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Multiple steady states and dark states induced by nonlocal dissipation in a double quantum dot
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Both multiple steady states and dark states have potential applications in the quantum information processing
in the presence of dissipation. Here, we propose to implement multiple steady states and dark states in a double
quantum dot (DQD) system using quantum reservoir engineering. By coupling the DQD to shared reservoirs,
multiple steady states of both four- and two-fold degeneracy can be achieved for specific parameters. It is proved
that the occurrence of such multiple steady states is attributed to the strong symmetry of the Lindblad master
equation. The multiple steady states can be well revealed by the occupation number of the DQD, which exhibits a
discontinuity at the strong-symmetric points and changes drastically in the vicinities of these points. In the regime
of unique steady state, the system can be stabilized to a pure state, dubbed dark state, with intact coherence in
spite of the dissipation. Our work shows that a variety of novel steady states can be implemented in the DQD
system, which paves the way for engineering multiple steady states and dark states in the DQD system.
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I. INTRODUCTION

Coherent manipulation of a closed quantum system is im-
plemented by controlling certain physical parameters so as
to make the system evolve in a predesigned way via uni-
tary evolution. However, when the system is coupled to a
reservoir, its unitary evolution generally breaks down due
to unavoidable gain and loss of particles as well as the de-
coherence effects. Surprisingly, apart from various negative
effects, coupling with a reservoir also provides an alternative
and effective way for the manipulation of the system, dubbed
quantum reservoir engineering (QRE), i.e., controlling quan-
tum states through proper environment designing [1]. It was
demonstrated theoretically [2–5] and verified experimentally
[6–9] that a properly designed dissipation can be used to
prepare and stabilize correlated quantum many-body states.
Moreover, dissipation can also be used to generate a nontrivial
steady-state manifold with more than one eigenstates [10–12].
Such multiple steady states of open systems recently attracted
much attention for its potential applications in quantum mem-
ory [13–15]. Specifically, quantum states can be encoded in
the subspace spanned by the multiple steady states, which
provides an effective scheme for autonomous quantum error
correction [16–19].

In condensed matter physics, quantum dots (QDs) are well
known for their high tunability and integrability [20–22],
which makes them an ideal platform to implement various
quantum devices [23,24]. State-of-the-art technologies al-
lowed a coherent control [23,25,26] and readout [27–29] of
quantum states in the QD systems. Among all candidates, the
double quantum dot (DQD) systems are of particular interest
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because of their potential applications in nanotechnology and
quantum information processing [30–33], which can be fabri-
cated by the heterostructures of GaAs/AlGaAs [30]. Coherent
manipulations of the DQD states were comprehensively stud-
ied, which can be achieved by a series of unitary operations
induced by electric pulses imposed on the electrodes [23,26].
On the contrary, possible QRE on the DQD systems remains
rarely explored although its high tunability strongly implies
this feasibility, which may allow manipulations of the DQD
states beyond the coherence time limit.

In this paper, we study QRE of the Liouvillian steady
states in a DQD system coupled to separated and shared reser-
voirs [34]. The proposals using shared reservoirs to prepare
nontrivial quantum states of photons and mechanical oscilla-
tors with steady-state entanglement and long-range coherence
in optomechanical systems were widely studied [35–39]. In
circuit quantum electrodynamics, the shared reservoir was
proposed to stabilize entanglement between two remote qubits
[9,40,41] or to control the dynamics of systems [42,43]. A
recent study showed that even a single localized dissipative
pairing interaction can be utilized to generate and stabilize
complex many-body entangled states of fermions and qubits
[44]. In this work, we focus on the new ingredient, the strong
symmetry of the open DQD system, and uncover its relation
to the occurrence of novel multiple steady states.

Under the framework of the Lindblad master equation, we
show that the DQD exhibits rich steady states, which can
be tuned by a variety of parameters, such as the coherence
phases of the shared reservoirs, coupling to the separated
reservoirs and the interdot hopping strength. Specifically, mul-
tiple steady states that possess four- or two-fold degeneracy
can be implemented. We prove that the occurrence of such
multiple steady states is attributed to the underlying strong
symmetries of the system that arise for specific parame-
ters. The multiple steady states can be well revealed by the
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FIG. 1. The sketch of the setup. The DQD (1, 2) is coupled to the
shared reservoirs that introduce both gain and loss with the respective
rates γg and γl . Two separate reservoirs induce loss to the nearest dot
with the rates γ1,2. The interdot hopping of strength h is denoted by
the solid line segment.

occupation number of the DQD in two aspects. First, the
occupation number relies on its initial state and exhibits
a discontinuity as the parameters deviate from the strong-
symmetric points. Second, the occupation number changes
drastically as the parameters vary in the vicinity of the strong-
symmetric points. In addition to the multiple steady states, we
also find that pure steady state or so-called dark state can also
be achieved in the DQD system. The purity and coherence
of such a dark state that depend on various physical param-
eters are discussed. Our work shows that QRE on the DQD
quantum states can yield rich steady states, which may have
interesting applications in quantum information processing.

The rest of the paper is organized as follows. In Sec. II,
we describe the DQD system coupled to Markovian fermionic
reservoirs by the Lindblad master equation. In Sec. III, we
solve the Liouvillian spectrum and obtain the analytic expres-
sions of the multiple steady states and discuss the effects of the
relevant physical parameters. It is proved that the occurrence
of the multiple steady states stems from the underlying strong
symmetry of the system. In Sec. IV, we show that the multiple
steady states can be manifested by the occupation number and
the interdot current of the DQD. In Sec. V, we show that
the dark state can also be implemented in certain parametric
regions, of which the state coherence is discussed. Finally, we
draw our main conclusion in Sec. VI.

