in the case of zigzag strain. Notice that these
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FIG. 8. Excitonic wave functions �
α,β

λ (R), as defined in
Eq. (18), computed respectively for the excitons e4 (left) and e5

(right), assuming a 2.0% strain along the zigzag direction (top) and
the armchair direction (bottom). In all cases, we assume the hole to
be fixed on the carbon atom marked by the black dot and positioned
on the vertical dashed line, which represents the symmetry y = 0
axis.

assignments were further checked by computing the action of
the symmetry operations of C2v on these excitons, as outlined
in Appendix A. The situation is exactly the opposite in the
case of armchair strain, where the lowest exciton e4 is even
under σyz while the exciton e5 is odd, so that they can be
respectively assigned to B2 and B1 irreducible representations
of C2v .

The evaluation of �
α,β

λ (R) at fixed hole position is useful
to properly understand the symmetry properties of e4 and e5,
but it also underlines the strong spatial localization of the
bright excitons in ML-C3N under strain: This is especially
apparent in the case of B1 excitons [see Figs. 8(a) and 8(d)],
where, once the hole is fixed along the y axis, the electron
is constrained in an effective one-dimensional stripe of the
material, even for relatively small applied strains.

We complete this analysis on bright excitons in strained
C3N by pointing out the symmetry-breaking origin of the
optical anisotropy observed in absorption spectra obtained by
numerical solution of the BSE. We have just seen that for any
applied strain (along the zigzag or the armchair directions)
the E1 exciton of pristine ML-C3N splits into two excitons
transforming as the B1 and B2 irreducible representations of
C2v . Using group theory rules, we can verify that

〈0|Dx|B1〉 = 0, 〈0|Dy|B1〉 = 0,

〈0|Dx|B2〉 = 0, 〈0|Dy|B2〉 = 0,

where Dx and Dy are the components along the x (zigzag)
and the y (armchair) axes. These selection rules are a direct
consequence of the fact that Dx (Dy) transforms as the B1

(B2) irreducible representation of C2v . Therefore, we have
strong optical anisotropy in strained C3N monolayer, with one
exciton becoming dark for the light polarization direction at
which the other exhibits its highest OS, simply because of the

FIG. 9. (a) Low-energy tail of the absorption spectrum in ML-
C3N under uniaxial strain along zigzag direction. (b) Same as (a), but
considering an externally applied strain along the armchair direction.
All the spectra were convoluted with a Lorentzian broadening of
10 meV. Curves corresponding to different strain values are rigidly
shifted vertically to make the plot more readable.

symmetry-lowering effect induced by the strain. Thus, while
the strength of the applied strain does not control this linear
dichroism, it tunes the energy splitting between these two
excitons.

V. EFFECT OF STRAIN ON DARK EXCITONS

We now discuss the effect of strain on the lowest-lying dark
excitons in pristine ML-C3N, denoted as e1,2 and e3 in Fig. 3.
By a direct inspection of Fig. 4, one can realize that these
excitons should remain dark or acquire a negligible OS in the
presence of strain, as the spectra are dominated by excitons
e4 and e5. To better clarify their optical behavior, in Fig. 9 we
present the absorption spectrum at photon energies slightly
smaller than the energy of excitons e4 and e5 for different
strains. In particular, Fig. 9(a) corresponds to zigzag strains,
Fig. 9(b) to armchair strains, while light polarization is kept
fixed along the zigzag direction in both cases. We note that
the rapidly increasing signal for higher energies corresponds
to the contribution of excitons e4 and e5 already discussed in
the previous section.
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FIG. 10. Functions A(k) for excitons e1, e2, and e3 are shown in panels (a), (c), and (e); the applied strain is fixed to 1.5% (5.0%) in the
case of excitons e1 and e2 (e3), and it is always assumed along the armchair direction. Real-space representations �α,β (R) for the excitons e1,
e2, and e3 are displayed in panels (b), (d), and (f), computed for the same set of strain configurations.

