
PHYSICAL REVIEW B 107, 045419 (2023)

Wave functions and edge states in rectangular honeycomb lattices revisited:
Nanoflakes, armchair and zigzag nanoribbons, and nanotubes
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Properties of bulk and boundaries of materials can, in general, be quite different, both for topological
and nontopological reasons. One of the simplest boundary problems to pose is the tight-binding problem of
noninteracting electrons on a finite honeycomb lattice. Despite its simplicity, the problem is quite rich and
directly related to the physics of graphene. We revisit this long-studied problem and present an analytical
derivation of the electron spectrum and wave functions for graphene rectangular derivatives. We provide an
exact analytical description of extended and localized states, the transition between them, and a special case of
a localized state when the wave function is nonzero only at the edge sites. The latter state has zero energy, and
we discuss its existence in zigzag nanoribbons, zigzag nanotubes with a number of sites along a zigzag edge
divisible by 4, and rectangular graphene nanoflakes with an odd number of sites along both zigzag and armchair
edges.
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I. INTRODUCTION

The successive downscaling of graphene-based devices
with atomic level precision [1] shows the significant effect of
edges on the electronic structure of graphene [2], which has
experimental evidence [3–5]. Insights into the electronic prop-
erties of graphene and its derivatives can be obtained from
exact analytical approaches. There are two basic approaches
for describing rectangular structures: based on the division of
graphene into two sublattices [6–12] (equivalently, choosing
two atom unit cells), or choosing a unit cell consisting of
four atoms [13–17]. The first one is usually applied when
describing infinite systems and nanoribbons, while the second
one is used mostly for finite systems. There are also two basic
edge shapes for nanoribbons: armchair and zigzag. It has been
shown that zigzag nanoribbons possess localized edge states
with energies close to the Fermi level [7–9,11,18,19]. The
edge states have been predicted to be important in transport
[20], electromagnetic [21], and optical properties [11,22].
In contrast, edge states are absent for armchair nanoribbons
[2,7,8]. The same results have been shown from the topo-
logical point of view [23]. Besides graphene, the problem is
also relevant for artificial honeycomb structures and ultracold
atoms on honeycomb optical lattices.

We revisit the basic problem of π electrons in rectangu-
lar graphene geometries (armchair and zigzag nanoribbons,
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nanotubes, finite samples). We establish the transition points
between extended and localized states. It is often assumed that
these points can be treated with wave functions for extended
waves [7,8,12–14,17]. However, we show that the direct ap-
proach leads to a trivial (zero) wave function everywhere and
we need to take the limit to these points from the left and
the right. We discuss that at these transitions, wave functions
have a linear dependence on the site index. We also describe
the two entirely localized zero energy states with nonzero
wave functions only at the edge sites for zigzag nanorib-
bons, zigzag nanotubes, and one geometry of rectangular
graphene nanoflake, that to the best of our knowledge were
not reported before. We discuss wave functions in a rectan-
gular graphene system, including expressions for localized
states.

This paper is organized as follows. In Sec. II, we recap
the eigenvalue problem for the infinite honeycomb lattice,
where wave functions are running waves in both x and y
directions. In Sec. III, we switch to problems for finite sys-
tem size in one direction: armchair and zigzag nanoribbons
and nanotubes. Here we show that edge states are realiz-
able only for nanoribbons and nanotubes with zigzag open
edges. Importantly, there is an entirely localized edge state
with zero energy, where wave functions are nonzero only
at the edge sites. In Sec. IV, we find wave functions for
extended and localized states in a finite sample with rectan-
gular geometry. We show analytically that there is only one
possible geometry which allows for an entirely localized edge
state.

II. THE INFINITE SYSTEM

Let us first look at the infinite honeycomb structure made
from identical atoms. We divide these atoms into two groups
(A, B) which form triangular lattices (Fig. 1). The effective
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FIG. 1. The honeycomb lattice in real space, where the red (blue)
circles mean an A (B) sublattice site.

Hamiltonian for the system reads

Heff = −t
∑
〈i,j〉

(a†
i bj + b†

j ai). (1)

Here, a†
i (ai) is the creation (annihilation) operator for an elec-

tron on site A in the cell whose position is described by the
vector i = (n, m), where n (m) specifies the horizontal (ver-
tical) position with indexation illustrated in Fig. 1. The same
applies to operators b†

i and bi, which correspond to sites B.
This Hamiltonian describes kinetic energy (hopping between
nearest-neighbor sites 〈i, j〉 without spin flip), parameterized
by the hopping integral t (t > 0 and assumed to be constant in
space). A general state can be written as

|�〉 =
∑

i

(ψA,ia
†
i + ψB,ib

†
i )|0〉, (2)

where ψA,i (ψB,i) is the real space wave function describing an
electron on the A (B) sublattice, and |0〉 denotes the vacuum
state with no particle present. We will assume the plane wave
form of the wave functions,(

ψA,i
ψB,i

)
= ei(kxn+kym)

(
fA(k)
fB(k)

)
, (3)

and we come to the Schrödinger equation,

Heff|�〉 = E |�〉, (4)

which takes the form(
0 −t (1 + 2e−ikx cos ky)

−t (1 + 2eikx cos ky) 0

)(
fA(k)
fB(k)

)

= E

(
fA(k)
fB(k)

)
. (5)

Eigenvalues of the matrix in this equation give possible ener-
gies:

Es = s · t · ε(kx, ky),

ε(kx, ky) = √
3 + 4 cos kx cos ky + 2 cos 2ky, (6)

where we have introduced the parameter s = ±1 to distin-
guish between valence (−1) and conduction (+1) bands. The
corresponding eigenvectors ( fA(k), fB(k))T allow us to calcu-
late normalized wave functions (3) for the infinite honeycomb

lattice: (
ψA,i
ψB,i

)
= 1√

2
ei(kxn+kym)

(
− s(1+2e−ikx cos ky )

ε(kx,ky )

1

)
. (7)

Note that ψA,i and ψB,i is only a basis. General wave func-
tions that describe the system are superpositions of all these
possible states.