II. MODEL

We consider a setup of the DQD coupled to several
fermionic reservoirs, as shown in Fig. 1. Each dot is tuned to
the Coulomb blockade regime such that only a single energy
level needs to be considered. Thus, the Hilbert space for the
DQD is spanned by the basis vectors |00〉, |10〉, |01〉, |11〉,
where |0〉 and |1〉 represent the unoccupied and occupied
states, respectively. Under the Born-Markov approximation,
the dissipative dynamics of the density matrix ρ(t ) of the
DQD can be described by the Lindblad master equation [45]

(hereafter we set h̄ = 1)

dρ

dt
= −i[H, ρ] + D[ρ] ≡ L[ρ], (1)

where H = h(c†
1c2 + H.c.) is the interdot hopping with c1,2

the fermion operators and h is the hopping strength. The
on-site energy is set to zero without loss of generality. The
dissipator is expressed as D[ρ] = ∑

μ(2LμρL†
μ − {L†

μLμ, ρ})
with Lμ the quantum jump operator associated with dissipa-
tive channel induced by the fermionic reservoir labeled by μ.
[.,.] and {., .} denote the commutator and the anticommutator,
respectively. Formally, the dynamics of the system is governed
by the Liouvillian superoperator L which maps one density
matrix to another. This map preserves the trace and Hermitic-
ity of the density matrix and generates completely positive
dynamics of the quantum state.

Two types of fermionic reservoirs are introduced here,
namely, the shared and separate reservoirs, which result in
the nonlocal and local dissipations, respectively; see Fig. 1.
The jump operators due to two shared reservoirs contain the
fermion operators of both dots. Such coherent dissipations
can be realized by coupling the DQD to a wire or a two-
dimensional (2D) electron gas parallel to the structure [34].
We are interested in the regime in which one shared reser-
voir introduces nonlocal gain effect while the other leads to
nonlocal loss. Specifically, the jump operator for the nonlocal
gain is Lg = √

γg/2(c†
1 + e−iφgc†

2) and that for the nonlocal
loss reads Ll = √

γl/2(c1 + eiφl c2) [34]. The parameters γg/l

are the rates of the gain/loss and φg/l are the coherent phases
during nonlocal coupling, which are determined by the spe-
cific coupling between the DQD and the shared reservoirs. For
the two separate reservoirs, the jump operator is expressed by
the fermion operator of a single dot as Lj=1,2 = √

γ j/2c j . In
the following discussion, we choose an equal rate of loss, i.e.,
γ1,2 = γ for the DQD. In this work, we are interested in the
effect induced by the coherent dissipation, which requires the
dephasing effect to be weak enough. Specifically, the jump

operators for the dephasing effect are Ldep
j=1,2 =

√
γ

dep
j /2c†

j c j .

It is assumed that the dephasing rate γ
dep
j is much smaller

than other dissipation rates of of the system and so can be
neglected.

The dual map of Eq. (1) that describes the evolution of
physical observable O is known as the adjoint master equa-
tion, which reads [46]

dO

dt
= i[H, O] +

∑
μ

(2L†
μOLμ − {L†

μLμ, O}) ≡ L†[O]. (2)

III. LIOUVILLIAN SPECTRUM AND MULTIPLE
STEADY STATES

Given that the Liouvillian is a superoperator, it is conve-
nient to map it to a N2 × N2 matrix with N is the dimension
of the Hilbert space H of the DQD system. Accordingly, the
density matrices are mapped to a column vectors in the Fock-
Liouville space. The spectral decomposition of the Liouvillian
superoperator L can be formally expressed as

L[ri] = λiri, (3)
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where ri are the right eigenmatrices and λi are the cor-
responding eigenvalues. It can be proved that Re[λi] � 0
holds true for all eigenvalues due to the completely positive
map of the Liouvillian. The eigenmatrices can be normalized
as Tr[r†

i ri] = 1 by using the Hilbert-Schmidt inner product.
Meanwhile, the orthogonality condition usually breaks down,
i.e., Tr[r†

i r j] �= 0, because L is generally not Hermitian,.
We are interested in the steady states ρss of the system,

namely the eigenmatrices corresponding to the zero eigen-
value such that

ρ̇ss = L[ρss] = 0. (4)

For a finite dissipative system, there must be at least one
steady state that does not evolve with time [47,48]. There
may also exist fixed points with pure imaginary eigenval-
ues, which are referred to as oscillating coherence and are
solely governed by the Hamiltonian part of L [48]. From
the Liouvillian spectra, one can define the Liouvillian gap by
the largest nonzero eigenvalue (λmax

i �= 0) as � = −Re[λmax
i ],

which determines the long-time dynamics of the system.
Spectral decomposition for the adjoint Liouvillian operator

L† can be conducted in a similar way as

L†[li] = λ∗
i li. (5)

The left eigenmatrices li generally differ from the right ones
ri because L is not Hermitian in general. A useful property of
the left and right eigenmatrices is that they can comprise the
biorthogonal basis, which satisfy Tr[l†

i r j] = δi j . Moreover,
there is also a correspondence between the steady states and
the conserved quantities J that satisfy J̇ = L†[J] = 0 [14].

In most cases, a dissipative system possesses a unique
steady state [49]. Interestingly, some particular scenarios with
multiple steady states may also exist, which are attributed to
certain weak or strong symmetries of the Lindblad master
equation [13]. In the following, we show that multiple steady
states can be achieved in the DQD through QRE, which are the
main focus of this work. We first ignore the interdot hopping
and then discuss its effect on the steady states. Due to the
shared reservoirs, the two dots are not really insulated even
if there is no direct hopping between them.

