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In recent years, Chebyshev polynomial expansions of tight-binding Green’s functions have been successfully
applied to the study of a wide range of spectral and transport properties of materials. However, the application
of the Chebyshev approach to the study of quantum transport properties of noninteracting mesoscopic systems
with leads has been hampered by the lack of a suitable Chebyshev expansion of Landaeur’s formula or one of
its equivalent formulations in terms of Green’s functions in Keldysh’s perturbation theory. Here, we tackle this
issue by means of a hybrid approach that combines the efficiency of Chebyshev expansions with the convenience
of complex absorbing potentials to calculate the conductance of two-terminal devices in a computationally
expedient and accurate fashion. The versatility of the approach is demonstrated for mesoscopic twisted bilayer
graphene (TBG) devices with up to 2.3 × 106 atomic sites. Our results highlight the importance of moiré effects,
interlayer scattering events, and twist-angle disorder in determining the conductance curves in devices with a
small twist angle near the TBG magic angle θm ≈ 1.1◦.

DOI: 10.1103/PhysRevB.107.045418

I. INTRODUCTION

The quantum scattering model due to Landauer [1] has
become a central tool in mesoscopic physics because it allows
for a clear interpretation of phase-coherent electron transport
in terms of a transmission problem [2]. Within this framework,
the conductance of a mesoscopic system coupled to ideal
leads reads G = (e2/h)

∑
n,m Tnm, where Tnm is the transmis-

sion probability to scatter elastically across the system from
channel n on the source lead to channel m on the drain
lead. Thus, for an ideal conductor, the Landauer formula
predicts that changes in low-temperature conductance occurs
in discrete steps of e2/h (per spin) each time a new trans-
port channel becomes accessible at the Fermi level. This
unique fingerprint of noninteracting one-dimensional (1D)
conductors was first observed in semiconductor ballistic point
contacts more than thirty years ago [3,4], and subsequently
in a variety of systems, including nanowires [5–7], carbon
nanotubes [8–11], and graphene devices [12,13].

Meanwhile, the development of efficient tight-binding
frameworks for numerical quantum transport simulation has
been receiving considerable interest because they can be used
to handle realistic geometries as well as to elucidate the
role of imperfections and disorder [14–19]. Among these,
tight-binding Green’s function (TBGF) methods have be-
come a standard class of tools owing to their flexibility and
computational efficiency [20–23]. In addition to providing a
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convenient framework to calculate the conductance in multi-
terminal devices, the TBGF approach allows determination of
current distributions, local density of states and other quanti-
ties of interest, and can be extended to incorporate the effect
of interactions [24,25]. Notwithstanding its proven merits,
the standard implementations of the TBGF method suffer
from cubic algorithmic complexity, which severely limits
the system sizes attainable. The popular recursive Green’s
function (RGF) technique [26–28] partly mitigates this is-
sue by partitioning the computational domain into small unit
transverse sections whose Green’s functions are recursively
generated, but still requires the inversion of matrices whose
size scale with the width of the transverse section. This techni-
cal challenge has not precluded the study of ballistic transport
through a variety of nanostructures (including quantum dots
[29], interfaces between bulk crystals [30], and disordered
topological insulators [31]) but presents a significant hurdle
for performing large-scale simulations beyond the ballistic
regime as well as for tackling complex devices composed of
many different materials or with sub-units displaying large
unit cells.

In this paper, we revisit the linear-response transport
framework and formulate a Chebyshev polynomial-based
spectral technique that will allow us to bypass altogether
expensive matrix inversions in the numerical evaluation of
the conductance of mesoscopic systems. The approach, which
makes use of a complex absorbing potential (CAP) to alleviate
the computational resources needs [32,33], is applied to two-
terminal twisted bilayer graphene (TBG) devices containing
in excess of a million orbitals. Our results show that the spa-
tial modulation of the interlayer couplings that is responsible
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FIG. 1. Two-terminal TBG device considered in this work.
Green regions denote the leads. The largest systems considered here
have W = 100 nm and L = LS + 2LC = 300 nm, corresponding to a
total of 2.2 million orbitals.

for the dramatic modification of the band structure of TBG
[34–38] translates into important features in the conductance
curves, including the appearance of symmetric peaks located
at energies of the van Hove singularities which merge into
a single peak (centered at zero energy) as the twist angle
approaches a magic angle. This article is structured as follows.
Section II lays out the spectral approach to calculating the
two-probe conductance. We also discuss the CAP strategy
employed to handle the leads efficiently and show how it can
be implemented by means of a simple modification of the
Chebyshev recursion relations. Section III presents our results
for the ballistic transport regime of TBG nanoribbons with a
3 × 104 nm2 cross-section area, which is, to our knowledge,
the largest such system simulated with a real-space TBGF
method so far. Section III B investigates the impact of twist-
angle disorder in the quantum transport properties. Our results
are summarized in Sec. IV.

