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Phonon-limited resistivity of multilayer graphene systems
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We calculate the theoretical contribution to the doping and temperature (T ) dependence of electrical resistivity
due to scattering by acoustic phonons in Bernal bilayer graphene (BBG) and rhombohedral trilayer graphene
(RTG). We focus on the role of nontrivial geometric features of the detailed, anisotropic k · p band structures of
these systems—e.g., Van Hove singularities, Lifshitz transitions, Fermi surface anisotropy, and band curvature
near the gap—whose effects on transport have not yet been systematically studied. We find that these geometric
features strongly influence the temperature and doping dependencies of the resistivity. In particular, the band
geometry leads to a nonlinear T dependence in the high-T equipartition regime, complicating the usual T 4 to
T Bloch-Grüneisen crossover. Our focus on BBG and RTG is motivated by recent experiments in these systems
that have discovered several exotic low-T superconductivity proximate to complicated hierarchies of isospin-
polarized phases. These interaction-driven phases are intimately related to the geometric features of the band
structures, highlighting the importance of understanding the influence of band geometry on transport. While
resolving the effects of the anisotropic band geometry on the scattering times requires nontrivial numerical
solution, our approach is rooted in intuitive Boltzmann theory. We compare our results with recent experiments
and discuss how our predictions can be used to elucidate the relative importance of various scattering mechanisms
in these systems.
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I. INTRODUCTION

Rapid progress in the ability to produce clean, stable, 2D
layered van der Walls heterostructures made up of graphene
and/or transition metal dichalcogenides (TMDs) has opened a
new subfield of condensed matter physics [1–41]. The sen-
sitivity of the band structures of these systems to external
control parameters, especially twist angle and displacement
field, gives an unprecedented experimental ability to engineer
flat bands and control the location of geometric band features
(e.g., Van Hove singularities and Lifshits transitions), and thus
to tune the relative strength of interaction-driven physics.

This family of systems has already shown various cor-
related insulating states [7,13], ferromagnetism [15,16],
correlation-driven valley and isospin polarization [18,19],
anomalous quantum hall physics [21], topological insulator
physics [23–25], metal-insulator transitions [34–39], possible
“strange metal” resistance scaling at very low temperature
[9,26–28], and most conspicuously, possibly exotic supercon-
ductivity [8,18–20,22,29–31], including phases with verified
non-spin-singlet pairing [18,20]. The rich phase diagrams and
high experimental control that characterize these systems has
quickly made them into one of the most studied platforms
in condensed matter physics. The above-listed discoveries
demonstrate that geometric band features can have a profound
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influence on the effects of interactions on transport properties.
In turn, this highlights the need for a refinement of the basic
theories of phonon-limited resistivity as applied to these mate-
rials, accurately taking complex band geometry into account.

In particular, recent experiments in ABC-stacked rhombo-
hedral trilayer graphene (RTG) and AB-stacked Bernal bilayer
graphene (BBG) (Fig. 1) have discovered superconductivity
(SC) proximate to several correlated, isospin polarized phases
[18–20,29] in the vicinity of Van Hove singularities and Lif-
shitz transitions in the band structures. Additionally, there is
evidence that some of the superconducting phases host uncon-
ventional, non-spin-singlet pairing. Theories of SC in RTG
and BBG based on Cooper pairing mediated by interaction
with acoustic phonons have been put forth that propose likely
explanations for the SC, explaining the presence of both spin-
triplet and spin-singlet phases and providing roughly accurate
transition temperatures [42–44]. Additionally, the proximity
of SC phases to various interaction-driven phases has spurred
comparison to strong correlation physics, and several other
explanations centering e-e interactions have been proposed
[45–53].

A time-tested method for ascertaining the relative impor-
tance of various scattering mechanisms in a material is to
look for clues in the temperature dependence of the resistiv-
ity. This is because different mechanisms generally produce
various characteristic contributions and finite-T crossovers
between these. For example, this debate is currently unfold-
ing for twisted bilayer graphene, where it is still unclear
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FIG. 1. We depict the lattice structure of Bernal bilayer graphene
(top) and rhombohedral trilayer graphene (bottom). The left side of
the image shows top-down views of the xy plane, labeling atoms with
their layer number ({1, 2}) and sublattice index ({A, B}). The right
side of the figure shows the stacking from a cross-section view.

whether observed linear-in-T resistivity dependence is caused
by phonons or an interaction-driven strange metal state, anal-
ogous to that famously seen in several highly correlated
systems [9,26–28].

The recent experiments in BBG and RTG show that moiré-
induced correlation effects are not a necessary ingredient
for SC in layered graphene systems, leaving phonon-induced
pairing as the de-facto leading candidate for a universal
SC mechanism in these systems. Especially since acoustic
phonons give a consistent theory of SC in both BBG and RTG,
it is important to understand and isolate the contribution to the
resistivity that should be expected due to acoustic phonons in
the absence of e-e effects. In conventional superconductors,
electron-phonon couplings extracted from SC tend to agree
well with those extracted from transport measurements. Thus
an extensive quantitative comparision of the SC data and the
transport data is an important step in elucidating the nature of
the SC pairing. Further, since these systems demonstrate that
superconductivity in 2D layered systems can be intertwined
with the nontrivial Fermi surface geometry, they offer an arena
to understand the extent to which these geometric features
effect transport generally.

The general paradigm of acoustic-phonon-limited resistiv-
ity in isotropic (semi)metals is as follows [54–60]. In the
low-T regime, where the quantum statistics of the phonon are
important, we expect ρ ≈ T d+2, where d is the dimension of
the sample. This characterizes the “Bloch-Grüneisen” (BG)
regime, which corresponds to

kBT � kBT ∗
BG = CBG · (2h̄vpkF ), (1)

where vp is the phonon velocity, kF is the Fermi momen-
tum, and CBG ≈ O(1) is a material-specific constant. (Further,
kBTBG ≡ 2h̄vpkF is usually defined.) In the high-T “equipar-
tition” (EP) regime, T � T ∗

BG, we instead expect linear-in-T
resistivity. We note that single-layer graphene displays these
properties elegantly, with CBG ≈ 1/6 [54,61].

The goal of this paper is to give a precise theoretical cal-
culation of the resistance due to acoustic phonon scattering in
BBG and RTG systems in the presence of an interlayer poten-
tial (�). We give concrete predictions for the doping (n) and
temperature (T ) dependence of the resistivity of these systems
in the limit of phonon-dominated transport. The interlayer po-
tential (produced by a displacement field) is required to induce
SC in BBG, and tuning this potential can significantly alter
the band structure and control the location of the Van Hove
singularities, affecting both the SC and the interaction-driven
phases [18,19].