A. Without interdot hopping: h = 0

In the limit that both the interdot hopping and sepa-
rate reservoirs are absent (γ = 0), real Liouvillian spectrum
λi (i = 0, . . . , 5) can be analytically solved as

λ0 = 0, 2λ
(4)
1 = λ2 = −2(γl + γg),

2λ
(2)
3,± = λ4,± = −(γl + γg) ± Q,

λ
(2)
5,± = − 3

2 (γl + γg) ± 1
2 Q, (6)

where Q =
√

γ 2
g + γ 2

l + 2γgγl cos δφ with δφ = φg − φl the

phase difference and the superscripts denote the degree of
degeneracy. One can see that the Liouvillian spectrum depend
only on the phase difference δφ between the nonlocal gain and
loss rather than their specific values φg,l .

As δφ �= 0 with its value being restricted to δφ ∈ [−π, π ),
the system possesses a unique steady state with λ0 = 0 in

- - /2 0 /2
-0.4

-0.3

-0.2

-0.1

0

4,+

1
(4)

5,-
(2)

0

3,+
(2)

2

3,-
(2)

4,-

5,+
(2)

Multiple steady states

FIG. 2. The Liouvillian spectrum as a function of the phase
difference between nonlocal gain and loss δφ = φg − φl , where the
double-headed arrows indicate the Liouvillian gap �. The relevant
parameters are set as follows: γ = 0, h = 0, and γl = γg = 0.1.

Eq. (6), with the corresponding density matrix expressed
as

ρ (0)
ss = r0/Tr[r0] =

⎛
⎜⎜⎝

A 0 0 0
0 1/2 − A B 0
0 B∗ 1/2 − A 0
0 0 0 A

⎞
⎟⎟⎠, (7)

in which A = γlγg[1 + cos δφ]/[2(γl + γg)2] and
B = eiφl (eiδφγg − γl )/[2(γl + γg)]. Interestingly, multiple
steady states appear for δφ = 0, which results in
λ0 = λ

(2)
3,+ = λ4,+ = 0. It can be proved that the occurrence of

such multiple steady states stems from the strong symmetry
of the Lindblad master equation at δφ = 0, i.e., there exists a
conserved quantity J that commutes with the Hamiltonian H
and all the jump operators Lμ, see the Appendix for details.

In Fig. 2, we plot the Liouvillian spectrum as a function
of δφ, where the eigenvalues λi = 0 correspond to the steady
states. Under the strong symmetry condition δφ = 0, the spec-
trum possess a four-fold degeneracy and the Louvillian gap
reaches its maximum, which corresponds to the minimum
relaxation time of the system. A infinitesimal deviation of δφ

from zero leads to a splitting of the multiple steady states
and small gaps in between, which causes an extraordinarily
long relaxation time of the system. Therefore, the Louvillian
gap possesses a discontinuity at δφ = 0. Far away from the
strong symmetry point, the Louvillian gap reaches another
local maximum at δφ = π .

Here, we focus on the multiple steady states for δφ = 0 and
let φg = φl = φ. The four eigenmatrices Mj ( j = 1, . . . , 4)
describing the multiple steady states of the Liouvillian
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superoperator can be obtained and orthogonalized as

M = C1

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝

2η 0 0 0
0 1 eiφ 0
0 e−iφ 1 0
0 0 0 0

⎞
⎟⎟⎠,

⎛
⎜⎜⎝

0 0 0 0
0 η −ηeiφ 0
0 −ηe−iφ η 0
0 0 0 2

⎞
⎟⎟⎠,

⎛
⎜⎜⎝

0 −η ηeiφ 0
−η 0 0 eiφ

ηe−iφ 0 0 1
0 e−iφ 1 0

⎞
⎟⎟⎠,

i

⎛
⎜⎜⎝

0 −η ηeiφ 0
η 0 0 eiφ

−ηe−iφ 0 0 1
0 −e−iφ −1 0

⎞
⎟⎟⎠

⎫⎪⎪⎬
⎪⎪⎭

, (8)

where C1 = 1/(2
√

1 + η2) is the normalization coefficient and η = γl/γg. The four matrices satisfy the orthonormalization
condition Tr[Mi

†Mj] = δi j . The eigenmatrices corresponding to the Liouvillian spectrum in Eq. (6) can be obtained by their
linear combinations as

M ′
1 =M1 − ηM2√

1 + η2
, M ′

2 = M2 + ηM1√
1 + η2

, M ′
3 = M3 − iM4√

2
, M ′

4 = M3 + iM4√
2

. (9)

Specifically, M ′
1 corresponds to the eigenvalue λ0, which is identical to ρ (0)

ss for δφ = 0; M ′
2 is the corresponding eigenmatrix of

λ4,+; M ′
3 and M ′

4 comprise a Hermitian conjugate pair which correspond to the eigenvalues λ
(2)
3,+ in Eq. (6).

Similarly, the conserved quantity can be obtained by solving the null space of L† according to L†[J] = 0, which yields

J = C2

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝

2 0 0 0
0 1 eiφ 0
0 e−iφ 1 0
0 0 0 0

⎞
⎟⎟⎠,

⎛
⎜⎜⎝

0 0 0 0
0 1 −eiφ 0
0 −e−iφ 1 0
0 0 0 2

⎞
⎟⎟⎠,

⎛
⎜⎜⎝

0 −1 eiφ 0
−1 0 0 eiφ

e−iφ 0 0 1
0 e−iφ 1 0

⎞
⎟⎟⎠,

i

⎛
⎜⎜⎝

0 −1 eiφ 0
1 0 0 eiφ

−e−iφ 0 0 1
0 −e−iφ −1 0

⎞
⎟⎟⎠

⎫⎪⎪⎬
⎪⎪⎭

, (10)

where the conserved quantities were normalized to assure
the biorthogonality property, i.e., Tr[J†

i Mj] = δi j with the co-
efficient C2 =

√
(1 + η2)/2(1 + η). One can verify that the

conserved quantities J1 and J2 are identical to Eq. (A3) for
φl = φg = φ.