II. MODEL AND METHODS

We consider a two-terminal device setup composed of
a central region of length LS connected to leads of length
LC (Fig. 1). The corresponding atomistic tight-binding
Hamiltonian may be written as

Ĥ =
⎛⎝ĤL V̂L 0

V̂ †
L ĤC V̂R

0 V̂ †
R ĤR

⎞⎠, (1)

where ĤR(L) and ĤC are the Hamiltonians of the right (left)
lead and central region, respectively, and V̂R(L) describes the
coupling of right (left) contacts to the central region.

The linear-response conductance is obtained via the
Kubo-Greenwood formula

G(E ) = 4e2

hL2
S

Tr[h̄v̂x Im Ĝ(E ) h̄v̂x Im Ĝ(E )], (2)

where E is the Fermi energy, v̂x = (i/h̄)[ĤC, x̂] is the velocity
operator in the x direction and Ĝ = (E − Ĥ + i0+)−1 is the
TBGF of the full system. Note that v̂x has support only on sites
within the central region, so that Eq. (2) correctly describes
the total electric current (I) flowing in response to con-
stant voltages applied at its boundaries. The linear-response
formulation is preferred here over the more commonly
employed nonequilibrium Keldysh technique [39,40] since
it is amenable to a spectral representation in terms of
Chebyshev polynomials similar to the bulk longitudinal
conductivity [41,42] as shown below. We note that the
equivalence between Landauer-type and Kubo approaches to
linear-response transport is well established, and we refer the
interested reader to Refs. [43–45] for additional details. To
make use of the spectral machinery, we start by expanding
the TBGF in terms of Chebyshev polynomials of the first
kind [46]. To this end, we apply the linear transformation
ĥ = (Ĥ − E+1)/E−, with E± = (E> ± E<)/2, 1 is the iden-
tity operator defined on the Hilbert space of the lattice and
E>(<) indicates the largest (smallest) eigenvalue of Ĥ . Note
that this procedure maps the eigenvalues of the Hamiltonian
onto the canonical interval of the Chebyshev polynomials i.e.,
I = [−1, 1]. Likewise, the Fermi energy variable is trans-
formed according to ε ≡ (E − E+)/E−. To estimate the end
points, E±, we use a power method [47], and a “safety factor”
is included to ensure that no spectral weight falls outside I.
This is achieved by means of a simple uniform re-scaling,
E± → (1 + αSF)E±, with αSF > 0 (in this work we use αSF =
0.1).

In terms of the rescaled quantities introduced above,
the imaginary part of the full TBGF admits the following
Chebyshev decomposition [41]

Im Ĝ(ε) = 2

π
√

1 − ε2

∞∑
m=0

Tm(ε)

(δm,0 + 1)
T̂m(ĥ), (3)

where Tm(ε) are Chebyshev polynomials of the first kind, and
the operators T̂m(ĥ) (m ∈ Z+) satisfy the Chebyshev recur-
rence relations: T0(ĥ) = 1, T1(ĥ) = ĥ, and

T̂m+1(ĥ) = 2ĥT̂m(ĥ) − T̂m−1(ĥ). (4)

By virtue of these relations, Eq. (3) and hence Eq. (2) can
be computed by means of an efficient iterative scheme based
on computations of Chebyshev moments (see Sec. II B for
details). Once the Chebyshev expansion [Eq. (3)] has been
evaluated to the desired precision, the TBGF of the orig-
inal system is obtained by a simple rescaling Im Ĝ(E ) =
E−1

− Im Ĝ(ε).