For both strain directions, we notice the presence of a weak
absorption feature in the tail of the main peak (not shown in
Fig. 9), whose intensity progressively increases as a function
of the applied strain. However, we point out that in the range
of the considered strains (which are realistic values that can
be efficiently applied to 2D materials experimentally) such an
absorption peak is about two orders of magnitude smaller than
the most intense absorption structure observed in Fig. 3 (see
Supplemental Material [32] for a comparison of the relative
intensities in the case of 4.0% zigzag strain). Such a feature
comes from the dark exciton e3 of pristine ML-C3N, which ac-
quires a small OS under the application of strain. Differently,
the pair of degenerate excitons e1,2 splits into two excitons e1

and e2 which remain dark even in the presence of strain.
We start our analysis of low-lying dark excitons focusing

on the states coming from the degenerate pair e1,2 in pris-
tine ML-C3N. Their k-space A(k) and real-space �

α,β

λ (R)
representations are given in Figs. 10(a)–10(d), in the case
of armchair strain equal to 1.5%. Similarly to Sec. IV, we
discuss these excitons starting from the symmetry properties
of the degenerate pair e1,2 in unstrained C3N, from which they
derive. Applying the approach discussed in Appendix A, we
find that the pair e1,2 transforms as the irreducible represen-
tation E2 of the point group C6v . Since the only excitons in
pristine C3N which have a nonzero OS for in-plane polariza-
tion are those transforming according to E1, excitons e1,2 are
dark by symmetry.

Uniaxial strain reduces the crystal point group from C6v

to C2v; therefore E2(C6v ) is a now a reducible representation
of C2v , which contains only the irreducible representations
A1 and A2 of C2v , i.e., E2(C6v ) = A1(C2v ) ⊕ A2(C2v ). As a
consequence, the two split excitons e1 and e2 will trans-
form as A1(C2v ) and A2(C2v ). This identification explains why
these two excitons remain dark even in the strained crystal:
Considering that Dx and Dy respectively transform as the

irreducible representations B1 and B2 of C2v , all the possible
direct products Bi ⊗ Aj , with i, j = {1, 2}, do not contain the
full symmetry representation A1 of C2v , so that the exciton
dipole matrix element 〈0|D|λ〉 is always zero.

As before, we can exploit the real-space representation
�α,β (R), as shown for example in Figs. 10(b) and 10(d), to
assign e1,2 to the irreducible representations A1,2. Looking at
Figs. 10(b) and 10(d), in the case of armchair strain, the lowest
exciton e1 is even under the σyz mirror reflection, while e2 is
odd. Looking at the character table for C2v , we can therefore
assign e1 to A1 and e2 to A2. The same reasoning can be fol-
lowed in the case of zigzag strain: The only difference is that
in this case, the exciton e1 (e2) transforms as the irreducible
representation A2 (A1) of the point group C2v .

We now discuss the properties of exciton e3 and justify in
terms of group theory arguments the reason why it acquires a
finite OS in strained C3N. In the discussion we focus on the
5.0% strain case, though we note that the following comments
remain qualitatively valid also for smaller strains. Looking at
Fig. 10(e), we notice that the effect of strain along the arm-
chair direction is to create an unbalance between the intensity
of the k-space wave function A(k) along the �M and �M ′
directions (as those are no longer equivalent in the presence
of strain; see also Fig. 3 for comparison with the pristine
case). The application of the symmetry operators of the C6v

point group on the exciton wave function e3 in unstrained
C3N enables us to assign it to the irreducible representation B1

of C6v , which is dark for planar polarization of the incoming
light, in good agreement with the absorption spectrum shown
in Fig. 3. Interestingly, B1 of C6v corresponds to B1 of C2v:
In fact, by looking at Fig. 10(f), we see that the real-space
exciton wave function for e3 is odd with respect to the mirror
reflection about the yz plane, which is effectively the same
behavior of B1(C2v ) under σyz. As already discussed in the
previous section, excitons transforming as B1(C2v ) can have a
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FIG. 11. Oscillator strength Dλ, defined in Eq. (15), computed for exciton e3 as a function of the light polarization direction (measured
with respect to the zigzag x axis), in the case of zigzag (a) and armchair (b) strain equal to 5.0%. The circles in both figures represent isovalues
for the modulus of the exciton oscillator strength |Dλ|.

nonzero oscillator strength for light polarized along the zigzag
direction. This justifies the appearance of a peak in the zigzag
polarized absorption spectrum of strained ML-C3N due to the
e3 exciton.