For an arbitrary initial state ρin, the final steady state de-
termined by the Liouvillian dynamics can be expressed by the
multiple steady states in Eq. (8) and the conserved quantities
in Eq. (10) as [14]

ρss =
4∑

i=1

biMi, bi = Tr[J†
i ρin]. (11)

B. With interdot hopping: h �= 0

Next, we consider more general cases with nonzero inter-
dot hopping, where the strong symmetry is generally broken
except for φ = 0, π (see the Appendix). In Figs. 3(a) and 3(b),
we plot the real and imaginary parts of the highest four levels
of the Liouvillian spectrum as a function of the interdot hop-
ping for φ = π/4. One can see that a finite interdot hopping
lifts the degenerate multiple steady states by inducing a level
splitting in both the real and imaginary parts of the spectrum.

Notably, the strong symmetry recovers for γ = 0 and φ =
0, π . As a result, the degeneracy of Liouvillian spectrum is
only partially lifted, which yields a zero eigenvalue with two-

fold degeneracy as shown in Figs. 3(c) and 3(d). There are four
fixed points with vanishing real part while only two of them
are steady states with zero imaginary parts as well. It can be
proved that the two-fold multiple steady states immune to the
interdot hopping are the same as the first two steady states M1

and M2 in Eq. (8). The other two fixed points possess purely
imaginary eigenvalues ih and −ih, which correspond to the
eigenmatrices M ′

3 and M ′
4 in Eq. (9), respectively.

In the presence of strong symmetry, the final steady state
can still be expressed by Eq. (11) with the same b1,2 while
different coefficients b3,4 modified as

b3,4 = e±iht Tr[J ′†
3,4ρin], (12)

with “±” corresponding to the subscripts 3,4, respectively,
and

J ′†
3 = (J3 − J4)/

√
2, J ′†

4 = (J3 + J4)/
√

2. (13)

C. Effect of interdot Coulomb interaction

In real DQD systems, the interdot Coulomb interaction
may exist, which can be described by the Hamiltonian

HC = Un̂1n̂2, (14)
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FIG. 3. The top four branches of the Liouvillian spectrum as a
function of the interdot hopping, which contain both (a,c) the real
components and (b,d) the imaginary components. The phase factors
are set to (a,b) φl = φg = π/4 and (c,d) φl = φg = π , respectively.
Other parameters are set as follows: γ = 0, γl = γg = 0.1.

where n̂ j = c†
j c j is the particle number operators, and U is the

interaction strength. It can be verified that

[J, HC] = 0 (15)

holds true for arbitrary φg,l . Thus, the Coulomb interaction
does not break the strong symmetry at φl = φg in the absence
of local dissipation, dephasing, and interdot hopping and so
the multiple steady states maintain. However, the degeneracy
degree of the steady states is changed. In the presence of
interdot Coulomb interaction, the Liouvillian spectrum be-
comes depends on the specific values of φl and φg, not only
their difference. In Fig. 4, we plot the real part of Liouvil-
lian spectrum as a function of φl for given φg. One can see
clear steady-state degeneracy taking place at φl = φg in the
absence of interdot hopping, as indicated by the arrows in
Fig. 4(a) and 4(b), where the real parts and imaginary parts
(indicated by the colormap) of the spectrum are both vanished.
For a finite interdot hopping, the steady-state degeneracy can
only occur at φl = φg = π ; see Figs. 4(c) and 4(d). It can be
demonstrated that the steady states are of two-fold degeneracy
with the eigenmatrices the same as the first two matrices in
Eq. (8). Therefore, the interdot Coulomb interaction does not
affect the physics around the strong symmetry points. Further-
more, we also verify that it will not affect the dark states for
φg = φl ± π as well. In the next discussions, we will neglect
the Coulomb interaction.

The multiple steady states that depend on the model pa-
rameters are summarized in Table I. It takes place only when
the coupling between the DQD and the separate reservoirs is
absent, i.e., γ = 0.
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FIG. 4. The real part of Liouvillian spectrum as a function of φl ,
which contain both (a,b) the case for h = 0 and (c,d) the case for
h = 0.1. The phase factors are set to (a,c) φg = π/4 and (b,d) φg =
π , respectively. The arrows indicate the multiple steady states. The
colormap depicts the modulus of the corresponding imaginary part.
Other parameters are set as follows: γ = 0, γl = γg = 0.1, U = 0.1.

IV. OCCUPATION NUMBER AND CURRENT

Next, we discuss the manifestations of the steady states
obtained in the last section by the occupation numbers and
current in the DQD. We define the single-particle correlation
function 
i j (t ) = Tr[c†

i c jρ(t )] whose time evolution can be
derived by using Eq. (1), which yields [50]

d

dt

(t ) = X
(t ) + 
(t )X † + 2Mg, (16)

where the damping matrix defined by X = iH − (Ml + Mg)
involves the contributions of the interdot hopping and the
jump operators with

H =
(

0 h
h 0

)
, Ml = 1

2

(
γ1 + γl γl eiφl

γl e−iφl γ2 + γl

)
,

Mg = γg

2

(
1 e−iφg

eiφg 1

)
.

(17)

TABLE I. Steady states for different parameters with γ = 0,
where the abbreviation “MS(n)” denote the multiple steady states
with n-fold degeneracies and “DS” denotes the dark state.

Parameters Steady state

h = 0 U = 0 δφ = 0 MS(4)
δφ = ±π DS

U �= 0 δφ = 0 MS(2)
δφ = ±π DS

h �= 0 Arbitrary U φl = φg = 0, π MS(2)
δφ = ±π , with φl = 0, π DS
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The diagonal elements of Eq. (16) give the time evolution
of the occupation numbers n j = 
 j j as

ṅ j = −(γ j + γl )n j + γg(1 − n j ) + I j j̄ + Id ,

I j j̄ = −ih(
 j j̄ − 
 j̄ j ), Id = − 1
2 (ζ
12 + ζ ∗
21), (18)

where j, j̄ denote different dots and ζ = γl eiφl + γgeiφg . The
first term is the effective loss stemming from the anticommut-
ing term of the dissipator D[ρ]. The second term corresponds
to the gain from the shared reservoir. The third term I j j̄ is
the current flowing between the DQD caused by the coherent
interdot hopping. Finally, the last term Id are the interdot
current induced by the dissipative coupling with the shared
reservoir.