III. SYSTEMS FINITE IN ONE DIRECTION

A. Wave functions for armchair nanoribbons and nanotubes

An armchair nanoribbon is a sample of the honeycomb lat-
tice arranged as in Fig. 2, which is finite in y. Wave functions,
in this case, can be obtained as a superposition of traveling
waves in +y and −y directions:

(
ψA,i
ψB,i

)
=

[
c1

1√
2

(
− s(1+2e−ikx cos ky )

ε(kx,ky )

1

)
eikym

+ c2
1√
2

(
− s(1+2e−ikx cos (−ky ))

ε(kx,−ky )

1

)
ei(−ky )m

]
eikxn

= 1√
2

(
− s(1+2e−ikx cos ky )

ε(kx,ky )

1

)
[c1eikym + c2e−ikym]eikxn,

(8)

where c1 and c2 are normalization constants. These wave func-
tions should satisfy open boundary conditions (some authors
[19] say that the dangling bonds at the edge are terminated
by hydrogen atoms so they do not contribute to the electronic
states):(

ψA,i=(n,0)

ψB,i=(n,0)

)
=

(
0
0

)
,

(
ψA,i=(n,Ny+1)

ψB,i=(n,Ny+1)

)
=

(
0
0

)
. (9)

Physically, this means that electrons are absent outside the
considered system (their wave function equals zero). This
leads to the following relation between c1 and c2, and to the
possible values of wave number ky:

c2 = −c1, ky = π jy
Ny + 1

, jy = 1, 2, 3, . . . , Ny. (10)

Wave number kx should be treated as a continuous variable
in the case of an infinite honeycomb sheet in the x direction.
We consider a case of a honeycomb nanotube with open
armchair boundaries (Nx has to be even). For this case we use
periodic boundary conditions along the x axis: ψA,i=(n,m) =
ψA,i′=(n+Nx,m), ψB,i=(n,m) = ψB,i′=(n+Nx,m). This leads to a dis-
crete set of kx values:

kx = 2π

Nx
νx, νx = 0, 1, 2, . . . ,

Nx

2
− 1. (11)

A system consists of NxNy sites, so the eigenvalue problem
[Eq. (4)] should have NxNy different eigenvalues and eigen-
vectors. We have Ny values of ky [Eq. (10)], Nx/2 values
of kx [Eq. (11)], and two different values of the parameter
s = ±1. The coefficient c1 can be found from the following
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FIG. 2. Honeycomb lattice with armchair edges (armchair nanoribbon) in two different cases: (a) Ny is odd, (b) Ny is even.

normalization conditions:∑
i

(ψA,i, ψB,i)(ψA,i, ψB,i)
† = 1,

∑
s,kx,ky

(ψA,i, ψB,i)(ψA,i, ψB,i)
† = 1. (12)

In the article, we always use the first of the rules to find the
normalization coefficients, but the second one is also satisfied
in all considered cases. The constant c1 has the form

c1 = −i[2Nx · S(ky, Ny)]−1/2, (13)

S(k, N ) =
N∑

m=1

sin2 km = 1

2

[
N − sin kN

sin k
cos k(N + 1)

]
,

(14)

where we have introduced auxiliary function S(k, N ). Note
that this normalization coefficient is defined up to an arbitrary
factor eiφ , which is why wave functions from Refs. [7,8,15,24]
may look different from our final result:(

ψA,i
ψB,i

)
= eikxn sin kym√

Nx · S(ky, Ny)

(
− s(1+2e−ikx cos ky )

ε(kx,ky )

1

)
. (15)

After renormalization, the results become identical. These
states are called extended because they describe waves which
extend over the whole ribbon width. Our way of presenting re-
sults is better for computer-based calculations, in comparison
with using square roots from complex numbers [7,8] which
are multivalued functions.

There is a zero energy state for armchair nanoribbons of
width Ny = 3r − 1 (where r = 1, 2, 3, . . .) at kx = 0, ky =
2π/3 (see band structure for infinite ribbon in Fig. 3). The
system with such a width in the y direction is called metallic
[18,19]. The wave function for A sites is ill-defined at the
point, because there exists the following 0

0 uncertainty:

lim
kx→0,ky→2π/3

1 + 2e−ikx cos ky

ε(kx, ky)

= lim
kx→0,ky→2π/3

ikx − √
3(ky − 2π/3)√

k2
x + 3(ky − 2π/3)2

= eiϕ, (16)

where we have introduced the parameter ϕ ∈ [0; 2π ) which
depends on the ratio kx/(ky − 2π/3). The possible values of
wave number ky [Eq. (10)] are obtained from the boundary
conditions. The wave number kx is either a continuous vari-
able for an infinite nanoribbon or is quantized [Eq. (11)] due
to periodic boundary conditions for armchair nanotubes. One
can see that kx and ky are independent, and consequently, ϕ

is arbitrary and can be chosen artificially. It is convenient
to choose ϕ = π , then wave functions at the point kx = 0,
ky = 2π/3 have the form(

ψA,i
ψB,i

)
= sin (2πm/3)√

Nx · S(2π/3, Ny)

(
s
1

)
. (17)

The zero energy state should be referred to as a bulk
state, in contrast to localized states near zero energy for
zigzag nanoribbons, which will be discussed in the next
subsection.

B. Wave functions for zigzag nanoribbons and nanotubes

Zigzag nanoribbons are systems that are finite in the x
direction but can be infinite in the y direction (Fig. 4).

Let us apply an approach similar to the previous sub-
section: obtain wave functions as a superposition of waves
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FIG. 3. Band structure of the infinite armchair ribbon for Ny = 14.
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FIG. 4. Honeycomb lattice with zigzag edges (zigzag nanoribbon) in two different cases: (a) Nx is even, (b) Nx is odd.

traveling in ±x directions:(
ψA,i
ψB,i

)
=

[
c3

1√
2

(
− s(1+2e−ikx cos ky )

ε(kx,ky )

1

)
eikxn + c4

1√
2

(
− s(1+2e−i(−kx ) cos ky )

ε(−kx,ky )

1

)
ei(−kx )n

]
eikym

= 1√
2

[
c3

(
− s(1+2e−ikx cos ky )

ε(kx,ky )

1

)
eikxn + c4

(
− s(1+2eikx cos ky )

ε(kx,ky )

1

)
e−ikxn

]
eikym, (18)

where c3 and c4 are coefficients that can be found from nor-
malization conditions (12). Wave functions (18) satisfy the
following boundary conditions:

ψA,i=(0,m) = 0, ψB,i=(Nx,m) = 0. (19)

These constraints lead to

sin kxNx + 2 cos ky sin [kx(Nx + 1)] = 0, (20)

c2 = −c1e2ikxNx . (21)

Possible values for wave number ky are obtained using
the assumption of periodic boundary conditions in the y
direction (honeycomb nanotube with open zigzag edges):
ψA,i=(n,m) = ψA,i′=(n,m+Ny ), ψB,i=(n,m) = ψB,i′=(n,m+Ny ). In this
case, the number of sites in the y direction (Ny) has to be even.
The wave number satisfies

ky = 2π

Ny
νy, νy = 0, 1, 2, . . . ,

Ny

2
− 1. (22)

The transcendental Eq. (20) contains Nx different roots for
the wave number kx. This equation has Nx real nontrivial roots
in the region kx ∈ (0; π ) for ky ∈ [0; kc

y ) ∪ (π − kc
y ; π ] and

Nx − 1 real roots otherwise, where

kc
y = arccos

Nx

2(Nx + 1)
. (23)

The other one in the latter case is a complex solution. It
can be obtained numerically, analytically using approximate
formulas [14], or using fitting formulas for roots [10] that are
obtained from numerical results. Values of the wave number
kx = 0 and ±π are called unphysical [8], because they lead to
a trivial wave function which equals zero at all sites. The equa-
tion is similar to one that was applied to graphene nanoribbons
with an additional methylene group at every edge site [25], so
this problem has been known for a long time.