To further confirm the agreement between the numerical
results and the proposed symmetry analysis, in Fig. 11 we
display the profile of the oscillator strength associated to the
exciton e3 as a function of the polarization direction under a
zigzag (a) and armchair (b) strain of 5.0%. We notice that,
independently of the direction of the applied strain, the e3

exciton has an anisotropic OS, showing a nodal line along the
armchair direction y. This is due to the fact that it transforms
as B1 of C2v for both the considered uniaxial strains, and,
since 〈0|Dy|B1〉 is zero by symmetry, such an exciton cannot
absorb light polarized along y. This is confirmed by numerical
results, which also indicate that the OS associated to exciton
e3 becomes more intense (of almost a factor 2) when strain is
applied along the zigzag rather than along the armchair axis.

VI. EXCITON DISPERSION AT SMALL MOMENTA

Up to now, we have discussed how excitons with null
center-of-mass momentum Q are modified via the application
of tensile uniaxial strain. In this section, we focus on the dis-
persion of exciton energies as a function of finite momentum
Q [45]. A fully ab initio calculation of exciton band structure
along high-symmetry directions in the BZ for pristine C3N has
been already presented in a previous work [5]. Here, by taking
advantage of the TB-BSE approach developed in Sec. II, we
deepen that analysis by computing the excitonic dispersion
in both pristine and strained C3N at small momenta Q. The
evaluation of small-Q dispersions is very demanding (though
possible [46]) within a fully ab initio approach, because of
the limited Q-points sampling accessible in practice. In this
respect, in the present work we exploit the simplicity of our
TB-BSE model to compute such a dispersion, which is known
to strongly influence exciton dynamics and lifetimes [47,48].

In the following, we evaluate the lowest excitonic bands
Eλ(Q), taking Q along the �M and �K ′ directions, with in-
tensity constrained to be smaller than |�M|/5 and |�K ′|/10 in
the two cases, respectively. In Fig. 12, we show the excitonic
dispersion in the case of pristine ML-C3N. Concerning the
low-energy excitonic bands, departing from the dark excitons
at �, we notice that the bands branching out of the E2 doublet
(excitons e1,2) are characterized by a negative concavity, while
the band starting from the exciton B1 (e3) presents positive
concavity, as also found by ab initio calculations [5].

The most striking feature of the obtained band structure
(not seen in the ab initio dispersion) is represented by the
two bands which originate from the E1 excitons at � (e4,5),
highlighted in Fig. 12 by red dots. We notice the presence
of an almost flat band with negative concavity and of a

FIG. 12. Exciton dispersion in pristine C3N for Q in proximity of
� and along the path M-�-K ′. Red dots denote the excitonic bands
departing from the bright excitons at �, transforming as E1; the linear
band dispersion of the highest band is also highlighted by dashed
red lines, representing the obtained linear fits along the two high-
symmetry directions. For completeness, |�M| = 0.746 Å−1 while
|�K ′| = 0.861 Å−1.
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FIG. 13. Exciton dispersion in C3N for Q along the path M-�-K ′, in the case of zigzag (a) and armchair strain (b). In both cases, the strain
is fixed to 1.0%. The red (blue) dots denote the excitonic band dispersing from the B2 (B1) exciton at �. The insets show the excitonic branches
departing from the bright excitons B1 and B2 at �. For completeness, |�M| = 0.748 Å−1 and |�K ′| = 0.858 Å−1, in the case of zigzag strain,
while |�M| = 0.739 Å−1 and |�K ′| = 0.863 Å−1 in the case of armchair strain.

V-shaped dispersion, with the latter well reproduced by a
linear dispersion with slope of about 19.0 eV Å along both
the �M and �K ′ directions (see the dashed red line in Fig. 12).
As discussed in the literature [38,46,49], this feature is due to
the long-range component of the BSE exchange term, Eq. (7),
in the excitonic Hamiltonian of 2D materials. In fact, this
V-shaped dispersion combined with a slowly varying band is
analogous to the dispersion discussed by Qiu et al. [46] for
the excitonic bands departing from optically active twofold
degenerate excitons in monolayer MoS2. A similar analysis is
also proposed in the work of Cudazzo et al. in Ref. [38], and
in a recent work by Qiu et al. (Ref. [49]).