A. CAP and modified Chebyshev polynomials

Next, we discuss the handling of the finite-size contacts
in our implementation. As customary, the leads should be
sufficiently large to behave as proper reservoirs of electrons.
In practice, this is a demanding computational task, especially
in nanostructures with large unit cells, such as the case of
the TBG system of interest to this work. In order to reduce
the computational overhead, we make use of a CAP approach
[32,33]. The CAP is a phenomenological damping term,

�̂ ≡ −i�̂ = diag {−î�L, 0,−i�̂R} (5)
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included in the Green’s function that generates absorption of
propagating waves across the contacts, thus minimizing re-
flections and emulating the behavior of a semi-infinite contact.
The explicit form of the CAP self-energy for the setup in
Fig. 1 can be obtained by means of the Wentzel–Kramers–
Brillouin semiclassical approximation as detailed in Ref. [33],
and is discussed in Sec. II C. Here, it is important to rec-
ognize that the presence of a self-energy term in the TBGF
invalidates the Chebyshev expansion (3) (this is the very
reason why a standard self-energy formulation describing
semi-infinite leads is avoided in our spectral approach), but
can be conveniently handled by means of modified Chebyshev
polynomials, Q̂n(ĥ, γ̂ ) (n ∈ Z+), which are functions of the
rescaled Hamiltonian, ĥ, and the damping operator, γ̂ . This
technique, originally devised for scattering calculations in
molecular systems [48,49], allows to reconstruct the CAP
Green’s function, ĜCAP ≡ (E − Ĥ − �̂)−1, via the modified
recurrence relations: Q̂0(ĥ) = 1, Q̂1(ĥ) = e−γ̂ ĥ and

Q̂m+1(ĥ) = 2e−γ̂ ĥQ̂m(ĥ) − e−2γ̂ Q̂m−1(ĥ). (6)

The formal relation between γ̂ —the main feature of the
new recursion rule that fully encapsulates the effects of
the CAP—and the original damping operator, �̂, is derived
in the Appendix A for clarity.

B. CAP-Chebyshev conductance algorithm

To evaluate Eq. (2), the TBGF of the device is approx-
imated by means of the modified Chebyshev polynomials
introduced above. To reduce the cost associated with the trace
operation in Eq. (2), we make use of a stochastic trace eval-
uation technique [50]. It consists of replacing the exact trace
by the average expectation value over an ensemble of random
vectors |zr〉 as follows:

G(ε) = 4e2

hL2
S

1

R

R−1∑
r=0

〈zr |h̄v̂x Im Ĝ(E ) h̄v̂x Im Ĝ(E )|zr〉, (7)

where |zr〉 = ∑N
i=1 χr |i〉 is a vector with random amplitude

on each lattice site, N is the total number of orbitals and
χr are random (real) variables satisfying white-noise statis-
tics (i.e., χr = 0 and χrχ ′

r = δr,r′ , where the bar denotes the
average over the random vector ensemble and δr,r′ is the
Kronecker delta symbol). The relative error in this approach
scales favourably as 1/

√
NR [41], insofar as the operator

being traced remains sparse [42]. As a rule of thumb, we set
the number of random vectors such that R × N is on the order
of 108, which will afford us high accuracy in the evaluation of
the conductance.

Next, we expand the TBGFs in Eq. (7) in terms of the
modified Chebyshev polynomials [Eq. (A1)] to obtain the
M-order spectral approximation to G(E ). Following Ref. [42],
it is convenient to express the conductance as follows:

GCAP
M (ε) = 4e2

hL2
S

R−1∑
r=0

〈φ(r)
+ (ε)|φ(r)

− (ε)〉, (8)

with the single-shot vectors

|φ(r)
+ (ε)〉 =

M−1∑
m=0

fm(ε)Q̂m(ĥ)v̂x|zr〉, (9)

|φ(r)
− (ε)〉 =

M−1∑
m=0

fm(ε)v̂xQ̂m(ĥ)|zr〉, (10)

where

fm(ε) = km
(2 − δm,0)Tm(ε)√

1 − ε2
(11)

and km are Jackson kernel coefficients [41] introduced to
suppress Gibbs oscillations generated by the truncation of the
formal infinite series in Eq. (3). In this work, we will use M
up to 20 000, which corresponds to a smearing of the delta
functions (i.e., energy resolution) of δE = πE−/M ≈ 1 meV
at the band center.