We carry out our calculation in the framework of Boltz-
mann kinetic theory, treating the acoustic phonons via the
Debye approximation but retaining the full electronic band
structure obtained by the diagonalization of k · p Hamiltoni-
ans [62,63]. We are able to numerically solve the linearized
Boltzmann equation in the anisotropic band geometry and
give quantitative predictions for the resistance and thus for
the BG crossover temperature, T ∗

BG. We emphasize that accu-
rately treating the nonisotropic band structure is a significant
technical complication, beyond the techniques of promi-
nent earlier treatments of resistivity in 2D layered graphene
structures [54–58]. Further, these earlier treatments of multi-
layer graphene do not include the effects of the interlayer
potential.

We find that the electronic structure of the layered systems
significantly distorts the BG paradigm explained above. In
particular, while the high-T behavior of the scattering rate of
an individual Bloch state is linear, 1/τk ∝ kBT , band curva-
ture effects can lead to a complicated nonlinear T dependence
of the resistivity curves. In the cases of gapped systems (the
displacement field generating � > 0 opens a gap), there is a
large spike in resistivity near charge neutrality. These band-
curvature effects interfere with the BG crossover, and we
find that the approximate power law for resistivity scaling is
strongly influenced by the band structure geometry. This is
demonstrated in Figs. 2 and 3 (and most others in this paper).
Further, we note that the anisotropy (i.e., trigonal warping in
graphene systems) in the band structure alters the low-T BG
relaxation rate T 4 power law to a nonuniversal, k-dependent T
dependence. While this nonlinear-in-T equipartition-regime
phonon-limited resistivity is unexpected in the context of
Boltzmann theory, we note that it has been detected experi-
mentally in both bilayer and trilayer twisted graphene systems
[27,64].

Our paper is organized as follows. In Sec. II, we present
an overview of the main results of the work, emphasizing
the most important quantitative aspects for comparison with
experiment and qualitative results that run counter to common
expectations. We then provide a concise review of acoustic
phonon scattering in kinetic theory and present an overview
of the calculation of relaxation times in the BBG and RTG
systems in Sec. III. We emphasize the roles of anisotropy and
band curvature, which requires more care than the case of
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FIG. 2. Overview of phonon scattering in Bernal bilayer and rhombohedral trilayer layered graphene systems. The top row [(a) and (e)]
depicts qualitatively distinct kinematically allowed scattering manifolds for different Bloch states at the same energy. In these figures, the black
curve depicts a Fermi surfaced (near the hole-doped VHS), the pink dot denotes a reference Bloch state, and the colored points denote the
points in k space that the reference state can scatter too while conserving conservation of energy and momentum. These are the “scattering
manifolds” (Sec. III B), which depend on the geometry of the system. The coloring of the scattering manifolds encodes the transitions rates
from the reference state. These plots demonstrate the nontrivial kinematics and geometry at play in scattering in these systems. The middle
layers [(b), (c), (f), and (g)] shows the density of states of the two systems, with labels showing how the Fermi surface geometry changes as the
sample is doped. The bottom layer [(d) and (h)] gives the central results of this work, the scaling of the resistivity with temperature in various
regions of n-T space. This is captured by a heat map of d ln[ρ(n, T )]/d ln T. We emphasize the clear connection between the scaling behavior
and the geometric features in the density of states. The doted line gives the naive T ∗

BG calculated with Eq. (1) for an isotropic system. We see
that at sufficiently large dopings, the color contours begin to follow the

√|n| profile traced out by the black dotted T ∗
BG line, reflecting the fact

that at large dopings, the Fermi surface becomes roughly circular. However, our system exhibits a surprising suppression of T ∗
BG as doping is

decreased and the Fermi surface qualitatively changes. These results are calculated with an interlayer potential of � = 0.07 eV, and should
be compared with Fig. 3, which treats the zero-field case. The analogous results for a simple Dirac cone (gapped and ungapped) are given in
Fig. 4 for further comparison.

an isotropic band. The nonlinear T dependence we report in
the equipartition regime is unexpected. Section IV provides
more intuition for these effects. Our concluding discussion is
presented in Sec. V.

Some supporting details are relegated to appendices. Ap-
pendix A presents the k · p Hamiltonians used to calculate
the band structure of BBG and RTG. Appendix B discusses
the numerical solution for the relaxation rates in the solution
of the linearized Boltzmann equation. Appendix C discusses
the role of the relaxation time approximation in resistivity
calculations. Finally, Appendix D presents additional ρ(n, T )
data for the systems of interest, supplementing the results
presented in Sec. II.

II. SUMMARY OF MAIN RESULTS

Our central results are the calculations of the doping (n)
and temperature (T ) dependence of the resistivity [ρ(n, T )]
for Bernal bilayer and rhombohedral trilayer graphene in the
presence of a displacement field, under the assumption that
scattering is limited to acoustic phonons (which we treat in the
Debye approximation). In particular, we give quantitative pre-
dictions for the crossover from the Bloch-Grüneisen regime to
the equipartition regime.

We plot ln[ρ(n, T )] for low T (0–120 K) in Fig. 5 and an
approximate extension of these results to higher-T (0–800 K)
in Fig. 6. Individual curves of ρ(n, T ) for fixed n are given
in Fig. 7. The most obvious feature in this data is a strong
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FIG. 3. Resistivity scaling with T due to phonon scattering in ungapped BBG and RTG, as in the absence of the interlayer potential, to
be compared with Fig. 2. As in Fig. 2, the top layers [(a), (b), (d), and (e)] plot the density of states of the system for various doping levels,
labeled with Fermi surface geometries. The bottom row [(c) and (f)] provides a heat map of d ln[ρ]/d ln T over n-T space, mapping out the
various regimes of resistivity scaling. As in the case of the gapped systems (Fig. 2), we see that the BG transition is strongly affected by the
band geometry. Though this is more subtle without the applied field, we still see the effects clearly in the RTG case, which still exhibits an
annular Fermi surface over a small doping window. As before, the dotted line gives the expected BG crossover for an isotropic system; for the
ungapped systems plotted here, this estimate is quite accurate as long as the sample is sufficiently doped.

FIG. 4. Resistivity scaling with T due to phonon scattering in
simple gapped (right) and ungapped (left) Dirac cones, to be com-
pared with Figs. 2 and 3. As in those figures, the bottom row provides
a heat map of d ln[ρ]/d ln T over n-T space. The top row plots the
density of states of the system for various doping levels. The dotted
line gives T ∗

BG [Eq. (1)].

spike in resistivity (ρ ≈ 3000 �) near to charge neutrality at
low T . From Figs. 6 and 7, we see that this is a low-T phe-
nomenon and that resistivity drops and levels out at higher T .
However, we note that the high-T resistivity is definitely not
given by a simple T -linear power law above the BG regime. In
Figs. 2, 3, and 4 we plot d ln[ρ(n, T )]/d ln(T ) as an approx-
imate scaling exponent for the resistivity. These plots act as a
sort of “phase diagram” for the various regimes of T depen-
dence in the resistivity profile. In particular, we find there is a
region where the resistivity curve flattens out to be essentially
constant with T , sometimes after a downturn. While this is
counter to high-T phonon expectations, this behavior has been
measured in twisted bilayer [27] and trilayer [64] graphene
systems. We stress that this is an effect entirely due to band
curvature, which we discuss further in Sec. IV.

