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In this paper, we carry out a theoretical study of the electronic ballistic transport in gated phosphorene super-
lattices. Our work is focused on the effects by the random introduction of structural disorder in the electrostatic
potential barriers. Specifically, we consider various degrees of disorder in the width and height of the barriers.
To explain the transport of the charge carriers (electrons and holes) in the armchair direction of phosphorene,
we employ a low-energy two-band Hamiltonian derived from the tight-binding model. The transmission and
conductance are calculated by the transfer matrix technique and the Landauer-Büttiker formalism, respectively.
We have found that both types of disorder affect the transmission and conductance in different ways, and we also
found distinct effects on the charge carriers. In general, the disorder significantly reduces the transmission as well
as the peak zones associated with the tunneling effect. Particularly, for disorder in the width, the transmission
miniband structure is greatly degraded, while for disorder in the height, the miniband structure is preserved.
The variation in the width of the barriers interferes directly with the Fabry-Pérot resonances of the propagating
waves, while the variation in the height mainly reduces the magnitude of the transmission due to the dominance
of evanescent waves. Consequently, the conductance loses its oscillatory characteristic and experiences flattening
under the influence of disorder of the width, in contrast with the disorder of the height in which the oscillation
prevails. Finally, we found that both types of disorder induce a redistribution of electron states. Specifically, the
allowed energy bands are increased, and the occupation number as well as the accumulation of states are greatly
reduced, which is in accordance with the effects of disorder observed in the transport properties.

DOI: 10.1103/PhysRevB.107.045407

I. INTRODUCTION

In recent years, a lot of research has been done on two-
dimensional (2D) materials such as graphene and silicene,
whose outstanding physical and electronic properties could
be exploited to develop technological applications in nanoec-
tronics. Phosphorene, another member in this class of 2D
materials, is formed by phosphorus atoms distributed in a
puckered honeycomb layer and linked by covalent bonds in
sp3 hybridization. In principle, the material known as black
phosphorus (BP) has an orthorhombic crystal structure [1]
and consists of layers of phosphorene stacked on top of each
other and held together by weak van der Waals forces [2,3].
Analogously to graphene, phosphorene nanoflakes have been
extracted from bulk BP by mechanical and electrochemical
exfoliation in the laboratory [4–6]. In addition, other syn-
thesis techniques [7] such as plasma-assisted etching [8,9],
pulse laser deposition [10], and chemical vapor deposition
[11] have been demonstrated. However, it has been found that
phosphorus samples exhibit high oxidation during exposure
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to the environment and visible light [12,13]. To avoid this,
several synthesis processes as well as aid substances to protect
the phosphorene surface and provide long-term stabilization
have been recently reported [14–21]. For instance, stability
improvement has been found by covering phosphorene with
layers of AlxOy [15,16], phosphorene fluorination induces
antioxidation and antihydration effects [17,18], and phospho-
rene encapsulation with graphene and hexagonal boron nitride
greatly reduces degradation [19–21]. Here, it is also relevant
that the passivating substance minimally interferes with the
phosphorene intrinsic electronic properties. Experimentally, it
was discover that bulk BP is a semiconductor with an intrin-
sic bandgap of 0.31–0.35 eV at the high-symmetry Z point
[22,23]. Later, using mathematical techniques such as the
tight-binding model [24,25], the self-consistent pseudopoten-
tial method [26], and density functional theory (DFT) [27,28],
the energy band structure of bulk BP was theoretically calcu-
lated. A substantial increase of the gap was discovered when
BP is reduced by a few layers [27–29]. The single phospho-
rene layer is a semiconductor with moderate bandgap in the
energy range 1.0–2.0 eV [24,28], with reference theoretical
value of 1.5 eV at the � point [25,27]. Additionally, the
energy band structure reveals high anisotropy between both
directions of propagation (armchair and zigzag) as well as
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for both charge carriers (electrons and holes) [27,30,31]. In
the �-X direction, corresponding to the armchair direction,
the charge carriers follow Schrödinger (classic) physics, and
in the �-Y direction, corresponding to zigzag, they follow
Dirac (relativistic) physics. Even more, the band structure
shows a marked difference in effective masses between the
two directions, being heavier along the zigzag direction [31].
Also, phosphorene exhibits mobility for electrons of hundreds
of cm2 V−1 s−1, but the mobility for holes is higher, reaching
up to 1000 cm2 V−1 s−1 [32], which classifies phosphorene
as a p-type semiconductor. The anisotropic characteristics of
phosphorene are quite attractive from both the fundamental
and technological standpoints. From the fundamental stand-
point, the special characteristics of the charge carriers in the
armchair and zigzag directions can give rise to exotic phenom-
ena such as negative reflection and super-anti-Klein tunneling
[33] as well as electronic cloaking of confined states [34].
From the technological standpoint, the anisotropic band struc-
ture of phosphorene opens the door to pseudospintronics [35],
phosphorene being the only 2D material with this possibility
so far. In addition, different investigators have documented
the potential of phosphorene as a basis material in field effect
transistors [36–38].