The single shot vectors are constructed on the fly via a
sequence of standard matrix-vector multiplications. First, by
defining the vector |zm

r 〉 ≡ Q̂m(ĥ)|zr〉, Eq. (6) can be used to
yield the sequence∣∣zm

r

〉 = 2e−γ̂ ĥ
∣∣zm−1

r

〉 − e−2γ̂
∣∣zm−2

r

〉
, (12)

which is initiated with |z0
r 〉 ≡ |zr〉 and |z1

r 〉 = e−γ̂ ĥ |zr〉.
This process is iterated to obtain the Mth order approx-
imation defined as |φ(r)

− (ε)〉 = ∑M−1
m=0 fm(ε)v̂x |zm

r 〉. A simi-
lar procedure, but with starting vectors |z0

r 〉 = v̂x |zr〉 and
|z1

r 〉 = e−γ̂ ĥv̂x |zr〉, yields the remaining single shot vector
|φ(r)

+ (ε)〉 = ∑M−1
m=0 fm(ε) |zm

r 〉.
The numerical determination of the single-shot vectors,

|φ(r)
± (ε)〉, is the most demanding part of the CAP-Chebyshev

algorithm. However, the complexity of this approach grows
only linearly [see Fig. 2(b)] with the system size because the
relevant matrices in the Chebyshev iteration, ĥ and γ , are
sparse. All together, the number of operations required by the
algorithm scales as N × E × R × M, where E is the number
of energy points being considered.

The single-shot algorithm adapted here to the Landauer
problem provides a particularly efficient scheme for eval-
uation of Fermi surface terms in linear response theory
as it scales linearly with the number of Chebyshev itera-
tions. In contrast, the standard spectral evaluation of Eq. (8)
would require the evaluation of a total of M2 expansion
moments of the type μnm = Tr[T̂n(ĥ)v̂xT̂m(ĥ)v̂x] (or μ̃nm =
Tr[Q̂n(ĥ)v̂xQ̂m(ĥ)v̂x], with the modified Chebyshev polynomi-
als). Instead, the vectors Eqs. (9) and (10) are constructed in
parallel by means of a matrix-vector multiplication scheme
exploiting the recursive rule in Eq. (6) as well as the sparse-
ness of the Hamiltonian matrices. The total number iterations
in this approach is 2M (as opposed to M2 in a full-spectral
calculation based on the explicit evaluation of Chebyshev
moments). For more details on the single-shot approach and
its efficient numerical implementation for large systems, we
refer the reader to the supplementary material of Ref. [42]. In
this work, we compute the conductance for 100 single-shot
energy points in parallel. The computational time for a single
random vector realization of the largest system simulated (i.e.,
L = 300 nm and W = 100 nm with M = 20 000 Chebyshev
iterations) is approximately 27 minutes using a NVIDIA Tesla
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FIG. 2. (a) Two-terminal conductance as a function of energy for
selected values of LC with and without a CAP. The result obtained
with the standard RGF approach [27] is shown (black solid line) for
comparison. We use W = 24 nm and LS = 20 nm. The number of
Chebyshev iterations increases gradually with the contact size from
M = 10 000 to M = 16 000 as the contact size increases, while the
number of random vectors is kept fixed with R = 400. (b) Scaling of
the total computational cost (core × hours) as a function of device
length LS for a single-shot evaluation of the conductance using the
Chebyshev (circles) and RGF (squares) methods.

K80 graphics card. The memory cost is low (approximately
10 GB).

C. CAP implementation and benchmark

Here, we use a CAP adapted from Refs. [33,51], previously
used in quantum transport simulations of graphene devices
[52–54]. It has the following form

�(x) = −4Emin

c2
y(x′

s), where (13)

y(x′
s) =

[
1

(1 − x′
s)2

+ 1

(1 + x′
s)2

− 2

]
, (14)

x′
s = (xs − x0)/LC . (15)

Here, x′
s is the sth site’s relative position inside the contact,

which starts at xs0 = x0 and has a length LC . In practice, Emin

becomes an adjustable parameter that will determine the low-
est electron energy that the CAP can absorb and c = 2.66206
is a numerical constant. Once a contact length is defined,
LC , an optimal value of Emin can be found by numerical
experimentation. Far from such optimal value, the simula-
tions will show spurious oscillations (finite size effects), in
addition to oscillations due to wave reflections at the contact
terminations.

Once the functional form of �̂ is determined using the
above recipe, its dimensionless version γ̂ appearing in the
rescaled Green’s function is obtained via Eq. (A5). Since
we are interested in the low-energy properties of TBG, in
what follows we use the approximation γ̂ � asinh(i�̂/E−)
(see Appendix A), which simplifies the Chebyshev recursion
somewhat by rendering γ̂ energy-independent.