We now turn our attention to the effect of uniaxial strain on
the excitonic dispersion. In order to do this, we compute the
excitonic dispersion at small Q in the case of a strain equal
to 1.0% applied along the zigzag and armchair directions.
Similar considerations can also be done in the case of different
strain values. The resulting dispersions are shown in Fig. 13.
As previously discussed, the pair of bright excitons E1 in
pristine C3N will split into B1 and B2 excitons. In the case of
zigzag strain [Fig. 13(a)] the band originating from the lowest
exciton B1 is weakly dispersing along �M, while it has a linear
trend along �K′ [see blue dots in Fig. 13(a)]. The situation is
the opposite for the bands departing from the highest energy
exciton B2, which is linear along �M and almost flat (with
negative concavity) along the orthogonal direction �K ′. These
bands are highlighted by red dots in the figure. Similar con-
sideration can be done for the bands originating from B1 and
B2 in the case of armchair strain [see Fig. 13(b)].

The observed behavior is again due to the long-range com-
ponent of the exchange kernel of the excitonic Hamiltonian.
Qiu et al. [49] demonstrated that in 2D materials the excitonic
dispersion of a band λ at small Q can be written as

Eλ(Q) = Eλ(�) + Aλ|Q| cos2 θQ + h̄2Q2
x

2Mx
λ

+ h̄2Q2
y

2My
λ

, (19)

where Eλ(Q = �) is the energy of the nondegenerate exciton
λ at null momentum and θQ is the angle between Dλ, defined

in Eq. (15), and the vector Q. The terms showing a quadratic
dependence on Q are determined by the single-particle dis-
persions, the small-Q behavior of the direct kernel, and the
short-range part of the exchange kernel. These dependencies
are captured by the exciton effective masses Mx,y

λ which can
be obtained by fitting ab initio results [46,49]. On the other
hand, the linear term is only due to the long-range part of the
exchange kernel, where Aλ is a coefficient proportional to the
modulus of the exciton dipole Dλ at Q = 0.

Exploiting Eq. (19), we can give a rationale for the dis-
persions of the bands departing from the B1 and B2 excitons
in strained C3N. The exciton at � transforming as B1 has
a dipole D with null component along the y direction, as it
can only have OS for light polarization along x. Therefore,
the band originating from this exciton (depicted in blue in
Fig. 13) will have a linear dispersion along �K ′, while it
will be almost flat along �M. The reason is that if Q ‖ �M,
the cosine function cos2 θQ is zero, so that the linear term in
Eq. (19) does not contribute. Instead, the quadratic disper-
sion is due to the term proportional to Q2

x and Q2
y , with the

negative concavity determined by the dependence on Q of
the difference εc(k + Q) − εv (k). Conversely, the excitonic
band originating from the exciton B2 at � (highlighted by red
dots in Fig. 13) will have a linear dispersion along �M and
a quadratic one along �K ′, as the dipole for B2 excitons is
oriented along the y direction parallel to �M, so that only if
Q ‖ �M the linear term in Eq. (19) gives contribution, while
if Q ‖ �K ′ this term is zero as the dipole is perpendicular to
the exciton center-of-mass momentum.

We further point out that such a linear dispersion is only
possible for exciton branches originating from bright excitons
at �. The reason why the band starting from the third exciton
(i.e., the one nondegenerate in pristine C3N) does not show
linear dispersion is a direct consequence of the small dipole
strength acquired by this exciton under strain, so that the
quadratic term dominates on the linear one in Eq. (19), even if
the latter may be nonzero. As a last comment concerning the
excitonic bands shown in Fig. 13, we remark that the two low-
energy bands departing from the excitons A1 and A2 at � are
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characterized by dispersions which are swapped passing from
armchair to zigzag strain. The reason is strictly related to the
fact that with zigzag strain the lowest exciton at � transforms
as A2 while the second exciton as A1. The order is reversed
in the case of armchair strain, and, as a consequence, also the
bands are exchanged. Finally, we can discuss our findings in
view of the existing literature. In particular, our results con-
cerning small-Q exciton dispersion in strained C3N highlight
a peculiar effect related to exciton propagation in mechani-
cally strained C3N. In fact, Qiu et al. [49] pointed out that
in 2D materials where optically bright excitons with strongly
anisotropic dipole strength can exist (such as in single- or
few-layer black phosphorous), it is possible to produce exci-
ton wave packets which propagate along a quasi-1D channel,
whose direction is defined by the orientation of the excitonic
dipole at null momentum. This has been proved in the ballistic
regime, and it has been demonstrated to be a consequence
of the linearity of exciton bands at small momentum, for Q
parallel to the excitonic dipole.