Figures 2–5, and 7 all demonstrate the BG crossover men-
tioned in the introduction. At high dopings, where the Fermi
surface is roughly circular, we find a T ∗

BG ≈ 40–60 K, in
line with expectations for a circular Fermi surface [54–58].
However, we see a sharp drop to around 20 K at the Lifshitz
transition to an annular Fermi surface, and T ∗

BG continues to
drop as we approach charge neutrality. From Figs. 2–4, it
is clear that the band geometry created by applying a dis-
placement field (�) to the graphene layers causes significant
alterations to the standard BG transition profile. Additionally,
the curve flattening discussed in the last paragraph can come
into effect at T comparable to the crossover temperature T ∗

BG,
making the T 4 → T transition difficult to observe.
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FIG. 5. We plot a heat map of ln[ρ] over doping density and
temperature for the BBG (left), RTG (middle), and Dirac (right)
systems for both the gapless (top) and gapped (bottom) cases. For
BBG and RTG, the gapped systems correspond to a displacement
field � = 0.07 eV, and the gapped Dirac system has M = 0.05 eV.
Several features are prominent. The dark blue in the lower corners
shows the universal features of the BG transition. All systems but
the ungapped Dirac cone display density dependence throughout the
high-T regime, with a significant increase in resistivity near charge
neutrality. This is especially prominent for the gapped RTG and BBG
systems, where the resistivity spikes to ρ ≈ 3000 �.

Nevertheless, we predict that the phonon contribution to
resistivity should become important at temperatures that vary
between 10 and 60 K, depending on the doping, as shown in
Fig. 7. This should be compared with what is currently known
from experiment: linear-in-T resistivity dependence has not
been observed under 20 K in RTG or under 1.5 K in BBG. It
is important to note that the zero-T contribution to resistivity
from disorder ranges from about 30 to 70 � in these systems
[18–20,29].

We also report results for phonon scattering in BBG and
RTG in the absence of the displacement field. The data are
all given in Fig. 6, and the effective resistivity power law is
extracted in Fig. 3, which should be compared with Fig. 2. We
note that in the absence of the applied field, the high-resistivity
spike near charge neutrality is significantly diminished. How-
ever, we still find high-T nonlinearity in the resistivity curves.
Resistivity curves for the ungapped cases analogous to Fig. 7
can be found in Appendix D.

III. RESISTIVITY VIA BOLTZMANN KINETIC THEORY

The use of Boltzmann kinetic theory to calculate linear re-
sponse resistivities due to phonon collisions with Bloch state
electrons is well-established [54,55,59,60]. In this section, we

FIG. 6. Accurate approximate calculations of resistivity in the
equipartition regime can be made efficiently with the protocol dis-
cussed in Sec. III C. Here we plot these approximate results over
a large range of T , extending the scope of Fig. 5. We see that the
large spike in resistivity near charge neutrality is a relatively low-T
behavior and that the resistivity decreases at higher temperatures,
as T get high enough to excite carriers in the conduction band.
We emphasize that even at high-T , the resistivity does not return
to simple linear scaling, but instead asymptotes to a constant value.
(See also Figs. 7 and 16.)

outline the structure of the theory and explain our calculation,
appealing to the Dirac cone of single-layer graphene to display
concepts and highlight departures of our theory from previous
work. We first introduce the model in Sec. III A, then we state
the main results of the kinetic theory in Sec. III B and use these
results to give intuition into the Bloch-Grüneisen crossover in
Sec. III C. Finally, Sec. III D discusses the actual computation
of the resistivity.

A. Model

We use the electronic single-particle Hamiltonian

He = 1

L2

∑
k

c†
kHe

kck, (2)

where c† ≡ c†
s,ξ ,σ,l,k creates an electron with crystal momen-

tum k (relative to Dirac point), spin s, valley ξ , sublattice
σ , and layer l . In our models, He

k ≡ δs,s′δξ,ξ ′He
σ,l,σ ′,l ′,k is a

k-dependent matrix coupling together layer and sublattice
degrees of freedom, which are given in Appendix A. This is
a k · p continuum Hamiltonian from [62,63], which is very
accurate within 1 eV of the charge neutrality point. The four
degenerate spin-valley flavors remain decoupled in our cal-
culation and contribute equally to the conductivity (inverse
resistivity).
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FIG. 7. Resistivity data for hole-doped Bernal bilayer (top) and rhombohedral trilayer (bottom) graphene stacks, evaluated with the
displacement field at � = 0.07 eV. Resistivity is given in ohms on a linear scale. The leftmost two columns give the results of our full
numerical calculation for the resistivity of the two systems at various doping levels up to 30 and 120 K, respectively. The third column
gives the same resistivity curves extended to 800 K, making use of the equipartition assumption discussed in Sec. III D. The far right
columns indicate the doping levels of the curves shown in each row. From the full low-T results (left) we may extract the effective BG
crossover. We see that for large dopings, ρ(T ) exhibits a BG-EP crossover temperature T ∗

BG as high as 40–60 K; however, there is a sharp
drop in T ∗

BG to around 20 K upon the Lifshitz transition to the annular Fermi surface. The T ∗
BG continues to drop as we approach charge

neutrality, dropping as low as 5–10 K. We note that there is no sharp or discontinuous behavior at the Van Hove singularities. The high-T
equipartition results (center) show how band curvature effects lead to nonlinearity in ρ(n, T ) and how the effects can complicate the BG
crossover. We see also that for dopings close to charge neutrality, we should expect a large spike in resistivity at moderate temperatures
(100–300 K).
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We are interested in the effects of the electron bands,
so we restrict our model to in-plane longitudinal acoustic
phonons and adopt a simple Debye description. We thus take
the phonon Hamiltonian to be

H p =
∑
l,q

h̄ωqa†
l,qal,q, (3)

where ωq is the phonon dispersion and we use the Debye
approximation ωq ≈ vp|q|, where vp is the phonon velocity.
This treatment neglects optical phonons, which should give a
quantitative correction above some temperature. Since optical
phonons have a large excitation gap in graphene, ranging from
about 0.15 to 0.20 eV [65], they will become relevant at
higher temperatures than we are concerned about here (ap-
proximately 1500 K) [65–67]. Our neglect of optical phonons
is further justified by the fact that the electron-optical-phonon
couplings are weak in graphene multilayers due to sublattice
polarization [22].