The band structure of an infinite zigzag ribbon is presented
in Fig. 5 to help the reader visualize regions and points of

the next subsections. Region ky ∈ ( π
2 ; π ) is omitted due to

the symmetry of the energy band [E (kx, π − ky) = E (kx, ky)].
Lines transform to a set of points for nanotubes on the band
structure.

1. Case ky ∈ [0; kc
y ) ∪ (π − kc

y; π]

In this case, all roots are real and can be found numeri-
cally from Eq. (20). Corresponding wave functions describe
extended states:(

ψA,i
ψB,i

)
= −

√
2ic3ei(kxNx+kym)

(
s1s sin(kxn)

sin[kx(Nx − n)]

)
, (24)

s1 =
√

sin2 kx

sin kx
· sin[kx(Nx + 1)]√

sin2[kx(Nx + 1)]
= sign{sin[kx(Nx + 1)]}.

(25)
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FIG. 5. Band structure of the infinite zigzag ribbon for Nx = 14.
Black and red lines correspond to bulk and edge states, respectively.
Blue and purple points indicate transition points and the entirely
localized state, respectively.
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The sign function s1 can be simplified if one introduces spe-
cial indexation for kx roots to distinguish different subbands
[7,11]. The normalization constant c3 can be written in the
following way:

c3 = ie−ikxNx [2Ny · S(kx, Nx )]−1/2, (26)

where the complex factor is chosen in this form to have a
compact presentation for the wave functions:

(
ψA,i
ψB,i

)
= eikym√

Ny · S(kx, Nx )

(
s1s sin(kxn)

sin[kx(Nx − n)]

)
. (27)

Similar results were obtained in Refs. [7,8,10,11]. However,
there is no sign function depending on kx in Refs. [8,10].
The authors of Ref. [8] corrected the mistake in a later article
[7] where, due to special numeration of roots of Eq. (20) kr

x ,
a factor of (−1)r appears in wave functions which play the
same role as the function s1 [Eq. (25)] in our representation.
Their index r is related to the band number in Ref. [7]. In

Ref. [11], wave functions were derived in the limit ky → 0.
They coincide with our wave functions (27) for ky = 0.

Existence of the sign function s1 [or similar factor (−1)r to
divide subbands] reflects inversion symmetry of the electron
wave function and plays an important role for the optical
selection rules [11,26].

2. Case ky ∈ (kc
y; π

2 ) ∪ ( π
2 ; π − kc

y )

In this case Nx − 1 real roots for kx can be found from
Eq. (20), and the corresponding wave functions have the form
of Eq. (27). One more root can be obtained by analytical
continuation to the complex plane [8],

kx →
{
π ± ik

′
x, ky ∈ (

kc
y ; π

2

)
,

0 ± ik
′
x, ky ∈ (

π
2 ; π − kc

y

)
,

(28)

and describes the edge state which corresponds to wave
functions localized in space. For ky = π

2 we need to obtain
solutions separately, and we will do this later. With the ansatz
Eq. (28), the function ε(kx, ky) inside eigenenergies Es (6) and
transcendental Eq. (20) transform to

ε(k
′
x, ky) =

{√
3 − 4 cosh k ′

x cos ky + 2 cos 2ky, ky ∈ (
kc

y ; π
2

)
,√

3 + 4 cosh k ′
x cos ky + 2 cos 2ky, ky ∈ (

π
2 ; π − kc

y

)
,

(29)

{
sinh k

′
xNx − 2 cos ky sinh [k

′
x(Nx + 1)] = 0, ky ∈ (

kc
y ; π

2

)
,

sinh k
′
xNx + 2 cos ky sinh [k

′
x(Nx + 1)] = 0, ky ∈ (

π
2 ; π − kc

y

)
.

(30)

Equation (30) contains two opposite roots. But after sub-
stituting them to find wave functions and normalizing, one
can see that these roots describe identical wave functions
with coinciding energies. Therefore, we are looking for only
one (positive) root, which is to be found numerically. Both
parts of Eq. (30) can be joined to one [8], which has the
form

sinh k
′
xNx − 2| cos ky| sinh [k

′
x(Nx + 1)] = 0. (31)

We need to obtain wave functions after finding all values
of ky from Eq. (22), and the corresponding kx and energies.
Related wave functions that describe complex solutions for
ky ∈ ( π

2 ; π − kc
y ) do not contain a sign function, but there is

a sign function (−1)n depending on horizontal position for
ky ∈ (kc

y ; π
2 ):

(
ψA,i
ψB,i

)
=

√
2c

′
3e−k

′
xNx+ikym

(
s sinh(k

′
xn)

sinh[k
′
x(Nx − n)]

)

·
{

(−1)n, ky ∈ (
kc

y ; π
2

)
,

1, ky ∈ (
π
2 ; π − kc

y

)
.

(32)

Their derivation is located in Appendix A. It is convenient
to present the normalization constant c′

3 in the following
way:

c′
3 = ek

′
xNx [2Ny · Shyp(k′

x, Nx )]−1/2, (33)

where

Shyp(k, N ) =
N∑

m=1

sinh2 km

= 1

4

[
sinh k(2N + 1)

sinh k
− (2N + 1)

]
. (34)

Wave functions (32) can be finally written as(
ψA,i
ψB,i

)
= eikym√

Ny · Shyp(k′
x, Nx )

(
s sinh(k

′
xn)

sinh[k
′
x(Nx − n)]

)

·
{

(−1)n, ky ∈ (
kc

y ; π
2

)
,

1, ky ∈ (
π
2 ; π − kc

y

)
.

(35)

Comparing the result to others, one can see that in Ref. [8] for
the case ky ∈ (kc

y ; π
2 ) in some formulas [Eqs. (B.40) and (23)

in referenced article] the sign function exists in the form eiπn

(converting to our type of numeration), but in some formulas
[Eq. (B.44)] it is absent. Factor eiπn in Ref. [8] plays the same
role as factor (−1)n in our Eq. (35). For the case ky ∈ ( π

2 ; π −
kc

y ), they also obtained results without the sign function.
In Ref. [7], authors work with ky in the range (−π/2; π/2].

They have continuation to the complex plane of one type
(kx = π ± ik

′
x), and it is right for their choice of ky. However,

they obtained localized wave functions with an extra sign
function which depend on indexation of kx roots (as was
explained in the previous subsection), which is incorrect (the
vanishing procedure is described in Appendix A).
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In Ref. [11] the range and possible values of ky are not
specified, but from figures one can see that they used ky ∈
(−π/2; π/2] (in our notation). They used the transfer matrix
method, and in the step when introducing a new variable in
Eq. (11), they chose a sign that led to a changing sign of
one term in the energy Eq. (14) and transcendental Eq. (19).
Further, they chose the continuation of kx = 0 ± ik

′
x, which is

correct for their equation type. They obtained a result identical
to our Eq. (35) for ky ∈ ( π

2 ; π − kc
y ) with the same type of

continuation.

3. Case ky = π/2

To the best of our knowledge, previous papers dedicated
to analytical calculations of localized wave functions in the
honeycomb lattice, e.g., Refs. [8,11], do not discuss this spe-
cial value of ky (or write that this value is included in the
range of the previous subsection and wave functions should
be treated with formulas (35) [7]). There are two papers
[20,27] which discuss wave functions, but only for the zero
energy modes described in the subsection. Below we will
show that at this point wave functions should be derived more
carefully.