Our results show that two bright excitons with intense
oscillator strengths in orthogonal polarization directions are
present in C3N, at fixed uniaxial strain. As a consequence, in
strained C3N it should be possible to prepare exciton wave
packets which propagate along either the armchair or the
zigzag directions, according to the polarization of the incom-
ing light beam which produce the wave packet itself. This is
not possible for example in black phosphorous, as, in that
case, the crystal does not have two excitons at � which are
close in energy and characterized by orthogonal dipoles.

VII. CONCLUSIONS

In this work, we discuss in detail the effect of uniaxial
strain on the excitonic properties of monolayer C3N. First, we
develop a simplified solution of the BSE based on a tight-
binding description of single-particle properties (TB-BSE),
coming from maximally localized Wannier functions obtained
from the ab initio DFT calculations. This solution can also be
applied to other 2D systems, with minor modifications. Such
an approach allows us to investigate the effect of uniaxial
strain on low-lying dark excitons and higher-energy active
excitons in pristine C3N. In particular, we discuss the origin of
strain-induced optical anisotropy, as obtained from numerical
calculations, in terms of group theory and symmetry argu-
ments. Furthermore, we clarify the effect of strain on dark
excitons, by demonstrating the strain-induced brightening of
the lowest nondegenerate dark excitation. Such results could
be exploited for device applications, such as optical switches,
and we therefore hope that our study will stimulate optical
spectroscopy experiments on C3N under different strain con-
figurations.

Finally, the developed TB-BSE approach allows us to ob-
tain the excitonic dispersion in both pristine and strained C3N,
in a range of center-of-mass momenta Q which are hardly
accessible using state-of-the-art fully ab initio calculations.
Our results on excitonic dispersions show that mechanically
strained C3N displays a peculiar selectivity effect in the prop-
agation direction of the exciton wave packets along either
the armchair or the zigzag paths. We therefore believe that
the dynamics of excitons in strained C3N should deserve

future experimental and theoretical investigation, in order to
also clarify how other mechanisms affecting the exciton prop-
agation (such as exciton-phonon coupling [50–53]) can be
tuned by the applied mechanical strain.
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APPENDIX A: SYMMETRY OPERATIONS ON EXCITONS

In this section we discuss the method used within this work
to assign an exciton λ to an irreducible representation of the
planar point group of both pristine and strained ML-C3N.
Given an exciton λ, we assign it to the irreducible representa-
tion � if, given a symmetry operation Ŝ of each class C of the
group, we have that

χC =
∑

λ

χλ
S =

∑
λ

∫
dredrh �∗

λ (re, rh)Ŝ�λ(re, rh) (A1)

is equal to the character of class C for the irreducible repre-
sentation �. In Eq. (A1) the summation over λ is present only
when we consider a manifold of degenerate excitons.

We now discuss how to compute the quantity χλ
S for a

single exciton λ, also assuming that Ŝ is a planar symmetry
operator, which leaves unchanged the out-of-plane variable z.
We start by writing the exciton wave function �λ(re, rh) in
real space as

�λ(re, rh) =
∑
vck

Aλ(vk; ck) ψ∗
vk(rh)ψck(re). (A2)

By defining

ψW
αk(r) = 1√

N

∑
R

eik·Rw(r − τα − R), (A3)
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and writing the conduction and valence states c and v involved
in the BSE in terms of the tight-binding coefficients cα (nk),
we can compactly write �λ(re, rh) as

�λ(re, rh) =
∑
αβk

Āλ(αk; βk) ψW ∗
αk (rh)ψW

βk(re), (A4)

where we have defined

Āλ(αk; βk) =
∑
vc

Aλ(vk; ck) c∗
α (vk)cβ (ck). (A5)