We couple the electrons to phonons via the well-known
deformation potential coupling Hamiltonian [54,59,68]:

Hepc =
√

D2h̄

2ρML2

∑
l,q

n̂q,l√
ωq

(−iq · êq)(aq,l + a†
−q,l ). (4)

Above, D is the deformation potential, ρM is the mass density
of monolayer graphene, and êq is the displacement unit vector
of the phonon. Throughout this work, we set D = 25 eV,
ρM = 7.6×10−8 g/cm2, and vp = 2.6×106 cm/s [54–56,61].
Finally, the electron density operator is

n̂q,l ≡
∑

k

c†
(k+q),l ck,l . (5)

In Eqs. (2) and (5), sums over unwritten s, σ, ξ , and l indices
are implicit.

B. Kinetic theory

In the so-called “relaxation time approximation” [60] (also
see Appendix C) to Boltzmann kinetic theory, the resistivity
tensor (ρ) is given by

[ρ i j (n, T )]−1 = 4e2

T L2

∑
k∈BZ

τkv
i
kv

j
k f (εk )[1 − f (εk )], (6)

where T is temperature, L is system length, e is the electron
charge, v

j
k are components of the velocity of the Bloch state

k, f (ε) is the Fermi distribution function, and the τk are
the relaxation times of the various Bloch states. If the band
structure and Bloch states are known, the main challenge in
the computation of the resistivity is the computation of the
relaxation times. The leading factor of 4 follows from the spin
and valley degeneracies of the problem.

In Eq. (6), we have suppressed the band index (b) and
taken the sum over k to mean a sum over all Bloch states:
k → (k, b). We will continue to use this notation and will
explicitly mention when interband excitations or transitions
are important.

Enforcing self-consistency of the relaxation time approxi-
mation on the Boltzmann equation (Appendix C), we find that

1

|vk|L2

∑
k′∈BZ

Wk→k′
1 − f (εk′ )

1 − f (εk )
[lk − lk′ cos θv] = 1, (7)

where lk ≡ |vk|τk are the “relaxation lengths” (mean free
paths), θv is the angle between the Bloch velocities vk and
vk′ , and Wk→k′ is the transition rate from state k to k′. In the
thermodynamic limit, Eq. (7) becomes an integral equation.
For a finite-size system, it is a matrix equation that can be
inverted to find the relaxation lengths. Again, band indices
have been suppressed, but k and k′ should be taken to stand
for the Bloch states (k, b) and (k′, b′).

In the case of the standard deformation potential phonon
coupling Hamiltonian, a standard Fermi’s golden rule calcu-
lation gives the transition rates

Wk→k′ = πD2

ρMvp
|k′ − k|�(εk, εk′ )

∑
l

|〈ψk′,l |ψk,l〉|2

≡ h̄vp|q|�(εk, εk′ )Ck,k′ (8)

with

q ≡ k′ − k, (9)

�(εk, εk′ ) ≡ Nqδ(ε′ − ε − h̄vp|q|)
+(Nq + 1)δ(ε′ − ε + h̄vp|q|), (10)

Nq ≡ 1

exp(h̄vp|q|/kBT ) − 1
. (11)

The Dirac δ functions in Eq. (10) enforce conservation of
energy and momentum and Nq gives the occupation numbers
of phonons available for scattering. The first line in Eq. (10)
refers to phonon absorption processes while the second refers
to phonon emission.

For a given energy band geometry, the conservation laws in
Eq. (10) determine a set of scattering manifolds for each Bloch
state, corresponding to absorption and emission of phonons.
The summand in Eq. (7) then determines the rate of transition
to each point on the scattering manifold. Written as a sum over
the scattering manifold (SM), Eq. (7) takes the form

h̄vp

|vk|L2

∑
k′∈SM

|q|Ck,k′Fμ,T
k,k′ [lk − lk′ cos θv] = 1, (12)

with

Fμ,T
k,k′ ≡ 1 − f (εk′ )

1 − f (εk )
×

{
Nq εk′ > εk
Nq + 1 εk′ < εk

}
, (13)

where k ∈ SM indicates a summation over the scattering man-
ifold of states picked out by the delta functions in Eq. (10).
We emphasize that all implicit dependence of the relaxation
lengths on the temperature or chemical potential are due to
Fμ,T

k,k′ .
From Eqs. (6)–(8), we see that resistance scales linearly

with D2/ρM , so our results are easy to adjust for different
values of these parameters. The dependence on vp is more
involved, since it also affects the geometry of the scattering
manifolds.

Figure 8 shows how scattering rates can vary across the
scattering manifold, using a Dirac cone as a simple example.
It also visually demonstrates the transition between the BG
and EP regimes, which we discuss next.
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FIG. 8. We plot the kinematically allowed scattering manifolds
for phonon scattering on a Dirac cone, given by Eq. (10). The Fermi
surface at μ = −0.25 eV is plotted in black and a reference point on
the Fermi surface is identified with a pink dot. The colored points
mark the set of k-space points that the reference point can scatter too
while conserving energy and momentum. The color coding on the
scattering manifold are proportional to the scattering rate between
the two points. The figure is shown for descending temperatures: 300,
100, 30, and 10 K. The Bloch-Grüneisen transition is demonstrated
by the fact that the 300 and 100 K figures (top) only differ quan-
titatively by the scale of the color bar, while they are qualitatively
distinct from the lower-temperature versions (bottom).

C. Bloch-Grüneisen and Equipartition regimes

The low-T BG regime is best understood in the case of
an isotropic (lk → lεk and vk ‖ k) and quasielastic (ε′ ≈ ε)
system, such as graphene [54]. In this case, we can replace
the velocity angle with the momentum angle (θv = θk) and
Eq. (7) simplifies to a direct formula for the relaxation time:

1

τk
= h̄vp

L2

∑
k′∈FS

|q|Ck,k′Fμ,T
k,k′ [1 − cos θk], (14)

where k ∈ FS indicates a summation over the Fermi surface,
which is taken to be indistinguishable from the scattering
manifold in the quasielastic approximation.

For small q, 1 − cos θk ≈ |q|2 and Ck,k′ ≈ 1, and the sum-
mand of Eq. (14) scales with q roughly as |q|3. For low T ,
the Fermi functions 1 − f (εk′ ) and the phonon occupation
function Nq effectively restrict the sum in Eq. (14) to k′ with
h̄vp|q| � kBT . Summing |q|3 over the portion of the [(d − 1)-
dimensional] scattering manifold within a radius proportional
to T gives the famous power-law defining the BG regime:

1

τk
∝ T d+2. (15)

However, if we do not assume isotropy, then we must restore

1 − cos θk → 1 − lk′

lk
cos θv (16)

in Eq. (14). The small-|q| limit of the right-hand side of
Eq. (16) is not necessarily proportional to |q|2, since it de-
pends on the way lk′ → lk and vk′ → vk as k′ → k. We

therefore expect anisotropy to introduce nonuniversal, k-
dependent modifications of the BG power law in the T
dependence of each relaxation time τk.