The interdot current I j j̄ does not affect the total electron
number n = n1 + n2, which can be seen by noting that I12 =
−I21. Interestingly, the coupling to the shared reservoir gives
rise to the other interdot current Id that possesses the same
formula as that due to coherent coupling. It takes place be-
cause the reservoir couples to the superposed state of both
dots. Different from I j j̄ , the current Id has the same effect
on both dots, which affect the total fermion number of the
DQD. Here, we concentrate on the steady state, i.e., ṅs

j = 0 in
Eq. (18). The steady occupation number of each dot can be
expressed in terms of the currents and dissipation rates as

ns
j =

Is
j j̄ + Is

d + γg

γl + γg + γ
, (19)

with the superscript s denotes the values in the steady states.

A. Results for h = 0

We first consider the case with vanishing interdot hopping
and γ = 0. In this case, Is

j j̄ = 0 and the occupation numbers of
both dots are equal. For a finite phase difference δφ �= 0, the
system possesses a unique steady state of Eq. (7), from which
the occupation number of each dot turns out to be a constant

ns
j = 1

2 . (20)

The DQD system possesses a strong symmetry for δφ = 0
[cf. the Appendix], which gives rise to multiple steady states
[cf. Table I]. As a result, the final steady state is a superposi-
tion of the multiple steady states, which strongly relies on the
initial state of the system. Specifically, for an initial state

|ψ0〉 = cos α|10〉 + sin α|01〉, (21)

the corresponding steady states can be calculated by Eq. (11),
which yields four coefficients b1 = C2(1 + cos φ sin 2α),
b2 = C2(1 − cos φ sin 2α), and b3 = b4 = 0. The resultant
occupation number of the DQD is then

ns
j = 1 − cos φ sin 2α

4
+ 1

2(1 + η)
. (22)

One can see that the occupation number generally relies on
the coherent phase φ except for certain initial states with
sin 2α = 0, as shown in Fig. 5(a). The phase φ determines
the weights pi = biTr[Mi] of different steady states ρi =
Mi/Tr[Mi]. Specifically for α = π/4, the minimum (maxi-
mum) of the occupation number take place at φ = 0 (φ = π ),
which corresponds to the final state ρ1 (ρ2). In the absence of

0 /2 3 /2 2
0.2

0.4

0.6

0.8

n is

=0, = /4
=0, =3 /4

=10-2

- - /2 0 /2
0
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0.4

0.5

=10-4

=10-2

=1

(a)
(b)

FIG. 5. (a) The occupation number of dot 1 (2) as a function
of φ(= φg,l ) for different initial states (solid lines) without local
dissipation and the result with local dissipation (dashed line). (b) The
occupation number as a function of the phase difference between the
nonlocal gain and loss for various rates of the local dissipation. Other
parameters are set as follows: γl = γg = 0.1, h = 0.

nonlocal loss, i.e., η = γl/γg = 0, the maximum occupation
number reaches its saturation value 1. In the opposite limit
η → ∞, the minimum occupation number becomes zero.

Finite local dissipations with γ �= 0 break the strong sym-
metry regardless of δφ so that the system possesses a unique
steady state independent of the initial state. For δφ = 0, the
unique steady state can be solved analytically as

ρss = 1

2η + γ /γg + 2

⎛
⎜⎜⎝

2η + γ /γg 0 0 0
0 1 eiφ 0
0 e−iφ 1 0
0 0 0 0

⎞
⎟⎟⎠. (23)

However, no concise expression of the steady state is avail-
able for δφ �= 0. One can solve the correlation function by
Eq. (16) using the steady condition 
̇s = 0, which yields the
Lyapunove equation

X
s + 
sX † + 2Mg = 0. (24)

The occupation number of the DQD can be obtained by its
diagonal elements as

ns
j = 
s

j j =
[

1

γg

γ (2γl + γ )

γl (1 − cos δφ) + γ
+ 2

]−1

. (25)

One can see that the occupation number depends only on the
phase difference δφ between the nonlocal gain and loss. For a
relatively small local dissipation, namely, γ � γl/g, where the
strong symmetry is slightly broken, the occupation number is
quite sensitive to δφ around its zero value; see the purple line
in Fig. 5(b). For a finite δφ, the occupation number is nearly
a constant ns

j = 0.5, independent of the phase difference. For
δφ = 0, the occupation number is ns

j = (2η + 2)−1, solely de-
termined by the ratio between the rate of the nonlocal loss and
gain. In the opposite limit γ � γl/g, the occupation number
exhibits a weak dependence of δφ, which is determined by
the ratio between the local dissipation and nonlocal gain rates,
namely, ns

i = (γ /γg + 2)−1; see the blue line in Fig. 5(b). The
occupation number in the intermediate regime is plotted by the
green line in Fig. 5(b), which exhibits a smooth dependence
of δφ.
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FIG. 6. The occupation numbers of (a) dot 1 and (b) dot 2, and the interdot current (c) Is
12 and (d) Is

d vary with φg and φl with finite interdot
hopping h = 0.1 and vanished local dissipation γ = 0. (e) Is

12 and Is
d as functions of φ(= φg,l ) for different rates of local dissipation. (f) The

dependence of Is
12 and Is

d on the interdot hopping for different φ with γ = 0.1. Other parameters are set as follows: γl = γg = 0.1.