We validate our CAP approach on a zigzag graphene
nanoribbon (see Fig. 2). A standard tight-binding model with
a nearest-neighbour hopping energy of t = −2.7 eV was used
for this purpose. In this system, the energy-dependence of
the conductance exhibits the familiar sequence of ballistic
conductance steps [27]. The comparison against the RGF
method [Fig. 2(a)] shows that the CAP performance improves
very quickly as the contact size increases [33]. The spectral
results already approximate reasonably well those obtained by
the standard RGF technique for LC = 20 nm. The accuracy
improves gradually with contact size, with the results for
LC � 120 nm being virtually indistinguishable from the exact
conductance profile. Note that in the absence of a CAP, the
impact of finite-size effects severally affect the quality of the
simulation [this can be seen by the significant reduction of
the conductance below its quantized values in Fig. 2(a)].
These results highlight the advantage of the CAP approach
when handling finite contacts.

Next, we carried out systematic calculations to compare
the computational effort of the CAP-Chebyshev approach
with that of the standard RGF technique. To this end, we
used nanoribbon geometries with W = LS , such that the total
number of orbitals scales proportionally to L2

S . A decimation
method is used to evaluate the Green’s functions of the leads
within the RGF approach, while the CAP-Chebyshev method
employs finite contacts with the same size as the central re-
gion. The CPU-time scaling with the respect to the system
size is shown in Fig. 2(b). The spectral method is undoubtedly
efficient for studies of large systems, with a computational
effort roughly linear with the total number of orbitals in the
system (i.e., tCPU ∝ N ∝ L2

S). On the other hand, the RGF ap-
proach exhibits an approximate quadratic dependence, which
is very demanding in general for large systems. It is impor-
tant to note that the number of Chebyshev iterations in the
spectral approach must increase with the system size so that
the energy levels are fully resolved [22,42]. Here, we used
M = int(2.4Nx ), where Nx is the number of sites along the
length LS . This results in M = 20 000 (or, equivalently, an
energy resolution on the order of 1 meV) for the largest system
in our benchmark (Nx = 8 × 103), and yields accurate results
for the conductance.

The observed CPU-time scaling in the spectral method is
completely consistent with the algorithm complexity outlined
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in Sec. II B. In fact, the number of floating-point opera-
tions (per energy point) grows as O ∝ N × M × R, and so
should the CPU-time too. Given that M ∝ N1/2 (in order
to achieve a suitable, size-dependent energy resolution), we
expect tCPU ∝ R × N1.5. Here, the stochastic trace evaluation
of the conductance [Eq. (7)] plays a crucial role. Because its
relative error scales roughly as 1/

√
NR (the exact scaling is

also sensitive to M [22,42]), the required number of random
vectors decreases with the system size (until it saturates at
R = 1 for very large N). For our system, R = int(a/Nx ) with
a = O(105) yields convergent results with the same precision
across all system sizes. This in turn implies O ∝ N , and hence
the observed CPU-time scaling (tCPU ∝ N). We note in pass-
ing that for simulations of very large systems (e.g., relevant to
capture the diffusive regime of graphene flakes of realistic size
containing billions of orbitals [42]), R = 1 suffices to achieve
high accuracy, and thus tCPU ∝ N1.5 would be expected in that
limit. Further details about our benchmark are provided in
Appendix B.

III. TBG BALLISTIC CONDUCTANCE

A. The pristine case

Having outlined the real-space Chebyshev approach to
quantum transport and demonstrated its performance in a sim-
ple graphene device, we now apply it to the study of TBG.
The twisting of van der Waals heterostructures has recently
provided a novel tuning mechanism in condensed matter
physics [34–38]. The interference pattern arising from two
off-kilter graphene sheets creates a moiré supercell, which can
be viewed as a new overarching crystal cell of the material.
Because the moiré period can be much larger than the original
lattice scale of graphene (especially for small twist angles),
the study of TBG devices is computationally challenging.
Furthermore, an accurate tight-binding description of TBG
has to handle a multitude of nearest-neighbours hoppings
[55], which adds complexity to the numerical calculations.
Therefore the evaluation of the conductance in realistic large-
unit-cell TBG systems has been out of reach of standard
approaches in quantum transport, including the popular recur-
sive Green’s function method [56].

From the perspective of quantum transport, there are a
few works on TBG [53,56–58]. These works focused on the
twist-angle dependence of the minimal CNP conductivity [53]
and transmission properties of small junctions [56–59]. The
comparisons in Fig. 2(a) indicate that the CAP-Chebyshev
approach is well suited to tackle large systems, thus over-
coming the limitations of standard approaches to two-terminal
conductance calculations. The device geometry employed in
this work is depicted in Fig. 1. It comprises two armchair
graphene nanoribbons twisted by an angle θ and separated by
an interlayer distance d0 = 0.335 nm. Each nanoribbon has
its own left and right contact regions, with a length of LC and
the same width W as the central system. In the calculations
reported below, the length of the contacts is equal to the length
of the central region, and thus the total linear size of the device
is L = 3LC .