In the high-T limit, expanding in small �ε/T , we find

Fμ,T
k,k′ = kBT

h̄vp|q| + O(�ε/T ), (17)

and inserting into Eq. (7) gives

kBT

|vk|L2

∑
k′∈SM

Ck,k′ [lk − lk′ cos θv] = 1 + O(�ε/T )2. (18)

Solving Eq. (18) order-by-order in 1/T , we see that the high-
T form of the relaxation length is

lk = ck

kBT
+ O(�ε/T )3. (19)

We note that the O(1) term in the �ε/T expansion of Fμ,T
k,k′ in

Eq. (17) rather remarkably vanishes, preventing a O(�ε/T )2

term in Eq. (19). This implies that the high-T scattering rate
(due to phonons) of a given Bloch state should be purely
linear, going to zero in the T → 0 extrapolation.

The equipartition regime is the range of temperature for
which Eq. (19) holds for all Block states k. Unlike the case in
the BG regime, the linear-in-T power law for the relaxation
rate of the EP regime is not affected by anisotropy—all band
structure information is encoded in the “length constants” ck.

D. Resistivity computation

Equations (6)–(11) combined with knowledge of the Bloch
states give all the tools necessary to make a resistivity predic-
tion. We solve Eq. (7) for scattering lengths for each Bloch
state (see Appendix B for discussion). We emphasize that
in general, the relaxation lengths {lk} implicitly depend on
temperature and chemical potential through the Fermi func-
tions and phonon occupation number (Nq) in Eq. (7). Once
the {lk} are known for a given pair (n, T ), the resistivity can
be computed through Eq. (6). We plot the relaxation lengths
for a Dirac cone band structure in Fig. 9, keeping μ fixed as
we vary T . These results illustrate that states near the Fermi
surface become long-lived at low T .

In Secs. III B and III C, we have suppressed the band index
in summations over Bloch states. The Bernal bilayer and
rhombohedral trilayer k · p Hamiltonians have four and six
bands, respectively, while the Dirac cone model has two. In
each case, we have two “low energy” bands near charge neu-
trality: a “valence” (hole) band and a “conduction” (particle)
band. The higher energy bands, when present, are over 3.5 eV
from charge neutrality. We note that the Fermi distributions in
Eq. (6) suppress excitations in these higher energy bands for
the temperatures and dopings we are interested in. However,
it is important to keep both the conduction and valence bands
as charge carriers may be excited in both bands, especially
in the gapless systems. In all the models we study, interband
transitions between the conduction and valence bands are
forbidden by kinematics (i.e., the phonon velocity is too low).
Interband transitions into higher energy bands are kinemati-
cally allowed, but thermally irrelevant.

It is important to note that as we scan T for fixed n, μ(n, T )
can change, and this can be quite drastic near a gap. We must
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FIG. 9. We plot the logarithm of the relaxation lengths {lk} for
a Dirac cone band structure for various temperatures. We fix the
chemical potential at μ = −0.25 eV and perform the calculation at
T = 10 (top), 30 (middle), and 100 K (bottom). The far left column
shows the relaxation lengths plotted over energy, while the central
and rightmost columns give a heat map of the relaxation lengths
in momentum space for the bottom (center) and top (right) bands,
respectively. We emphasize that at low T, states near the Fermi level
become long-lived. Further, states near the Dirac point are always
long-lived due to a vanishing scattering manifold.

therefore calculate μ(n, T ) self-consistently via

n = 4

L2

∑
k∈BZ

f (εk ). (20)

The prefactor 4 above follows from the spin and valley
degeneracies. We stress that accurately computing the T de-
pendence of μ(n, T ) near the band edge requires keeping both
the valence and conduction bands, even if T is far too low to
excite carriers across the gap.

The main result of this work is the application of the above
analysis to Bernal bilayer and rhombohedral trilayer graphene
stacks. These results are presented and discussed in Sec. II.
We use k · p Hamiltonians for these systems [62,63], which
we provide in Appendix A. The band structure further gives
the density of states and Fermi surface geometries depicted in
Figs. 2 and 3.

The nontrivial band geometry of these systems gives scat-
tering manifolds that depend qualitatively on not only the
Fermi level, but also the specific Bloch state in question, as
depicted in Fig. 2. Since the bands are not isotropic and the
phonon scattering cannot be considered “quasielastic” [54],
we need to find the full solution of Eq. (7). Solving Eq. (7) for
the {lk} repeatedly for many values of n and T , we calculate
the resistivity data given in Figs. 5 and 7. Data showing how
scattering lengths vary throughout the band structure are given
in Fig. 10.

FIG. 10. We plot heat maps of the relaxation length in k space
for the Bernal bilayer band structure. We set μ = −0.066 (left) and
−0.058 eV (right). For each μ, we do the calculation for T = 10
(top), 30 (middle), and 100 K (bottom). and We see that at low
T , the specific geometry of the Fermi surface is very important
to relaxation, but that this information tends to get washed out at
higher T .

The equipartition regime scaling coefficients, ck, are given
for all the models of interest in Fig. 11. In the case of Dirac
cone graphene, we see that there is a divergence of ck at the
Dirac point, arising from a vanishing set of scattering states.
However, in all the other models under consideration, band
curvature effects near charge neutrality more than compensate
for the vanishing scattering manifolds and suppress ck.

IV. NONLINEAR T -DEPENDENCE OF RESISTIVITY

The “common knowledge” of high-T phonon scattering
is that the resistivity scales linearly with T above the BG
crossover regime [54,58–60]. While it is true that each indi-
vidual relaxation length has the high-T scaling of Eq. (19), the
T dependence of the resistivity itself can be quite nonlinear.
Indeed, our calculations for BBG and RTG predict a nonlinear
T dependence of the resistivity, especially in the vicinity of
the gap. (See Figs. 7 and 6.)