B. Results for h �= 0

As the interdot hopping is taken into account, the occu-
pation numbers of the two dots rely on both I j j̄ and Id [cf.
Eq. (19)], which generally have different values. In Figs. 6(a)
to 6(d), we numerically plot the occupation numbers ns

1,2 and
two kinds of current Is

12 and Is
d with γ = 0. The results exhibit

visible symmetric structures (with different values though)
about the line φl = φg. Far away from the symmetric line,
the occupation number is mainly determined by the interdot
current. Specifically, both Is

12 and Is
d have opposite values for

the paired parametric points that are symmetric about the line
φl = φg. Along the symmetric line, the steady-state density
matrix is

ρss = 1

(1 + η)2

⎛
⎜⎜⎝

η2 0 0 0
0 η 0 0
0 0 η 0
0 0 0 1

⎞
⎟⎟⎠. (26)

Accordingly, the currents Is
12 and Is

d generally vanish, except
that the latter possesses a finite value at the strong-symmetric
points φ = 0, π ; see Fig. 6(e). In this case, there are two
steady states M1 and M2 in Eq. (8), which dominate the oc-
cupations in the DQD. The initial state in Eq. (21) yields the
same occupation number as that in Eq. (22). One can verify
that the current Is

d is not affected by the interdot hopping.
Moreover, in the vicinity of the strong-symmetric points, Is

d
is drastically modified by the phases φg,l ; see Fig. 6(d). In
the absence of strong symmetry, the occupation number of
the DQD becomes ns

j = 1/(η + 1) along the line φg = φl

according to Eq. (19).
Next, we discuss the effect due to the local dissipation γ ,

which breaks the strong symmetry of the system and leads to

a unique steady state. Nevertheless, the two types of currents
can still be tuned by the phase φ; see Fig. 6(e). The interdot
current Is

12 changes its sign at φ = 0, π for different local
dissipation rate. Meanwhile, the current Id is always negative.
Interestingly, Is

12 = Is
d holds true for φ = π/2 and γl/g = h,

independent of the local dissipation; see Fig. 6(e). Moreover,
Is
12 and Is

d have different periods in φ, that is 2π for the
former and π for the latter. Another notable feature of Id is
its high sensitivity to φ around φ = 0, π for a small local
dissipation γ = 10−3. It is a visible signature for the slight
breaking of the strong symmetry of the system. For a relatively
large local dissipation rate γ = 0.1, the magnitudes of Is

12 and
Is
d exhibit a negative correlation, showing competing effect.

As the local dissipation rate increases further, the dissipative
coupling current Is

d tends to be independent of the phase.
The effects of the interdot hopping h on the currents are

studied for various phase factors; see Fig. 6(f). Specifically,
the unique steady state equals Eq. (23) for φ = 0, π , so that
the corresponding steady currents is independent on h as well.
For φ �= 0, π , Is

12 is finite only within a certain parametric re-
gion of h while Is

d exhibits a kink structure in the same region.
For the special case φ = π/2, Is

d is completely suppressed by
a large h.

V. DARK STATE AND ITS COHERENCE

Quantum coherence stemming from the principle of
quantum superposition is the main resource of quantum
computation and quantum information processing [51]. The
interaction between a system with a reservoir usually leads to
decoherence. Nevertheless, the dissipation may be beneficial
for quantum coherence under some specific conditions, e.g.,
the bath-induced coherence [52,53], superradiance [54], and
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FIG. 7. The von Neumann entropy as a function of φg and φl for (a) h = 0 and (b) h = 0.1. The corresponding relative entropy is shown
in (c) and (d). (e) The fidelity as a function of h for different φl and γ with φg = φl + π . Other parameters are set as follows: γl = γg = 0.1.

entanglement [4]. In this section, we study the steady-state
coherence induced by the nonlocal dissipations. It turns out
that the steady state superposed of |10〉 and |01〉 can preserve
quantum coherence.

The quantum coherence can be measured by the relative
entropy which defined as [55]

CRE(ρ) = S(ρdiag) − S(ρ), (27)

where S(ρ) = −Tr[ρ log2 ρ] is the von Neumann entropy and
ρdiag is the matrix composed only of the diagonal elements
of ρ. An important property of the relative entropy is that
CRE(ρ) = S(ρdiag) holds true if and only if ρ is a pure state,
which has vanishing von Neumann entropy S(ρ) = 0. In the
context of quantum optics, such pure steady states |D〉 of an
open quantum system are called dark states [2,56,57], which
are the eigenstates of H and can be annihilated by all the
quantum jump operators, namely, Lg/l |D〉 = 0.

We show that dark states can be implemented in the DQD
system in the absence of local dissipations. In Figs. 7(a) and
7(b), we plot the von Neumann entropy of the steady state
as a function of φg,l for h = 0 and h = 0.1, respectively. In
the absence of interdot hopping, the von Neumann entropy
vanishes at φg = φl ± π as denoted by the dashed lines in
Fig. 7(a). The zero von Neumann entropy manifests the dark
state, which takes the explicit form of

|D〉 = 1√
2

(|10〉 − e−iφl |01〉). (28)

The relaxation time from an initial state to the final dark state
can be evaluated by τR ∼ 2/(γl + γg), which is determined
by the Liouvillian gap read from Eq. (6). It indicates that
a rapid relaxation to the dark state can be implemented by
high rates of the nonlocal gain and loss. A finite interdot
hopping changes dramatically the pattern of the von Neumann
entropy; see Fig. 7(b). It is noted that the von Neumann
entropy remains zero at the points (0, π ) and (π, 0), which
corresponds to two dark states |D〉 = 1√

2
(|10〉 ∓ |01〉). For

both cases, the dark states only depend on the phases φg,l

rather than the specific rates γg,l of the nonlocal gain and loss.
The dependence of the dark states on relevant parameters are
summarized in Table I.