To model the electronic properties of the TBG system,
we employ a single-orbital tight-binding model with hopping

terms parameterized as follows [55,60,61]:

−ti, j = Vppπ

[
1 −

(
d i j · ez

di j

)2
]

+ Vppσ

(
d i j · ez

di j

)2

, (16)

where Vppπ (σ ) = V 0
ppπ (σ ) exp(− di j−a0(d0 )

δ
), d i j = ri − r j is the

vector connecting two sites (here, di j = |d i j |), and a0 =
0.142 nm and d0 = 0.335 nm are carbon-carbon distance
in graphene and interlayer distance, respectively. Moreover,
V 0

ppπ = −2.7 eV and V 0
ppσ = 0.48 eV are the bilayer graphene

nearest-neighbor intralayer and interlayer hopping integrals,
respectively, δ = 0.32a0 is the hopping decay length and ez

is the unit vector normal to the TBG plane. In order to re-
produce the main features of the single-particle electronic
structure, it is imperative to go beyond the nearest neighbours
approximation [56,60]. Thus, in this work, we incorporate all
interlayer and intralayer neighbours within a sphere of radius
4a0 centered at ri. It is important to mention that our TBG
graphene Hamiltonian describes both the device region and
the finite contact regions. This confers a practical advantage
for achieving a plausible description of electronic transport
in TBG devices because incoming wave functions in our
approach already possess twist properties, which allows us
to overcome momentum mismatch between incoming and
outgoing states [62].

We investigated devices composed of TBG at selected
commensurate twist angles. Let us first summarize the key
results obtained with the CAP-Chebyshev approach. For large
twist angles, the layers are effectively decoupled and the
conductance is approximately twice that of a single-layer
nanoribbon (this is discussed in Sec. III B, alongside with the
effect of twist-angle disorder). For intermediate twist angles,
the conductance plateaus are still clearly visible [see Fig. 3(a)
for a device with θ = 2.65◦] but have a decreased width
(compared to the single nanoribbon) due to moiré pattern
effects. As the twist angle is reduced below 2◦, one begins to
probe the effects of strong interlayer coupling. In this regime,
the ballistic conductance plateaus are smoothed out due to
strong channel mixing caused by elastic scattering between
the layers. As a result, the conductance away from the charge
neutrality point (CNP) attains much lower values than those of
the untwisted armchair ribbon counterpart. More interestingly,
the quantum transport near the CNP becomes dominated by
quasilocalized states in the AA-stacked regions of the bilayer.
These states produce van Hove singularities (VHSs) at the
vicinity of the CNP. A spectral study of the density of states
is reported in Fig. 3(b), where the emergence of peaks in the
density of states at small twisting can be seen for twist angles
of 1.24◦ and 1.47◦. Likewise, the conductance in this regime
displays prominent peaks at the VHS locations indicated by
arrows in Fig. 3(a). For the device with θ = 1.47◦, a group
of low-dispersion electronic states with a bandwidth of only
∼40 meV is expected to appear near the CNP based on elec-
tronic calculations for the bulk system [55]. This is consistent
with the electronic properties exhibited by our nanostructures.
Note that the width of the central double peak structure in
Fig. 3(b) is around 40 meV.

As the lowest twist angle studied here (θ = 1.24◦), the
above features merge into a single peak at the CNP (indicated
by the red arrow), with the conductance acquiring a stable
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FIG. 3. Electronic properties of armchair TBG devices for
selected twist angles. (a) Fermi energy dependence of the zero-
temperature conductance. Parameters: M = 20 000, R = 150, and
LC = LS = W = 100 nm. (b) Density of states for the systems con-
sidered in the top panel calculated with the kernel polynomial method
[63] (same parameters as above). (c) Conductance profile for two
samples with different dimensions as indicated in the legend and
θ = 1.24◦. Parameters: M = 14 000 and R = 250 for the W = 50 nm
case and M = 20 000 and R = 150 for the W = 100 nm case.

value close to 8e2/h. This isolated conductance peak is a result
of the residual dispersion from the moiré minibands. Note that
a truly flat energy band would yield zero conductance in a

noninteracting picture. The observed CNP conductance seems
to be robust with respect to variations in the device dimen-
sions. Indeed, Fig. 3(c) shows that the conductance for smaller
devices show the same peak height, even though these devices
have a smaller number of transverse modes and, consequently,
display lower values of the conductance away from the CNP.
We replicated the behavior of the smaller device simulated
using a standard Landauer method with a wide band model
for the contacts [56,64].