For this value of wave number ky, Eq. (20) simplifies to

sin kxNx = 0, (36)

leading to Nx − 1 real roots, which can be found analytically:

kx = π

Nx
jx, jx = 1, 2, 3, . . . , Nx − 1. (37)

As in previous cases, we expect to have one eigenvalue
that describes a localized state because on the ky axis this
case is bounded from the left and the right by localized types
of solutions for the eigenvalue problem. A straightforward
method for finding solution kx in the complex plane leads
to trivial nonphysical results kx = 0, π . We find the solu-
tion for this case as a limit for the previous subsection’s
results.

First, we consider the left-hand limit, ky = π
2 − η, where

η → 0+. In this case the complex plane continuation has the
form kx = π ± ik

′
x. There is a numerically obtained tendency:

decreasing η leads to increasing the imaginary part of kx. The
eigenvalue equation [first part of Eq. (30)] transforms to

1

2
ek

′
xNx − 2 cos

(
π

2
− η

)
· 1

2
ek

′
x (Nx+1) = 0, (38)

which is obtained in the limit η → 0 (k
′
x → ∞). This has one

solution,

k
′
x = − ln 2η, (39)

which tends to infinity when η → 0, confirming our numerical
results.

The function ε(k
′
x,

π
2 ) [Eq. (29)] inside eigenenergies Es

now can be written as

ε

(
k

′
x,

π

2

)
=

√
3 − 4 · 1

2
ek′

x cos ky + 2 cos 2ky

= lim
η→0

√
3−2e− ln 2η cos

(
π

2
−η

)
+2 cos 2

(
π

2
−η

)

= lim
η→0

√
3 − 2 · (2η)−1η + 2 · (−1) = 0. (40)

(a) (b)

FIG. 6. Wave function of zigzag nanoribbon in entirely localized
state [Eq. (43)] for even Nx: (a) conduction band and (b) valence
band. The amplitudes are normalized by the maximum value of the
respective wave functions. Here blue, white, and red correspond to
amplitudes −1, 0, and 1, respectively.

Therefore, one of the wave numbers kx at this special point
ky = π/2 describes a zero energy state. This state has double
degeneracy, because there are two different wave functions
previously related to valence and conduction bands describing
the one energy state. Before finding the explicit form of the
wave functions in this case, let us first simplify the summation
function (34) in our limit:

Shyp(k′
x, Nx ) = 1

4

(
exp k′

x(2Nx + 1)

exp k′
x

− (2Nx + 1)

)

= lim
η→0

1

4

(
(2η)−(2Nx+1)

(2η)−1
− (2Nx + 1)

)

= lim
η→0

1

4
[(2η)−2Nx − (2Nx + 1)] = (2η)−2Nx

4
.

(41)

The wave functions [first part of Eq. (35)] now have the form(
ψA,i
ψB,i

)
= lim

η→0

(−1)nei( π
2 −η)m√

Ny · (2η)−2Nx /4

(
s · 1

2 e(− ln 2η)n

1
2 e(− ln 2η)(Nx−n)

)

= lim
η→0

(−1)nei π
2 m√

Ny

(
s · (2η)Nx−n

(2η)n

)
. (42)

From the last expression, we see that for the limit η → 0 we
have nonzero wave functions ψA,i only for n = Nx (on the
right zigzag edge) and nonzero wave functions ψB,i only for
n = 0 (on the left one). So these wave functions in the limit
can be written as entirely localized states:(

ψA,i
ψB,i

)
= (−1)n · im√

Ny

(
s · δNx,n

δ0,n

)
, (43)

where δi, j is the Kronecker delta.
It is important to note that we find two real wave functions

in the case of even Nx. In the case of odd Nx, at the left edge
wave functions are real; the right edge wave functions are
imaginary. This can be changed by renormalization.

There are two basic entirely localized edge states de-
pending on the parameter s which describe the valence
(conduction) band. They are illustrated in Fig. 6. However,
because of their identical energies, one can construct a super-
position of states and obtain a state entirely localized on only
one zigzag edge (left or right).

Note that Eq. (43) does not depend on Nx. This means that
these states have an identical form for all allowed values of
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Nx (even) and in the limit of the semi-infinite plane, a result
which coincides with Ref. [19].

When we look at the right-hand limit ky = π
2 + η, where

η > 0 (see Appendix B), we obtain a zero energy state with
wave functions (

ψA,i
ψB,i

)
= im√

Ny

(
s · δNx,n

δ0,n

)
. (44)

This result differs by a factor of (−1)n compared to the left-
hand limit [Eq. (43)]. In the case of even Nx, the resulting
wave functions coincide. For odd Nx they also coincide if
one compares nonzero valence band wave functions (43) to
nonzero conduction band wave functions (44) and vice versa.
However, conduction and valence bands at the point ky = π/2
have identical (zero) energy. Hence, wave functions in both
forms [Eqs. (43) and (44)] are the same.

Note that this entirely localized state exists in the case of
the carbon nanotube with open zigzag edges for Ny divisible
by 4. This can be seen from the allowed values of wave
number ky [Eq. (22)].

4. Cases ky = kc
y, π − kc

y

These values of wave number ky are on the borders between
the case of all real roots and the case when one root of Eq. (20)
is complex. All Nx − 1 real roots of Eq. (20) can be obtained
numerically and the corresponding wave functions can be pre-
sented in the form of Eq. (27). The main interest is to describe
wave functions and energies for the last root kx, which tends
to zero for ky → π − kc

y and tends to π for ky approaching kc
y .

These points can be called transition points because here bulk
states transform to edge states and vice versa.

First, let us look at the left transition point ky = kc
y . We start

approaching this point from the left (ky = kc
y − η, η → 0+).

The root of Eq. (20) that we are interested in tends to π also
from the left (kx = π − λ, λ > 0).

We need to simplify the summation function (14). It is
possible to do so by expanding into series formula (14) or
substituting kx = π − λ at summation. We use the second
approach:

S(kx, Nx ) = lim
λ→0

Nx∑
n=1

sin2(π − λ)n =
Nx∑

n=1

(−1)2n(λn)2

= λ2
Nx∑

n=1

n2 = λ2 Nx(Nx + 1)(2Nx + 1)

6
. (45)

Then, we need to simplify the sign function s1 [Eq. (25)]:

s1 = lim
λ→0

sign[sin(π − λ)(Nx + 1)]

= lim
λ→0

sign[−(−1)Nx+1 sin λ(Nx + 1)] = (−1)Nx . (46)

The next step is to calculate the function ε(kx, ky)
[Eq. (29)], which is proportional to the energy Es:

ε
(
π, kc

y

)
= lim

λ,η→0

√
3 + 4 cos (π − λ) cos

(
kc

y − η
)+ 2 cos 2

(
kc

y − η
)

=
√

3 − 4 cos kc
y + 2 cos 2kc

y = 1

Nx + 1
. (47)

One can see that the energy Es = s · t · ε(π, kc
y ) is different

from zero, but approaches it in the case of the infinite (semi-
infinite) system.