Our calculations predict that the phonon scattering will
crossover from the BG regime to the EP regime at an effective
BG crossover temperature that varies from as high as 40 K at
high doping to as low as <10 K near charge neutrality. How-
ever, in the EP regime, we start to see sharp reductions in slope
of the resistivity at temperatures as low as 40 K (see Fig. 7).
For dopings closer to charge neutrality, we see the resistivity
peak and drop precipitously at T ≈ 300 K. This behavior
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FIG. 11. We plot the equipartition “length constants” over a wide
range of energy for the various systems under study. The top row
gives Bernal bilayer graphene, the middle row gives rhombohedral
trilayer graphene, and the bottom row gives standard Dirac cone
graphene. Gapless systems are on the left and gapped systems are
on the right. With these values stored we can efficiently compute
the resistivity of these systems up to very high temperatures using
Eq. (19), though our results will miss the low-T BG physics, as
discussed in Sec. III C. This is how we generate the high-T results in
Figs. 7 and 6. We emphasize that the ungapped Dirac cone graphene,
which has diverging ck near charge neutrality due to a vanishing
scattering manifold, is the outlier here. All other systems we consider
have band curvature effects near charge neutrality that more than
compensate for the vanishing scattering manifolds and suppress the
divergence of ck.

has already been observed in twisted bilayer graphene [27]
at temperatures and resistivity values qualitatively consistent
with our results here.

We note that the nonlinear T dependence resembles the
same sort of resistivity profiles that have been character-
ized as “resistivity saturation” [58,69–71] and are sometimes
associated with a breakdown of kinetic theory at the Mott-
Ioffe-Regel limit [71–74]. However, we stress that our results
are fully in the Boltzmann framework. The possibility that the
apparent resistivity saturation type effect could arise purely
from the electron-phonon coupling effects was pointed out
in the literature before [73], but the physics of this apparent
saturation in the current work is qualitatively different, arising
not from nonBoltzmann strong coupling physics but from
subtle band structure effects as discussed in our paper.

In the rest of this section, we provide some intuition for the
nonlinear T dependence of the resistivity. As discussed above,
the high-T relaxation lengths are given in terms of the n, T -
independent constants {ck}. We can gain an understanding of

FIG. 12. We plot the “g function,” [g(ε)], defined in Eqs. (21)
and (22) for Bernal bilayer (top), rhombohedral trilayer (center),
and Dirac cone graphene (bottom). We plot g(ε) for both ungapped
(left) and gapped (right) cases. These graphs demonstrate clearly why
single ungapped Dirac cone graphene has such a robust high-T linear
resistivity and why all the other systems display nonlinear resistivity
effects at high-T .

the nonlinearity of ρ(T ) by considering the function

δi jg(ε) ≡ 1

L2

∑
k

vi
kv

j
k

|vk| ckδ[ε − εk]. (21)

In the EP regime, we can write the high-T conductivity in
terms of g(ε):

σ = 1

(kBT )2

∫
dεg(ε) f (ε)[1 − f (ε)] (22)

We see that even in the equipartition regime, we only have
linear scaling of the resistivity if the integral over ε in Eq. (22)
scales linearly with T , which will be true as long as g(ε) has
a good linear approximation in a window of width kBT about
μ(n, T ). The functions g(ε) are plotted in Fig. 12. We see that
gapless Dirac cone graphene has a perfectly flat g(ε), (though
our figure shows finite-size effects near the Dirac point), giv-
ing the familiar, perfectly linear resistivity in the equipartition
regime. On the other hand, we see that gapless Dirac cone
graphene is the exception—all of the other systems studied
exhibit band curvature that manifests nonlinearity in g(ε). The
gapless bilayer and trilayer systems exhibit g(ε) that can be
roughly approximated as linear over small ε windows when
sufficiently doped. However, we expect a qualitative change
when T ≈ |μ(n, T )|, and the integral in Eq. (22) crosses the
zero-energy point, where we expect the scaling of the integral
in Eq. (22) to crossover from linear-in-T to quadratic-in-T .
This would result in a crossover to a roughly T -independent
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FIG. 13. We plot heat maps of d ln[ρ(n, T )]/d ln T for the
various systems using the resistivities calculated in the high-T
equipartition calculation (the data from Fig. 6). This should be com-
pared with Figs. 2–4. Since this is based on resistivity data from the
equipartition regime, it does not contain any BG physics, and any
deviations from linear scaling are due to band curvature effects. We
emphasize that these figures show linear-in-T scaling for dopings
away from charge neutrality, but then demonstrate a flattening of
the ρ(T ). We further emphasize that the flattening seen near the van
Hove singularities is present here as well, indicating it is an effect of
band geometry in the thermal averaging and not a transition in the
nature of the scattering.

resistivity when T ≈ μ(n, T ), which is indeed what we see
in Fig. 3. In Fig. 13, we calculate an analog of Figs. 2 and 3
using only the equipartition-regime data, to show the high-T
nonlinearity in the absence of BG physics. All three gapped
systems exhibit more curvature in g(ε), even when far from
charge neutrality, but may still be linearly approximated in a
small T window. However, sharp qualitative changes in g(ε)
occur at a band edge, so we expect sharp qualitative changes in
the resistivity scaling when T ≈ |μ(n, T )| − Egap/2 and again
when T ≈ |μ(n, T )| + Egap/2. For a system without a band
gap, we would only expect a single kink. Figures 7, 15, and
16 demonstrate this intuition. Two distinct kinks are visible in
many resistivity curves in Figs. 7 and 16, which plot the data
for gapped systems, while curves in Figs. 14 and 15 tend to
have a single kink.

We emphasize that the nonlinear T dependence of the re-
sistivity is in general due to the curvature of the bands and not
necessarily related to interband excitations [27]. For instance,
in the hole-doped systems in Fig. 7, with the potential differ-
ence at � = 0.07 eV, the gap is approximately 0.1 eV wide.
However, nonlinear T dependence is seen at temperatures as
low as 40 K, which is far to cold to excite appreciable states
in the conduction band.

V. DISCUSSION AND CONCLUSIONS

We have calculated the electrical DC resistivity of Bernal
bilayer and rhombohedral trilayer graphene systems, due to
scattering off of acoustic phonons. We extend previous study
by using a detailed k · p band structure and focusing our at-
tention on the roles of geometric features of the band structure
of these systems, including those affected by a displacement
field.

We develop a thoroughly nontrivial transport theory for
carrier resistivity due to electron-acoustic phonon interaction
in experimentally relevant RTG and BBG multilayer graphene
systems. The theory, while using the standard graphene
acoustic phonons and the conventional electron-phonon de-
formation potential coupling, includes the full effects of
RTG and BBG band structures (even including an applied
electric displacement field) nonperturbatively by employing
a full k · p description. The qualitative importance of the
Van Hove singularities and the anisotropies in the graphene
band structures are exactly incorporated in the theory by it-
eratively solving the integral Boltzmann transport equation.
This leads to several qualitatively new features in the re-
sistivity (e.g., inapplicability of the simple Bloch-Grüneisen
criteria for linear versus nonlinear resistivity in temperature,
apparent resistivity saturation behavior at higher tempera-
tures, and other features as discussed in this paper), which
have not been discussed in the transport literature of elec-
tronic materials before in any context. We provide concrete
predictions for the doping and temperature dependence of
resistivity in RTG and BBG multilayers, finding that simple
considerations for a Bloch-Grüneisen temperature separating
the linear-in-T high-temperature resistivity from the nonlinear
low-temperature resistivity does not apply because of the band
geometry introducing strong modifications of the resistivity
behavior.