B. Twist angle disorder

Lastly, we take advantage of our real-space approach to
examine the role played by twist angle disorder. There are few
theoretical works that study this crucial kind of disorder in
TBG [65–67] and even fewer addressing the quantum trans-
port problem [67]. In Ref. [66], an effective two band model
was used to calculate the transmission across twist angle do-
mains, while in Ref. [67], a 1D analog (double-wall carbon
nanotube with angle disorder) of TBG is studied. To incorpo-
rate angle disorder in our mesoscopic TBG systems, we make
use of a simple toy model [65]. The top layer of the device
region is divided in four sections, each having their own rota-
tion angle sample from a box distribution [θ̄ − θ, θ̄ + θ ],
where θ is the average twist angle and θ is the maximum
deviation from the central value. For each region the interlayer
hoppings are recalculated with the displaced positions of the
top layer sites according to Eq. (16), while the intralayer
hoppings are kept at their unperturbed values. Figure 4 shows
the averaged conductance for small (θ̄ = 1.24◦), intermediate
(θ̄ = 2.65◦) and large (θ̄ = 15◦) average twist angles. Three
disorder strengths are investigated, corresponding to θ =
0.001◦, 0.01◦, and 0.05◦. The conductance is averaged over
five twist-angle disorder realizations and is represented by a
continuous line, while the standard deviation is shown as a
shaded band. For comparison, we have shown the clean case
(θ = 0.0◦). As expected, for weak angle disorder (θ =
0.001◦) the main characteristics of the conductance curves are
preserved, which include the peak at the CNP for the samples
with θ̄ = 1.24◦ and the well-defined conductance steps for
θ̄ = 2.65◦. It is also evident that the conductance only shows
small deviations from the clean case, especially near the CNP.
On the other hand, for mild disorder (θ = 0.01◦ and 0.05◦),
the conductance shows large variation between different sam-
ples (except for the trivial case with θ = 15◦ given that the
layers are effectively decoupled). The observed effects on
the averaged conductance are consistent with the broadening
and extinction of the van Hove singularities, as observed
in Ref. [65]. In the range of twist angles probed here, the
average conductance is seen to decrease with angle disorder
very quickly, which is perhaps surprising considering that the
largest θ considered is only 0.05◦. This behavior can be
rationalized in terms of the strong dependence of the spectral
properties upon the twist angle. In fact, even minute variations
in twist angle are sufficient to suppress the van Hove peaks of
the local density of states [65].

These results show that twist angle variations as small as
0.4% can have a massive impact on the quantum transport
properties of mesoscopic TBG devices. This is in stark con-
trast to the behavior of the conductance in TBG nanotubes
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FIG. 4. Conductance curves in the presence of twist angle disor-
der for systems with an average twist angle θ̄ = 1.24◦ (a), 2̄.65◦ (b),
and 1̄5◦ (c), with the shaded bands showing the statistical uncertainty.
Parameters: L = LC = LS = 50 nm, M = 14 000, and R = 250.

[67], whose quantum transmission properties exhibit strong
resilience to angle disorder. Our disorder framework is how-
ever too simplistic to capture quantitatively the impact of
realistic twist-angle disorder landscapes in a standard TBG
nanostructure (i.e., it is composed only of four squared twist
angle domains with sharp boundaries). We note that these
limitations, while severe, can be overcome by improving our

microscopic model. We leave a more in-depth study of the
impact of twist-angle disorder on the conductance of realistic
systems for future work.