The action of the symmetry operator Ŝ on a general
r-dependent function g is Ŝg(r) = g(Ŝ−1r), so, by straightfor-
ward generalization to two-variable functions, we have

Ŝ�λ(re, rh) = �λ(Ŝ−1re, Ŝ−1rh)

and then χλ
S becomes

χλ
S =

∫
dredrh �∗

λ (re, rh)�λ(Ŝ−1re, Ŝ−1rh). (A6)

Using Eq. (A4) in Eq. (A6) we obtain

χλ
S =

∑
α1β1k1

∑
αβk

Ā∗
λ(α1k1; β1k1) Āλ(αk; βk)

× Ie(β1k1; βk) Ih(α1k1; αk), (A7)

where we have defined

Ie(β1k1; βk) =
∫

dre ψW ∗
β1,k1

(re) ψW
β,k(Ŝ−1re),

Ih(α1k1; αk) =
∫

drh ψW
α1k1

(rh) ψW ∗
αk (Ŝ−1rh). (A8)

We now compute Ie(β1k1; βk) by using the definition of ψW
βk,

Eq. (A3), obtaining

Ie(β1k1; βk) = 1

N

∑
RR1

e−ik1·R1 eik·R
∫

dre

×w(re − R1 − τβ1 )w(Ŝ−1re − R − τβ ).

(A9)

As the Wannier functions w used in this system have a 2pz

character, they transform according to

w(Ŝ−1re − R − τβ ) = w(re − ŜR − Ŝτβ ) (A10)

if Ŝ leaves unchanged the out-of-plane variable z. Defining the
index βS and the lattice vector RβS such that Ŝτβ = RβS + τβS ,

we find ∫
dre w(re − R1 − τβ1 ) w(Ŝ−1re − R − τβ )

= δβ1,βS δ(R1 − ŜR − RβS ), (A11)

where the orthonormality properties of MLWFs have been
used. Therefore, by direct substitution in the definition of

Ie(β1k1; βk) and using the identity
∑

R eik·R = Nδk,0, valid
for any k vector in the BZ, we obtain

Ie(β1k1; βk) = δβ1,βS e−ik1·RβS δk1,Ŝk. (A12)

Proceeding in an analogous way we find

Ih(α1k1; αk) = δα1,αS eik1·RαS δk1,Ŝk, (A13)
with αS and RαS such that Ŝτα = RαS + ταS .

Finally, by substitution of Eqs. (A12) and (A13) in
Eq. (A7) we obtain

χλ
S =

∑
αβk

Ā∗
λ(αSŜk; βSŜk) Āλ(αk; βk)e−i(Ŝk)·RβS ei(Ŝk)·RαS .

(A14)

We point out that Eq. (A14) gives meaningful results only
if the coefficients c used to compute the Ā functions are
exactly the same used in the construction of the BSE ker-
nel from which the envelope function Aλ(vk; ck) is obtained
by diagonalization. If different coefficients are used, phase-
inconsistency problems can arise.

APPENDIX B: EXCITON WAVE FUNCTIONS
IN REAL SPACE

We define the real-space representation of exciton λ within
our TB-BSE model as

�
α,β

λ (R) = 〈rh = τα; re = τβ + R|λ〉, (B1)

where |rh = τα; re = τβ + R〉 is a compact notation to denote
a 2-particle state, with an electron localized on the 2pz-like
orbital centered on atom β in the unit cell R and a hole in the
orbital localized on the atomic site α. Using Eq. (A4) for the
exciton wave function in real space we obtain

�
α,β

λ (R) =
∫

dredrh w(rh − τα ) w(re − R − τβ )

×
∑
γ ρk

Ā(γ k; ρk) ψW ∗
γ ,k (rh)ψW

ρ,k(re). (B2)

A straightforward application of the orthogonality between
MLWF localized on different atomic sites gives∫

drh w(rh − τα )ψW ∗
γ k (rh) = 1√

N
δα,γ , (B3)

∫
dre w(re − R − τβ )ψW

ρk(re) = 1√
N

δβ,ρeik·R. (B4)

Finally, we obtain

�
α,β

λ (R) = 1

N

∑
k

eik·RĀ(αk; βk). (B5)
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