The last step is to simplify wave functions (27):(
ψA,i
ψB,i

)
= lim

λ,η→0

ei(kc
y−η)m√

Nyλ
√

Nx(Nx + 1)(2Nx + 1)/6

·
(

(−1)Nx s sin[(π − λ)n]
sin[(π − λ)(Nx − n)]

)

=
√

6eikc
y m

λ
√

NyNx(Nx+1)(2Nx+1)

( −s(−1)Nx+nλn
−(−1)Nx−nλ(Nx − n)

)

= (−1)Nx+n+1
√

6eikc
y m√

NyNx(Nx + 1)(2Nx + 1)

(
s · n

Nx − n

)
. (48)

Here, at the last step we used the identity (−1)−2n = 1.
These wave functions can be renormalized to remove a factor
(−1)Nx+1. They also coincide with wave functions obtained
from the right limit at the point after renormalization (for more
details see Appendix C 1).

Another border point ky = π − kc
y can be treated by anal-

ogy (see Appendices C 2 and C 3 for the left and the right
limits, respectively). As a result, we have energies Es identical
to the ones in the case ky = kc

y , and wave functions in the form

(
ψA,i
ψB,i

)
= (−1)m

√
6e−ikc

y m√
NyNx(Nx + 1)(2Nx + 1)

(
s · n

Nx − n

)
. (49)

Comparing the resulting wave functions for two transition
points, ky = kc

y [Eq. (48)] and ky = π − kc
y [Eq. (49)], one can

note their linear dependence on the horizontal index n, but in
the first case there is an extra sign function that distinguishes
between odd and even horizontal cells. In the second, there is
a sign function which changes for different vertical positions
of the cell m. Now we try to show that these sign functions
work coherently: if one has value +1, the other one also equals
+1, and vice versa for our choice of cell numeration. If one
looks at Fig. 4 with our numeration convention, it is possible
to note that for any cell, n and m are both odd or are both even.
For shifted numeration one can get the opposite result: when
n is even m is odd, and vice versa. For this case, the minus
can be absorbed by renormalization. We could find only one
work [11] where this transition point was considered, and the
obtained result coincides with Eq. (49).

Note that obtained wave functions can be applied for both
nanoribbons and nanotubes. The only difference is that for
infinite nanoribbons the longitudinal wave number is continu-
ous, and it is discrete for nanotubes.

IV. FINITE SAMPLE

The easiest way to derive wave functions for a finite sample
of rectangular geometry (Fig. 7) is to use the results of previ-
ous sections as a base. For the case of an armchair nanoribbon
we found only one possible type of state (extended), but for
zigzag nanoribbons we found a large variety of possible states.
Therefore, we will use wave functions for zigzag nanorib-
bons which describe running waves in the +y direction and
superpose them with wave functions for zigzag nanoribbons
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FIG. 7. Possible rectangular geometries of finite size honeycomb
lattice.

which describe running waves in the −y direction (obtained
by changing ky to −ky in the formulas of Sec. III B). The
resulting wave functions automatically satisfy the boundary
conditions for zigzag nanoribbons [Eq. (19)], and after impos-
ing boundary conditions for armchair nanoribbons [Eq. (9)],
terms eikym transform to sin kym as in Sec. III A. Normalization
constants should also be changed: instead of factors 1/

√
Ny,

there should be 1/
√

S(ky, Ny ).
The eigenvalue problem (4) for a finite sample with Nx ×

Ny sites should have Nx × Ny eigenvalues and eigenvectors. If
we take all possible values ky [Eq. (10)] from the armchair
nanoribbon solution and solve the transcendental Eq. (20) for
each of them, finally we get 2NxNy solutions. Here the dou-
bling comes from valence and conduction band solutions. The
solution to this problem is as follows: Pairs of wave numbers
(kx, ky) and (π − kx, π − ky) describe identical states (see Ap-
pendix D for the proof). Therefore, we can halve the number
of such pairs, considering that [12]

ky = π jy
Ny + 1

, jy = 1, 2, 3, . . . ,
Ny + 1

2

(
0 < ky �

π

2

)
(50)

and

0 < kx < π

(
0 < ky <

π

2

)
, (51)

0 < kx �
π

2

(
ky = π

2

)
, (52)

which are to be found from Eq. (20).
Note that the entirely localized states which were found

in zigzag nanoribbons for ky = π/2 in Sec. III B 3 also exist
in finite honeycomb systems. However, the special value of
wave number ky = π/2 cannot be obtained for systems with
even Ny [see Eq. (50) and forbidden geometries in the second
line of Fig. 7].

We divide further explanations into subsections, where we
find wave functions for different regions (points) of wave
number ky.

1. Case ky ∈ (0; kc
y )

All solutions in this region of ky correspond to extended
states. Energies can be calculated by formulas (6). Wave func-
tions for zigzag nanoribbon [Eq. (27)] are modified to(

ψA,i
ψB,i

)
= sin kym√

S(kx, Nx )S(ky, Ny)

(
s1s sin(kxn)

sin[kx(Nx − n)]

)
, (53)

where the sign function s1 is still defined by Eq. (25). The
possible Nx real values of wave number kx for each ky can be
found numerically from Eq. (20).

This result is identical to the wave functions obtained in
Ref. [12]. If one wants to compare this result to wave functions
obtained for a unit cell consisting of four atoms [13,17], they
need to know that in that case the Brillouin zone is smaller.
This leads to the appearance of additional dispersion branches
which are artificially made by introducing a factor ±1 in the
second term of ε(kx, ky) [Eq. (6)] (the second branch appears
for kx → π + kx in our notation). This is the reason why direct
comparison of our result to the results in Refs. [13,17] is
difficult. We note that their wave functions coincide with our
result [Eq. (53)] if we do not take into account the factor which
describes additional branches.

There are Nx − 1 real roots of the transcendental Eq. (20),
with corresponding extended states described by wave func-
tions (53) for the region of ky ∈ [kc

y ; π/2). Next, we discuss
the only complex root of Eq. (20) and the corresponding wave
functions in the above-mentioned region for wave number ky.
We will talk later about the point ky = π/2 and discuss both
real and complex roots.

2. Case ky ∈ (kc
y; π/2)

We obtain these wave functions by modifying wave func-
tions for zigzag nanoribbons [Eq. (35)] for the region ky ∈
(kc

y ; π/2):

(
ψA,i
ψB,i

)
= (−1)n sin kym√

Shyp(k′
x, Nx )S(ky, Ny)

(
s sinh(k

′
xn)

sinh[k
′
x(Nx − n)]

)
,

(54)
where k

′
x is a positive root of the following equation:

sinh k
′
xNx − 2 cos ky sinh [k

′
x(Nx + 1)] = 0. (55)

The same result can be derived directly from wave functions
(53) with the complex plane continuation kx = π + ik′

x by
analogy with the calculation in Appendix A. Corresponding
energies have the form

Es = s · t
√

3 − 4 cosh k ′
x cos ky + 2 cos 2ky. (56)

The result [Eq. (54)] agrees with the recent work [12] that
explored localized states in finite systems with rectangular
geometry.