IV. CONCLUDING REMARKS

In this work, we developed and validated a real-space
CAP-Chebyshev approach to two-probe conductance calcu-
lations in the linear transport regime. As an application,
we studied mesoscopic TBG devices with a focus on small
twist-angle systems and the transport signatures of low-
dispersion energy bands in the vicinity of the CNP. This
is one of the first applications of the spectral method to
the Landauer transmission problem [68,69] and the first, to
our knowledge, to formulate a direct expansion of the two-
terminal conductance in terms of Chebyshev polynomials.
The use of complex absorbing potentials, and associated mod-
ified Chebyshev polynomials, has allowed us to alleviate the
computational cost of simulating (large) leads that behave
as proper electron reservoirs. This makes the hybrid CAP-
Chebyshev approach particularly efficient for conductance
calculations of large disordered two-dimensional systems.
Our study of TBG nanostructures of mesoscopic lateral di-
mensions (length up to 300 nm and width up to 50 nm) has
shown that the ballistic conductance depends strongly upon
the twist angle as well as the degree of angle disorder in the
sample. Broadly speaking, three transport regimes were iden-
tified. At large twist angles (θ � 1◦), the transport channels
of each layer are effectively decoupled and the conductance is
twice that of a monolayer device (this is consistent with the
bulk dc transport characteristics of TBG [53]). For interme-
diate angles (10◦ � θ � 2◦), the conductance curves exhibit
well-defined quantization steps with a step width modulated
by moiré pattern effects. For θ � 2◦, the conductance steps are
washed out due to a strong channel mixing caused by coher-
ent interlayer scattering. Finally, for twist angles approaching
the largest magic angle (θm � 1.1◦), two conductance peaks
located approximately symmetrically on either side of the
CNP. This feature is traced back to a pile-up of energy states
near the CNP, which in bulk samples leads to the well-known
van Hove singularities in the density of states. These peaks
merge into a single peak at the CNP when the twist angle
approaches 1.24◦, the smallest twist angle in our study. We
have also briefly addressed the issue of twist disorder, a type
of spatial inhomogeneity that is ubiquitous in realistic systems
[70]. According to our preliminary calculations using a simple
model of twist-angle disorder, the quantum transport charac-
teristics of TBG devices are surprisingly sensitive to abrupt
changes of twist angle across domains. In structures with a
small twisting (θ̄ � 2◦), variations of only 0.01◦ suffice to
reduce the conductance by a factor of two.

While preparing this manuscript, we became aware of
a related numerical study by Ciepielewski and co-workers
[71], where transport signatures of van Hove singularities in
mesoscopic TBG devices with sizes comparable to ours are
reported.
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APPENDIX A

The modified Chebyshev recursion relation is obtained
from the following identity [49]:

1

cos(acos(ε) − iγ̂ ) − ĥ

= 1

sin(acos(ε) − iγ̂ )

∞∑
n=0

cne−in acos(ε)Q̂n(ĥ), (A1)

with cn = 2 − δn,0. Equation (A1) provides a polynomial ex-
pansion for the Green’s function of the system with the CAP:

Ĝ ≡ 1

E−

1

cos(acos(ε) − iγ̂ ) − ĥ
(A2)

= 1

E − (Ĥ + i�̂)
. (A3)

The expressions (A2) and (A3) yield a relationship be-
tween the dimensionless damping operator γ̂ appearing in the

rescaled Green’s function and the absorbing potential in the
original Green’s function, �̂, i.e.,

î� = E−[cos(acos(ε))(1 − cosh(γ̂ ))

− i sin(acos(ε))sinh(γ̂ )]. (A4)

For the class of Hermitian damping operators we focus on
(resulting in a purely imaginary CAP self-energy), the above
relation can be easily inverted to yield

γ̂ = asinh

(
− �̂

i E−
√

1 − ε2

)
. (A5)

At low energies, |ε| � 1, the above expression can be safely
approximated as γ̂ � asinh(i�̂/E−).

APPENDIX B

The simulations in our benchmark are run on CPU nodes
equipped with Intel Xeon 6138 20-core 2.0 GHz processors.
The number of random vectors (R) in the CAP-Chebyshev
method is determined by a simple convergence analysis.
The convergence parameter is defined as δR = |(G(R)(ε) −
G(R−1)(ε))/G(R−1)(ε)|, where G(R) is the single-shot conduc-
tance obtained with R random vectors; see Eq. (7). A result
is considered converged when this metric falls below 0.03.
For the range of system sizes in our simulations, this is sat-
isfied by selecting R = int(1.64 × 105/Nx ). Combined with
the dependence of number of Chebyshev moments with the
system size (see main text), this results in tCPU ∝ N2.2

x . In
contrast, the RGF method shows a scaling proportional to
N4.2

x , in accord with previous studies (e.g., using the KWANT

numerical package [20]). For the smaller systems simulated
(Nx < 1.5 × 103 sites) the situation is inverted, with the RGF
technique exhibiting better performance [see Fig. 2(b)].
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