Our results are important in two contexts. First, the
experiments in BBG and RTG have shown that the exotic su-
perconductivity and the various interaction-driven correlated
states are closely related to the nontrivial geometric features
of the band structures, including Fermi-surface reshapes and
Van Hove singularities. This spotlights the enhanced effects
of band geometry on scattering processes in complex 2D sys-
tems. As 2D layered heterostructures are currently ascendant
in condensed matter physics, it is important to study the re-
lationship between band geometry and transport directly and
to modify intuitions gained in three dimensions. Second, it
is crucial in the investigation of the origin of the supercon-
ductivity in moiréless layered graphene systems to understand
the relative importance of various scattering mechanisms. Our
work provides a clear and concrete picture of how the resis-
tivity should behave in a phonon-dominated system. If strong
deviations from these results are seen in experiment, that
could serve as evidence that the scattering mechanisms other
than phonons play dominant roles in transport. This would
point to directions for nonphonon pairing in the observed
superconductivity.

The doping and temperature dependence of the resis-
tivity of these systems behave similarly and with many
interesting features. We find that the BG crossover in the
qualitative T dependence of the scattering rates varies as a
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FIG. 14. We plot resistivity data over temperature for hole-doped and electron-doped Bernal bilayer systems in the absence of a
displacement field (� = 0). This should be compared with the Bernal bilayer data in Figs. 7 and 16. As with Fig. 7, the leftmost two columns
give the results of our full numerical calculation for the resistivity of the two systems at various doping levels up to 30 and 120 K, respectively.
The third column gives the high-T results in the EP regime. The far-right column denotes the doping values corresponding to the resistivity
curves.

function of doping from as low as 5 K to as high as 60 K.
However, we note that this crossover temperature depends
strongly on the geometric features of the band structure,
and is sharply reduced by the emergence of the annular
Fermi surface, which is related to the observed SC. Fur-
ther, we find that band curvature effects also give rise to
a nonlinear T dependence of the resistivity at temperatures
in the intermediate range of 60–300 K. While our results
show an interesting sensitivity to changes in Fermi surface
geometry, they are remarkably smooth at the Van Hove
singularity.

Our results are qualitatively compatible with what is cur-
rently known in experiment [18–20]. We have not yet seen
evidence of the high-T nonlinear equipartition resistivity in
BBG or RTG, but very similar effects have been observed

in twisted bilayer [27] and trilayer [64] graphene systems.
While the BG crossover to linear scattering has not yet been
observed in these systems at low temperatures, our results
show that current experiment cannot rule out the possibility
that these systems are dominated by phonon scattering. In
particular, no linear-in-T region has been observed below
20 K in RTG and the zero temperature resistivity varies
from 20–70 � (cf. Fig. S6 in Ref. [19]). Our predictions
are compatible with these experimental results. However, our
results do make it clear that extensive experimental resistiv-
ity data over wider ranges of doping and temperature (from
0 to 300 K) should be sufficient to tell if there are strong
deviations from the phonon-dominated picture. Comparison
of our results with future additional experimental resistivity
data could be a crucial step in discovering the origin of SC
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FIG. 15. We plot resistivity data over temperature for hole-doped and electron-doped rhombohedral trilayer systems in the absence of a
displacement field (� = 0). This should be compared with the rhombohedral trilayer data in Figs. 7 and 16. As with Fig. 7, the leftmost two
columns give the results of our full numerical calculation for the resistivity of the two systems at various doping levels up to 30 and 120 K,
respectively. The third column gives the high-T results in the EP regime. The far-right column denotes the doping values corresponding to the
resistivity curves.

in these systems. Further, the low Fermi velocities and high
density of states at the Van Hove singularity should enhance
the effects of electron-electron interactions. Since our calcu-
lations do not predict sharp features to emerge at the Van
Hove singularities in a purely phonon picture, observations
of such features in the resistivity could serve as evidence
for strong-coupling physics that could underlie the systems’
superconductivity.
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APPENDIX A: HAMILTONIANS FOR STACKED
GRAPHENE SYSTEMS

To calculate the band structure for the Bernal bilayer
graphene stack, we use in Eq. (2) the Hamiltonian introduced
in Ref. [62], and used also in Refs. [18,42,44]:

He =

⎡
⎢⎢⎣

−� v0k̄ −v4k̄ −v3k
v0k �2 − � t1 −v4k̄

−v4k t1 �2 + � v0k̄
−v3k̄ −v4k v0k �

⎤
⎥⎥⎦, (A1)
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FIG. 16. We plot resistivity data over temperature for electron-doped samples, complementing the hole-doped data presented in Fig. 7. We
emphasize that the results are analogous to the hole-doped side. As with Fig. 7, the leftmost two columns give the results of our full numerical
calculation for the resistivity of the two systems at various doping levels up to 30 and 120 K, respectively. The third column gives the high-T
results in the EP regime. The far-right column denotes the doping values corresponding to the resistivity curves.

where we use the dimensionless, valley-dependent, (anti)holomorphic momenta k ≡ a0(ξkx + iky) and k̄ = a0(ξkx − iky) for
valley ξ ∈ {±}, where a0 is the lattice constant for graphene (a0 = 0.246 nm). The parameters take the following values (all
quantities in eV): �2 = 0.015, t1 = 0.361, v0 = 2.261, v3 = 0.245, and v4 = 0.12. The interlayer potential is �, and in our
calculations this is either set to 0.07 or 0 eV. The basis for this matrix is {1A, 1B, 2A, 2B}, where A, B correspond to sublattice
and 1,2 correspond to layer.