3. Case ky = kc
y

In this case kx tends to π . We can use wave functions (48)
or (49) as a basis, where we need to change eikc

y m (or e−ikc
y m) to

sin kc
ym together with changing the normalization coefficient.
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We rewrite Eq. (48) as

(
ψA,i
ψB,i

)
= (−1)Nx+n+1

√
6 sin kc

ym√
Nx(Nx + 1)(2Nx + 1)S

(
kc

y , Ny
)
(

s · n
Nx − n

)
.

(57)
One can obtain this result as a left-hand limit to the point
ky = kc

y for finite sample extended wave functions (53) or a
right-hand limit of localized wave functions (54). If one wants
to check coincidence of wave functions after replacement
(kx, ky) → (π − kx, π − ky), a straightforward approach here
cannot be done. In this case, we need to look at the right-hand
limit of wave functions (53) at the point ky = π − kc

y , which
is treated as in Appendix C 3, and we come to the result

(
ψA,i
ψB,i

)
= (−1)m+1

√
6 sin kc

ym√
Nx(Nx + 1)(2Nx + 1)S

(
kc

y , Ny
)
(

s · n
Nx − n

)
.

(58)
The explanation for why factor (−1)m in Eq. (57) is the same
as (−1)n in Eq. (58) was shown at the end of Sec. III B.

Corresponding energies coincide with energies found for
zigzag nanoribbons in the case ky = kc

y :

Es = s · t

Nx + 1
. (59)

4. Case ky = π/2

This case is only possible for odd Ny [as ky values have the
form of Eq. (50)]. We start by describing a sample with odd
Nx and Ny. Possible kx values can be found analytically from
Eq. (36) by taking into account the constraints of Eq. (52):

kx = π

Nx
jx, jx = 1, 2, 3, . . . ,

Nx − 1

2
. (60)

The corresponding extended wave functions are described by
formulas (53).

Now let us count the number of roots of the eigenvalue
problem (4) for a rectangular system with NxNy sites. For
ky ∈ (0; π

2 ) there are Nx(Ny − 1
2 ) solutions, and for ky = π

2
and kx ∈ (0; π

2 ) we have Nx − 1 solutions (doubling comes
from the two possible bands). So there is only one root re-
maining that we need to find. We expect to find it as a limit
of a complex one like we found for the entirely localized
state in Sec. III B for ky = π/2. Considering the left-hand
limit ky = π

2 − η (where η → 0+), one can obtain by analogy
with Sec. III B kx = π ± ik

′
x (k

′
x tends to infinity). This state

has zero energy [see Eq. (40)], and the corresponding wave
function can be written using the Kronecker delta function:(

ψA,i
ψB,i

)
= (−1)n · sin π

2 m√
Ny

(
s · δNx,n

δ0,n

)
. (61)

However, this result can be significantly simplified. When one
looks at our numeration convention (Fig. 4) and geometry of
the system we study now (odd Nx and Ny, upper right corner
of Fig. 7) they can note that the wave function at B sites is
zero. It comes from the factor δ0,n sin π

2 m. The first function
is nonzero only for n = 0 (left edge), but at the left edge m
is even and sin π

2 m = 0. Finally, the wave function can be

FIG. 8. Wave function for the entirely localized state in a finite
honeycomb system [Eq. (62)]. The amplitudes are normalized by the
maximum value of the respective wave functions. Here blue, white,
and red correspond to amplitudes −1, 0, and 1, respectively.

written as (
ψA,i
ψB,i

)
= δNx,n sin π

2 m√
(Ny + 1)/2

(
1
0

)
, (62)

where we have removed the factor (−1)n because it was
multiplied by a function which is nonzero at the right edge
(n = Nx = const) and changed the normalization constant,
because the previous one was derived assuming that the wave
function is localized on both left and right edges, but for this
geometry it can be localized only on the right edge. Here the
band index s is also absent because it is easy to show that after
renormalization wave functions both conductance and valence
bands are identical. Therefore, we have found the last solution
of the eigenvalue problem (4) in the case of odd Nx. This wave
function is illustrated in Fig. 8.

Such rectangular geometry (odd Nx and Ny) was studied
numerically [12] and this entirely localized state was also
observed.

We now switch to the case of even Nx and odd Ny. Possible
kx values are as follows:

kx = π

Nx
jx, jx = 1, 2, 3, . . . ,

Nx

2
. (63)

The corresponding wave functions (53) describe extended
states. There is an exception for normalization coefficient
in Eq. (53) at the point kx = ky = π

2 it should be equal to
( 1

2 Nx(Ny + 1))−1/2.
If one counts the number of roots like we did earlier, they

will find that we already have the correct amount of solutions
for problem (4). Consequently, there are no entirely localized
states for rectangular geometry with even Nx and odd Ny

(upper left corner of Fig. 7). Let us also show it based on
the result [Eq. (61)]: One can see that both Kronecker delta
functions are nonzero for either n = 0 or n = Nx (which is
even), on both these edges m is even and sin π

2 m = 0 [because
of our indexation convention (Fig. 4)], and we have zero wave
function everywhere. This is nonphysical, and we can say that
a zero energy state for this geometry is not realizable.
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All obtained solutions are numerically verified to sat-
isfy Schrödinger Eq. (4) and both normalization conditions
[Eq. (12)].

V. DISCUSSION

Electronic properties of boundaries of the honeycomb lat-
tice are one of the most basic problems of systems with
boundaries, physically realized in graphene, artificial honey-
comb structures, and ultracold atoms in honeycomb optical
lattices. The most studied example of a boundary is the semi-
infinite graphene sheet with a zigzag edge [9,18,19,28]. It was
shown that this has a band of zero-energy surface states for
ky ∈ ( 1

3π ; 2
3π ) in our notation, with dimensionless penetration

length given by λ = −1/ ln |2 cos ky|. For this system, it was
also shown that there exists a state with an entirely localized
wave function at the edge for ky = π/2 (similar to the states
we found for zigzag nanoribbons and nanotubes in Fig. 6
and rectangular graphene nanoflake in Fig. 8). For zigzag
nanoribbons, these authors discussed edge states with E ≈ 0
[18], but a state with zero energy was not mentioned.

A zero energy state was numerically studied for finite
graphene nanoflakes [12] and the state illustrated in Fig. 8 was
found. The reason for its appearance is thought to be sublattice
imbalance (number of sites of A and B sublattices differs by
1). It was also noted that this state cannot be described by
the usual extended or localized wave function representations.
However, we showed that entirely localized states should be
treated as a limit of localized states when ky → π/2 and
E → 0 and clarified possible rectangular geometries for their
existence.