The corresponding relative entropy CRE(ρss) is shown in
Figs. 7(c) and 7(d). It possesses the same pattern as that of
the von Neumann entropy but with interchanged maximum
and minimum, which can be inferred from its definition of
Eq. (27). The maximal values of CRE(ρss) correspond to the
dark states, where the system possesses the strongest steady-
state coherence. However, the saturation value of the relative
entropy that is CRE = log2 N = 2 cannot be reached. In the
strong-symmetric regime φl = φg, the von Neumann entropy
and the steady-state coherence both depend on the initial state
due to the multiple steady states.

In the presence of interdot hopping and local dissipation,
the steady state ρss of the system generally deviates from the
dark states. Such a deviation can be quantified by the fidelity
defined as [58]

F (|D〉, ρss) =
√

〈D|ρss|D〉. (29)

For the specific case of h = 0 and γ �= 0, the steady state is

ρss = 1

γ /γg + 2

⎛
⎜⎜⎝

γ /γg 0 0 0
0 1 −eiφl 0
0 −e−iφl 1 0
0 0 0 0

⎞
⎟⎟⎠, (30)

and the corresponding fidelity is

F =
(

1 + γ

2γg

)−1/2

, (31)

which depends only on the ratio between the rates of the local
dissipation and the nonlocal gain. This formula can also be ap-
plied to the case of h �= 0 and φl = 0, π . The fidelity for more
general cases is shown in Fig. 7(e). It is always independent of
the interdot hopping for φl = 0, π (with δφ = π ). The lowest
fidelity occurs at φl = π/2, with F = 0.5 for γ = 0, which
exhibits weak dependence of the local dissipation as h > 0.1.
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VI. CONCLUSION

To summarize, we studied the steady states of a DQD
system engineered by shared fermionic reservoirs described
using Lindblad master equation. This system exhibits rich
steady states, involving both multiple steady states and dark
states. We proved that the degenerate multiple steady states
stem from the underlying strong symmetry of the open
system. The multiple steady states are manifested as the pa-
rameter dependence of the occupation number. Our results
have promising applications in the DQD-based quantum in-
formation processing, such as quantum error correction and
state preparation against dissipations.
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APPENDIX: SYMMETRY ANALYSIS

For a specific set of jump operators of Markovian dynamics
described by the Lindblad master equation, if there is an
operator J satisfying

[J, H] = [J, Lα] = 0,∀α, (A1)

then J is a conserved quantity, with

J̇ = L†[J] = 0. (A2)

In this case, there is a continuous symmetry U (θ ) = exp(iθJ )
(for real θ ), such that U (θ )L(ρ)U (θ )† = L[U (θ )ρU †(θ )] for
any state ρ of the system [13]. Then the system is said to have
a strong symmetry, which assures the existence of the multiple
steady states.

For the DQD system in our study, we focus on the operator

J = c†
1c1 + c†

2c2 − eiφl c†
1c2 − e−iφgc†

2c1, (A3)

from which the existence of the strong symmetry can be
inferred. Under some specific conditions, J becomes a con-
served quantity. To see this, we calculate the following
commutators:

[J, H] = h(e−iφg − eiφl )(c†
1c1 − c†

2c2),

[J, Ll ] =
√

γl

2
(ei(φl −φg) − 1)c1,

[J, Lg] =
√

γg

2
(1 − ei(φl −φg) )c†

1,

[J, L1] =
√

γ

2
(−c1 + eiφl c2),

[J, L2] =
√

γ

2
(−c2 + e−iφgc1). (A4)

To achieve the strong symmetry, all four terms should be zero,
which first requires the vanishing local dissipation γ = 0. In
the absence of the interdot hopping, the first commutator is
always zero. Therefore, the strong symmetry condition sim-
ply reduces to φl − φg = 2mπ . According to Eq. (A2), the
conserved quantities can be numerically obtained by solving
the null space of L†. For a finite interdot hopping, the strong
symmetry requires both φl − φg = 2mπ and φl + φg = 2nπ .
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[13] B. Buča and T. Prosen, New J. Phys. 14, 073007 (2012).
[14] V. V. Albert and L. Jiang, Phys. Rev. A 89, 022118 (2014).
[15] D. Manzano and P. Hurtado, Adv. Phys. 67, 1 (2018).
[16] F. Reiter, A. S. Sørensen, P. Zoller, and C. A. Muschik, Nat.

Commun. 8, 1822 (2017).
[17] E. Kapit, J. T. Chalker, and S. H. Simon, Phys. Rev. A 91,

062324 (2015).
[18] J. Cohen and M. Mirrahimi, Phys. Rev. A 90, 062344 (2014).
[19] S. Lieu, R. Belyansky, J. T. Young, R. Lundgren, V. V. Albert,

and A. V. Gorshkov, Phys. Rev. Lett. 125, 240405 (2020).
[20] L. Kouwenhoven and C. Marcus, Phys. World 11, 35 (1998).
[21] L. P. Kouwenhoven, D. Austing, and S. Tarucha, Rep. Prog.

Phys. 64, 701 (2001).
[22] L. L. Sohn, L. P. Kouwenhoven, and G. Schön, Mesoscopic

Electron Transport (Springer Science & Business Media, 2013).

045416-9

https://doi.org/10.1103/PhysRevLett.77.4728
https://doi.org/10.1038/nphys1073
https://doi.org/10.1038/nphys1342
https://doi.org/10.1103/PhysRevA.78.042307
https://doi.org/10.1016/B978-0-12-396482-3.00001-6
https://doi.org/10.1103/PhysRevLett.107.080503
https://doi.org/10.1038/nature09801
https://doi.org/10.1038/nphys2630
https://doi.org/10.1038/nature12801
https://doi.org/10.1103/PhysRevLett.85.1762
https://doi.org/10.1103/PhysRevLett.113.240406
https://doi.org/10.1126/science.aaa2085
https://doi.org/10.1088/1367-2630/14/7/073007
https://doi.org/10.1103/PhysRevA.89.022118
https://doi.org/10.1080/00018732.2018.1519981
https://doi.org/10.1038/s41467-017-01895-5
https://doi.org/10.1103/PhysRevA.91.062324
https://doi.org/10.1103/PhysRevA.90.062344
https://doi.org/10.1103/PhysRevLett.125.240405
https://doi.org/10.1088/2058-7058/11/6/26
https://doi.org/10.1088/0034-4885/64/6/201


WEI, GENG, CHEN, AND XING PHYSICAL REVIEW B 107, 045416 (2023)

[23] J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby,
M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard,
Science 309, 2180 (2005).