For the rhombohedral trilayer stack, we use the Hamiltonian introduced in Ref. [63], and used also in Refs. [19,20,43,44]:

He =

⎡
⎢⎢⎢⎢⎢⎢⎣

�2 + � + δ γ2/2 v0k̄ v4k̄ v3k 0
γ2/2 �2 − � + δ 0 v3k̄ v4k v0k
v0k 0 �2 + � γ1 v4k̄ 0
v4k v3k γ1 −2�2 v0k̄ v4k̄
v3k̄ v4k̄ v4k v0k −2�2 γ1

0 v0k̄ 0 v4k γ1 �2 − �

⎤
⎥⎥⎥⎥⎥⎥⎦

, (A2)

where we use the same notation (k, k̄) as in Eq. (A1) and the following parameters (all quantities in eV): �2 = −0.0023,

δ = −0.0105, v j = γ j

√
3/2, γ0 = 3.1, γ1 = 0.38, γ3 = −0.29, and γ4 = −0.141. Again, the interlayer potential is �, and in

our calculations this is either set to 0.07 or 0 eV. The basis for the RTG Hamiltonian is {1A, 3B, 1B, 2A, 2B, 3A}.
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APPENDIX B: NUMERICAL IMPLEMENTATION
OF RESISTIVITY CALCULATION

In our numerical calculations for {lk}, we usually retain
approximately 106 Bloch states, and must solve a rather large
linear system [Eq. (7)] for each pair of values (n, T ). In our
main results (Figs. 5 and 7), we do this on a 50×60 grid in n-T
space. This is necessary to understand the low-T physics, but
the EP regime can be studied much more efficiently since the
{ck} defined in Eq. (19) are independent of both n, T . Once we
solve directly for the ck, calculating the EP approximation to
the resistivity is as simple as computing μ(n, T ) via Eq. (20)
and then using Eq. (19) in Eq. (6). This is how we compute
the EP resistivity in Figs. 7 and 6.

We discuss the numerical solution of Eq. (7) in the main
text. In order to discuss the existence and uniqueness of
solutions to Eq. (7), as well as the convergence of iterative
methods, we will recast this in the traditional notation of a
linear operator problem. Letting k in the Brillouin zone act
as a vector index, we define the vector b̂ and the matrices
Â and D̂, indexed by k ∈ BZ.

Âk,k′ = Wk→k′ [1 − f 0(εk′ )] cos θv, (B1)

D̂k,k′′ = δk,k′′
∑

k′
Wk→k′ [1 − f 0(εk′ )], (B2)

b̂k = |vk|L2[1 − f 0(εk )]. (B3)

With this notation, Eq. (7) takes the form

(D̂ − Â)l̂ = b̂. (B4)

The solution for the relaxation lengths is then a matrix in-
version problem. A unique solution exists if det[D̂ − Â] �= 0,
which is always true in this case due to the diagonal domi-
nance of D̂ − Â. Since our problem is large and we compute
the matrix elements only as needed in the computation,
Eq. (B4) is most effectively solved via an iterative method.
We set

l̂ i+1 ← D̂−1(Âl̂ i + b̂) (B5)

repeatedly until convergence. This is simply a case of Gauss-
Seidel iteration, which is guaranteed to converge to the unique
solution. (This guarantee is again provided by diagonal domi-
nance.)

Explicitly, in the (i + 1)th iteration (i � 0), we define
{l (i+1)

k } in terms of {l (i)
k } via

l (i+1)
k =

|vk|L2 − h̄vp
∑

k′ |q|Ck,k′Fμ,T
k,k′ cos θvl (i)

k′

h̄vp
∑

k′ |q|Ck,k′Fμ,T
k,k′

. (B6)

In order to optimize for quick convergence, we initialize the
procedure using the explicit formula for an isotropic system
with quasielastic scattering:

l (0)
k =

⎡
⎣ h̄vp

|vk|L2

∑
k′

|q|Ck,k′Fμ,T
k,k′ (1 − cos θv )

⎤
⎦

−1

. (B7)

In practice, we find very quick convergence and only use
two Gauss-Seidel iterations. We emphasize that our iterative
algorithm is a numerical approach to solving the full BTE, as

given in Eqs. (7) and (12), which is different from yet equiv-
alent to another commonly employed technique of “iterating
the collision integral.”

Additionally, to numerically solve Eq. (12) on a discrete
momentum grid, we must broaden the delta functions defining
the scattering manifold [see Eq. (10)]. In practice, we do
this by broadening the delta function to a finite-width step
function of a certain small “tolerance”. We then check that our
results are independent of the tolerance variable. We note that
our results are very insensitive to reasonable variation of the
tolerance. We also emphasize that this procedure reproduces
the known analytical results for a single Dirac cone with great
accuracy.

APPENDIX C: RELAXATION TIME APPROXIMATION
IN NON-ISOTROPIC SYSTEMS

In the case of elastic scattering and an isotropic band struc-
ture, it is well-known that the solution to the relaxation time
approximation to the Boltzmann equation is also a solution to
the full (linearized) Boltzmann equation [60]. In our case, we
assume neither isotropy nor (quasi)elasticity, which are both
present in earlier treatments [54–58]. In this Appendix, we
discuss the extent to which the relaxation time approach holds
for our systems.

The canonical “relaxation time approximation” to the
Boltzmann equation is the replacement of the collision inte-
gral for the scattering out of state k with the expression

Ic[Fk] → IRT
c [Fk] ≡ −1

τk
[ f (εk ) − Fk], (C1)

where Fk is the full nonequilibrium distribution function on
the set of Bloch states and f (εk ) is the Fermi distribution
function. This introduces the relaxation times as timescales
for the occupation of state k to reach equilibrium.

In the absence of temperature gradients or external mag-
netic fields, the nonequilibrium distribution function may be
written to linear order in E in terms of the relaxation times as

Fk ≈ f (εk ) + 1

T
f (εk )[1 − f (εk )](eE · vk )τk ≡ F 1

k . (C2)

The distribution function in Eq. (C2) is a solution of the
Boltzmann equation under the approximation Eq. (C1) and
calculating the current from the distribution function in
Eq. (C2) gives Eq. (6) in the main text.

The relaxation time approximation is generally uncon-
trolled, and the true collision integral in the Boltzmann
equation is

Ic[Fk] = −
∑

k′
Wk→k′ Fk[1 − Fk′ ] − Wk′→kFk′ [1 − Fk].

(C3)

However, if there exist {τk} such that for F 1
k given by Eq. (C2),

we have Ic[F 1
k ] = IRT

c [F 1
k ] to first order in E, then Eq. (C2)

is in fact a solution to the full linearized Boltzmann equation.
Evaluating Eq. (C3) on the distribution function F 1

k and
using the principle of detailed balance, one may see that

Ic
[
F 1

k

] = −eE
T

·
∑

k′
Wk→k′

[
f (εk )[1 − f (εk′ )]

×(τkvk − τk′ vk′ )

]
. (C4)
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Comparing with

IRT
[
F 1

k

] = −eE · vk
1

T
f (εk )[1 − f (εk )], (C5)

we find that Eq. (7) is necessary and sufficient for Eq. (C2) to
be a solution to the linearized Boltzmann equation.

APPENDIX D: ADDITIONAL DATA

In this final Appendix, we compile additional data for
the temperature and doping dependencies of the resistivity
for BBG and RTG. We provide the zero displacement field
(� = 0) counterparts to Fig. 7, as well as particle-doped data
complementing Fig. 7.
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