The presence of boundaries completely modifies the en-
ergy dispersion diagram of infinite graphene sheet (Figs. 3
and 5). In the same manner, localized states change optical
properties of the material [11]. Taking into account entirely
localized states that we found should affect positions and am-
plitudes of the optical adsorption spectra. Transport [20] and
electromagnetic [21] properties are also altered after taking
into consideration the edge states. For the zigzag nanoribbon
valence and conduction band, touching is located at the point
ky = π

2 , where we found entirely localized states, so the point
has double exceptionality: zero energy and band touching.
Our paper discusses an analytical treatment of the point. We
showed that entirely localized states with zero energy (when
the wave function is nonzero only at the edge sites) exist in
zigzag nanoribbons, zigzag nanotubes with number of sites
along the zigzag edge divisible by 4, and rectangular graphene
nanoflakes with an odd number of sites along the zigzag and
armchair edges.

We also described the transition point between extended
and localized states. Here wave functions can be written as
linear functions of the horizontal index n times the sign chang-
ing function (−1)n. It looks like a localized state with critical
(i.e., infinite) penetration length.

After this work was completed, we became aware of the
recent studies of graphene ribbons [29].
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APPENDIX A: DERIVATION OF WAVE FUNCTIONS
FOR LOCALIZED CASE

First, let us derive wave functions for the case of complex
plane continuation in the form kx = π + ik′

x, where k′
x > 0.

We start from simplifying the sign function s1 [Eq. (25)] using
the identity sin (π + ik′

x )n = i(−1)n sinh k′
xn:

s1 =
√

sin2(π + ik′
x )

sin(π + ik′
x )

· sin[(π + ik′
x )(Nx + 1)]√

sin2[(π + ik′
x )(Nx + 1)]

=
√

(−i sinh k′
x )2

−i sinh k′
x

· i(−1)Nx+1 sinh k′
x(Nx + 1)√

[i(−1)Nx+1 sinh k′
x(Nx + 1)]2

= (−1)Nx . (A1)

Now we can rewrite the wave functions from Eq. (24):(
ψA,i
ψB,i

)
= −

√
2ic′

3ei[(π+ik′
x )Nx+kym]

·
(

(−1)Nx s sin[(π + ik′
x )n]

sin[(π + ik′
x )(Nx − n)]

)

= (−1)Nx+1
√

2ic′
3e−k′

xNx+ikym

·
(

(−1)Nx s · i(−1)n sinh k′
xn

i(−1)Nx−n sinh k′
x(Nx − n)

)

= (−1)n+2
√

2c′
3e−k′

xNx+ikym

·
(

s(−1)2Nx sinh k′
xn

(−1)2Nx−2n sinh k′
x(Nx − n)

)

= (−1)n
√

2c′
3e−k′

xNx+ikym

(
s sinh k′

xn
sinh k′

x(Nx − n)

)
. (A2)

In the second possible case of continuation (kx = 0 + ik′
x,

where k′
x > 0) we apply the identity sin ik′

xn = i sinh k′
xn.

First, we rewrite s1 as

s1 =
√

sin2(ik′
x )

sin(ik′
x )

· sin[ik′
x(Nx + 1)]√

sin2[ik′
x(Nx + 1)]

=
√

(i sinh k′
x )2

i sinh k′
x

· i sinh k′
x(Nx + 1)√

[i sinh k′
x(Nx + 1)]2

= 1. (A3)

The next step is to present wave functions (24) in the follow-
ing form:(

ψA,i
ψB,i

)
= −

√
2ic′

3ei(ik′
xNx+kym)

(
1 · s sin(ik′

xn)
sin[ik′

x(Nx − n)]

)

= −
√

2ic′
3e−k′

xNx+ikym

(
s · i sinh k′

xn
i sinh k′

x(Nx − n)

)

=
√

2c′
3e−k′

xNx+ikym

(
s sinh k′

xn
sinh k′

x(Nx − n)

)
. (A4)
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Here we used a non- normalized expression for ex-
tended wave functions [Eq. (24)] instead of a normalized one
[Eq. (27)] in order not to transform summation formula (14),
because we need to renormalize the resulting wave functions.

APPENDIX B: RIGHT LIMIT OF WAVE FUNCTIONS
AND ENERGIES FOR ZIGZAG NANORIBBONS

IN THE CASE ky = π/2

For this type of limit we present wave number ky as π
2 + η,

where η → 0+. Acting by analogy with Sec. III B 3, we can
write that wave number kx has the form 0 ± ik′

x, where k′
x tends

to infinity. The eigenvalue equation [second part of Eq. (30)]
in these limits can be written as

1

2
ek

′
xNx + 2 cos

(π

2
+ η

)
· 1

2
ek

′
x (Nx+1) = 0, (B1)

with solution

k
′
x = − ln 2η. (B2)

This dependence k
′
x on η is identical in the left-hand limit.

Eigenenergies Es tend to zero, because the function
ε(k

′
x,

π
2 ) [Eq. (29)] tends to zero:

ε

(
k

′
x,

π

2

)
=

√
3 + 4 · 1

2
ek′

x cos ky + 2 cos 2ky

= lim
η→0

√
3+2e− ln 2η cos

(
π

2
+η

)
+2 cos 2

(
π

2
+η

)

= lim
η→0

√
3 − 2 · (2η)−1η + 2 · (−1) = 0. (B3)

The summation function (34) inside wave functions (35)
simplifies. It has a form identical to Eq. (41). Finally, the wave
functions [second part of Eq. (35)] become(

ψA,i
ψB,i

)
= lim

η→0

ei( π
2 +η)m√

Ny · (2η)−2Nx /4

(
s · 1

2 e(− ln 2η)n

1
2 e(− ln 2η)(Nx−n)

)

= lim
η→0

ei π
2 m√
Ny

(
s · (2η)Nx−n

(2η)n

)
. (B4)

Similarly to Eqs. (42) and (43), we can rewrite the result from
Eq. (B4) using Kronecker delta functions:(

ψA,i
ψB,i

)
= im√

Ny

(
s · δNx,n

δ0,n

)
. (B5)

APPENDIX C: SIMPLIFICATION OF WAVE FUNCTIONS
FOR ZIGZAG NANORIBBONS IN CASES ky = kc

y, π − kc
y

Here we provide the rest of the limits of wave functions at
transition points ky = kc

y , π − kc
y that are not mentioned in the

main text.

1. Right limit of wave functions at the point ky = kc
y

We are interested in results for complex plane continua-
tion of type kx = π ± ik′

x. We represent wave number ky in
the form kc

y + η, where η → 0+. In this limit, k′
x also tends

to zero. Let us start from simplification summation function

(34):

Shyp(k′
x, Nx ) = lim

k′
x→0

1

4

(
sinh k′

x(2Nx + 1)

sinh k′
x

− (2Nx + 1)

)

= 1

6
Nx(Nx + 1)(2Nx + 1)(k′

x )2. (C1)

The wave functions [first part of Eq. (35)] can be written as(
ψA,i
ψB,i

)
= lim

η,k′
x→0

(−1)nei(kc
y+η)m√

Nyk′
x

√
Nx(Nx + 1)(2Nx + 1)/6

·
(

sk
′
xn

k
′
x(Nx − n)

)

= (−1)n
√

6eikc
y m√

NyNx(Nx + 1)(2Nx + 1)

(
s · n

Nx − n

)
. (C2)

This wave functions differ from Eq. (48) by the factor
(−1)Nx+1, but it can be easily absorbed by renormalization.
The energy related function ε(kx, ky ) for this case has the same
values as in Eq. (47).