[24] R. Hanson, L. P. Kouwenhoven, J. R. Petta, S. Tarucha, and
L. M. K. Vandersypen, Rev. Mod. Phys. 79, 1217 (2007).

[25] T. Oosterkamp, T. Fujisawa, W. Van Der Wiel, K. Ishibashi, R.
Hijman, S. Tarucha, and L. P. Kouwenhoven, Nature (London)
395, 873 (1998).

[26] F. H. Koppens, C. Buizert, K.-J. Tielrooij, I. T. Vink, K. C.
Nowack, T. Meunier, L. Kouwenhoven, and L. Vandersypen,
Nature (London) 442, 766 (2006).

[27] C. Barthel, D. J. Reilly, C. M. Marcus, M. P. Hanson, and A. C.
Gossard, Phys. Rev. Lett. 103, 160503 (2009).

[28] K. Nowack, M. Shafiei, M. Laforest, G. Prawiroatmodjo, L.
Schreiber, C. Reichl, W. Wegscheider, and L. Vandersypen,
Science 333, 1269 (2011).

[29] K. D. Petersson, J. R. Petta, H. Lu, and A. C. Gossard, Phys.
Rev. Lett. 105, 246804 (2010).

[30] W. G. Van der Wiel, S. De Franceschi, J. M. Elzerman, T.
Fujisawa, S. Tarucha, and L. P. Kouwenhoven, Rev. Mod. Phys.
75, 1 (2002).

[31] J. M. Elzerman, R. Hanson, J. S. Greidanus, L. H. van Beveren,
S. De Franceschi, L. M. K. Vandersypen, S. Tarucha, and L. P.
Kouwenhoven, Phys. Rev. B 67, 161308(R) (2003).

[32] J. M. Nichol, L. A. Orona, S. P. Harvey, S. Fallahi, G. C.
Gardner, M. J. Manfra, and A. Yacoby, npj Quantum Inf. 3,
3 (2017).

[33] T. Frey, P. J. Leek, M. Beck, A. Blais, T. Ihn, K. Ensslin, and A.
Wallraff, Phys. Rev. Lett. 108, 046807 (2012).

[34] D. Malz and A. Nunnenkamp, Phys. Rev. B 97, 165308
(2018).

[35] A. Tomadin, S. Diehl, M. D. Lukin, P. Rabl, and P. Zoller, Phys.
Rev. A 86, 033821 (2012).

[36] H. Tan, G. Li, and P. Meystre, Phys. Rev. A 87, 033829
(2013).

[37] M. J. Woolley and A. A. Clerk, Phys. Rev. A 89, 063805
(2014).

[38] Y.-D. Wang and A. A. Clerk, Phys. Rev. Lett. 110, 253601
(2013).

[39] C. Ockeloen-Korppi, E. Damskägg, J.-M. Pirkkalainen, M.
Asjad, A. Clerk, F. Massel, M. Woolley, and M. Sillanpää,
Nature (London) 556, 478 (2018).

[40] S. Shankar, M. Hatridge, Z. Leghtas, K. Sliwa, A. Narla, U.
Vool, S. M. Girvin, L. Frunzio, M. Mirrahimi, and M. H.
Devoret, Nature (London) 504, 419 (2013).

[41] L. C. G. Govia, A. Lingenfelter, and A. A. Clerk, Phys. Rev.
Research 4, 023010 (2022).

[42] J. Talukdar and D. Blume, Phys. Rev. A 105, 063501 (2022).
[43] Z. Wang, T. Jaako, P. Kirton, and P. Rabl, Phys. Rev. Lett. 124,

213601 (2020).
[44] A. Pocklington, Y.-X. Wang, Y. Yanay, and A. A. Clerk, Phys.

Rev. B 105, L140301 (2022).
[45] G. Lindblad, Commun. Math. Phys. 48, 119 (1976).
[46] H.-P. Breuer and F. Petruccione, The Theory of Open Quantum

Systems (Oxford University Press on Demand, Oxford, 2002).
[47] D. E. Evans and H. Hanche-Olsen, Preprint series: Pure

mathematics http://urn.nb.no/URN:NBN:no-8076 (1977).
[48] B. Baumgartner and H. Narnhofer, J. Phys. A: Math. Theor. 41,

395303 (2008).
[49] D. Nigro, J. Stat. Mech.: Theory Exp. (2019) 043202.
[50] F. Song, S. Yao, and Z. Wang, Phys. Rev. Lett. 123, 170401

(2019).
[51] A. Streltsov, G. Adesso, and M. B. Plenio, Rev. Mod. Phys. 89,

041003 (2017).
[52] C. L. Latune, I. Sinayskiy, and F. Petruccione, Quantum Sci.

Technol. 4, 025005 (2019).
[53] C. L. Latune, I. Sinayskiy, and F. Petruccione, Phys. Rev. A 99,

052105 (2019).
[54] R. H. Dicke, Phys. Rev. 93, 99 (1954).
[55] T. Baumgratz, M. Cramer, and M. B. Plenio, Phys. Rev. Lett.

113, 140401 (2014).
[56] D. A. Lidar, I. L. Chuang, and K. B. Whaley, Phys. Rev. Lett.

81, 2594 (1998).
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