2. Left limit of wave functions at the point ky = π − kc
y

We need to use complex plane continuation of the form
kx = 0 ± ik′

x, for the left limit ky = π − kc
y − η (η → 0+)

leads to limiting to zero of k′
x. Summation function (34) will

have the form of Eq. (C1), so the wave functions [second part
of Eq. (35)] can be simplified as follows:(

ψA,i
ψB,i

)
= lim

η,k′
x→0

ei(π−kc
y −η)m√

Nyk′
x

√
Nx(Nx + 1)(2Nx + 1)/6

·
(

sk
′
xn

k
′
x(Nx − n)

)

= (−1)m
√

6e−ikc
y m√

NyNx(Nx + 1)(2Nx + 1)

(
s · n

Nx − n

)
. (C3)

Let us calculate the function ε(kx, ky) [second part of
Eq. (29)]:

ε
(
0, π − kc

y

) = lim
η,k′

x→0

[
3 + 4 cosh k

′
x cos

(
π − kc

y − η
)

+ 2 cos 2
(
π − kc

y − η
)]1/2

=
√

3 − 4 cos kc
y + 2 cos 2kc

y = 1

Nx + 1
,

(C4)

which is identical to the value of this function at another
transition point ky = kc

y [Eq. (47)].

3. Right limit of wave functions at the point ky = π − kc
y

We have extended states [Eq. (27)] in the region ky = π −
kc

y + η (η > 0). The wave number kx tends to zero when η →
0. The summation function (14) in this case can be calculated
similarly to Eq. (45):

S(kx, Nx ) = lim
kx→0

Nx∑
n=1

sin2 kxn = k2
x

Nx∑
n=1

n2

= k2
x

Nx(Nx + 1)(2Nx + 1)

6
. (C5)
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The sign function s1 [Eq. (25)] also transforms:

s1 = lim
kx→0

sign(sin kx(Nx + 1)) = 1. (C6)

Finally, we can write simplified wave functions:

(
ψA,i
ψB,i

)
= lim

η,kx→0

ei(π−kc
y +η)m√

Nykx
√

Nx(Nx + 1)(2Nx + 1)/6

·
(

skxn
kx(Nx − n)

)

= (−1)m
√

6e−ikc
y m√

NyNx(Nx + 1)(2Nx + 1)

(
s · n

Nx − n

)
. (C7)

This result coincides with the left limit at the point ky = π −
kc

y [Eq. (C3)]. The function ε(kx, ky) at this point has the value
of Eq. (C4).

In all considered cases, left and right limits give identi-
cal (up to renormalization) wave functions and coinciding
energies. This result is in accordance with the principle of
continuity.

APPENDIX D: PROOF THAT PAIRS (kx, ky) AND
(π − kx, π − ky) DESCRIBE IDENTICAL STATES

1. Extended states

We start from proving that the function ε(kx, ky) has the
same values for these pairs of (kx, ky):

ε(π − kx, π − ky)

= √
3 + 4 cos (π − kx ) cos (π − ky) + 2 cos 2(π − ky)

= √
3 + 4 cos kx cos ky + 2 cos 2ky = ε(kx, ky). (D1)

This means that these states also have identical energies.
Now let us do the same thing for wave functions (53). First,

we study what happens to the sign function s1 [Eq. (25)] which
depends only on kx:

s1(π − kx ) = sign{sin[(π − kx )(Nx + 1)]}
= sign{−(−1)Nx+1 sin[kx(Nx + 1)]}
= (−1)Nx sign{sin[kx(Nx + 1)]}
= (−1)Nx s1(kx ). (D2)

The summation function S(k, N ) also does not change for
k → π − k. The second step is to rewrite wave functions (53):(

ψA,i
ψB,i

)
= sin (π − ky)m√

S(kx, Nx )S(ky, Ny)

·
(

(−1)Nx s1(kx )s sin[(π − kx )n]
sin[(π − kx )(Nx − n)]

)

= (−1)m+1 sin kym√
S(kx, Nx )S(ky, Ny)

×
(

(−1)Nx+n+1s1(kx )s sin(kxn)
(−1)Nx−n+1 sin[kx(Nx − n)]

)

= (−1)Nx+m+n sin kym√
S(kx, Nx )S(ky, Ny)

(
s1(kx )s sin(kxn)

(−1)−2n sin[kx(Nx − n)]

)
.

(D3)

These wave functions coincide with wave functions for
(kx, ky) [Eq. (53)], because (−1)2n = 1 and (−1)m+n are con-
stant for all sites (it depends on cell numeration choice: in our
case of numeration as in Fig. 2, it is always +1), and finally
(−1)Nx can be absorbed by renormalization.

2. Localized states

For the region ky ∈ (kc
y ; π/2) wave functions and eigenen-

ergies have the form of Eqs. (54) and (56), respectively. If one
wants to make the change (kx, ky ) → (π − kx, π − ky) they
need to know the wave functions and energies for the region
ky ∈ (π/2; π − kc

y ). We derive wave functions and eigenener-
gies for ky ∈ (π/2; π − kc

y ) from wave functions [second part
of Eq. (35)] and eigenenergies [second part of Eq. (29)] for
zigzag nanoribbons:(

ψA,i
ψB,i

)
= sin kym√

Shyp(k′
x, Nx )S(ky, Ny)

(
s sinh(k

′
xn)

sinh[k
′
x(Nx − n)]

)
,

(D4)

Es = s · t
√

3 + 4 cosh k ′
x cos ky + 2 cos 2ky. (D5)

Now, we make the replacement (kx, ky) → (π − kx, π − ky)
in Eqs. (D4) and (D5) to compare these results with Eqs. (54)
and (56), respectively.

Let us start by comparing energies. The parameter k
′
x

does not change because the change kx → π − kx is already
included in different types of complex plane continuations
[Eq. (28)]. So, we only need to change ky → π − ky in
Eq. (D5):

Es = s · t
√

3 + 4 cosh k ′
x cos (π − ky) + 2 cos 2(π − ky)

= s · t
√

3 − 4 cosh k ′
x cos ky + 2 cos 2ky, (D6)

which coincides with the energy in Eq. (56).
Now we compare wave functions in the same way — we

exchange only ky → π − ky (summation functions remain the
same):(

ψA,i
ψB,i

)
= sin (π − ky)m√

Shyp(k′
x, Nx )S(ky, Ny)

(
s sinh(k

′
xn)

sinh[k
′
x(Nx − n)]

)

= (−1)m+1 sin kym√
Shyp(k′

x, Nx )S(ky, Ny)

(
s sinh(k

′
xn)

sinh[k
′
x(Nx − n)]

)
.

(D7)

This result is identical to wave functions (54), because factors
(−1)m in Eq. (D7) and (−1)n in Eq. (54) work the same way
(explained at the end of Sec. III B) and (−1) can be absorbed
by renormalization.
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