To take advantage of the intrinsic physical and electronic
properties of 2D materials [39], different nanostructuring
methods have been implemented for future electronics and
optoelectronics applications [40–44]. Gated superlattices are
quite attractive from the technological standpoint due to the
possible modulability of the physical properties of 2D ma-
terials by simply applying an electrostatic potential through
metallic gates. In the case of graphene, there are impor-
tant breakthroughs in the fabrication of gated superlattices
through the so-called dielectric patterning [45–50]. From the
theoretical standpoint, there are extensive works about gated
superlattices in the most relevant 2D materials; phosphorene
is not the exception in this direction. In fact, the electronic,
optical, and transport properties of phosphorene superlattices
have been studied [51–57]. One factor that can have a con-
siderable impact on the performance of gated superlattices is
the unavoidable variation of height and width of the barriers
or the so-called structural disorder. The impact of the struc-
tural disorder on the transport and transport-related properties
in graphene and silicene superlattices has been documented
[58–62]. For instance, Abedpour et al. [58] have investigated
the effects of disorder on the width of the barriers in graphene
superlattices. They show that the transmission and conduc-
tance are affected by the disorder strength of the width of the
barriers. Esmailpour et al. [59] have studied stress-induced
disorder in a graphene superlattice. They found that the con-
ductance decreases with the increasing magnitude of strain
disorder. Esmailpour et al. [60] also studied the effect of
disorder associated with the velocity of charge carriers. They
show that the kind and the strength of disorder affect the trans-
mission and conductance of graphene superlattices. Regarding
superlattices in silicene, Oubram et al. [61] have investigated
the impact of structural disorder on transport and thermoelec-
tric properties. They reported that these properties manifest
a decrease as the intensity of the disorder increases. They
found that a strong suppression of conductance, Seebeck coef-
ficient, and power factor is induced by the structural disorder

associated with the height of electrostatic barriers. Recently,
Oubram et al. [62] have found a counterintuitive result that
the structural disorder in magnetic silicene superlattices im-
proves the magnetoresistance and the valley-spin polarization
properties. Regarding phosphorene superlattices, reports ad-
dressing the impact of structural disorder are lacking. Thus,
considering the relevance of phosphorene as a 2D material
with remarkable intrinsic properties and the importance of
gated superlattices as basis structures for nanoelectronic de-
vices, we consider that a thorough assessment of the impact of
structural disorder on the transport properties of phosphorene
superlattices is needed.

In this paper, we carried out a theoretical study about
the effects of structural disorder on the ballistic transport
properties of gated phosphorene superlattices (GPSLs). The
superlattice structure is formed by a series of electrostatic
barriers of potential arranged along the armchair direction and
oriented on the x axis. Specifically, the structural disorder that
we consider is the variation of the width and height of the
electrostatic barriers. For this purpose, this paper is presented
as follows. Section II contains the tight-binding model theory
in the low-energy range of phosphorene, where the four-band
and subsequent two-band Hamiltonians are described [63].
Here, we describe our electronic device consisting of elec-
trodes placed on a single layer of phosphorene, with the aim
of studying the ballistic transport of the superlattices under
the effect of disorder. To do this, we calculate the transmis-
sion probability using the transfer matrix technique and the
conductance using the Landauer-Büttiker formalism [51]. The
density of states (DOS) that complements our study is com-
puted by the dispersion relation of the supercell wave vector.
In Sec. III, the results obtained are presented. Here, we give
the details of how the two types of disorder (width and height)
are introduced as well as the full analysis and discussion of
the transport properties under the effect of various degrees
of disorder from weak to strong. In the last Sec. IV, the
conclusions of our work are specified.

II. THEORETICAL MODEL

The theoretical fundamentals of the band structure and
the electronic transport of the charge carriers in phosphorene
have been well explained by the widely used tight-binding
model [51,63], whose effective Hamiltonian in the momentum
space is

Hk =
∑

k

ĉ†
kĤ [4]

k ĉk, (1)

where the four-vectors ĉ†
k = (c†

Ak c†
Bk c†

Dk c†
Ck ) and

ĉk = (cAk cBk cCk cDk ) are the creation and annihila-
tion operators, respectively, with the subscripts A, B, D, and
C representing the four atoms in the unit cell of phosphorene
(see Fig. 1).

The effective Hamiltonian Ĥ [4]
k in the low-energy range

around the symmetrical point � is given by

Ĥ [4]
k =

⎛
⎜⎜⎝

εA HAB HAD HAC

HBA εB HBD HBC

HDA HDB εD HDC

HCA HCB HCD εC

⎞
⎟⎟⎠, (2)
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FIG. 1. Crystal structure of single-layer phosphorene. The inter-
atomic distances, the hopping parameters (t j), and the unit cell (red
square) formed by 4 atoms of phosphorus (A–D) are shown.

with matrix elements obtained by the formula:

Hj,l = H∗
l, j =

∑
〈 j,l〉

t j,l exp[i(rl − r j ) · k], (3)

where the sum runs over the first and second neighbor atoms l
with respect to fixed atom j. The asterisk symbol (*) indicates
the complex conjugate. Specifically, for phosphorene, we have

HAB = HDC

= 2{t1 exp(−iR1kx ) + t3 exp[i(R1 + 2R2)kx]}
× cos(R0ky),

HAD = HBC = 4t4 cos[(R1 + R2)kx] cos(R0ky),

and

HAC = HDB = t2 exp(iR2kx ) + t5 exp[−i(2R1 + R2)kx], (4)

where the values of hopping integrals are t1 = −1.220 eV,
t2 = 3.665 eV, t3 − 0.205 eV, t4 = 0.105 eV, and t5 =
0.055 eV [25]. The interatomic distances projected on
the x-y plane are R0 = a1 sin(α), R1 = a1 cos(α), and R2 =
a2 cos(β ) = −a2[cos(γ )]/[cos(α/2)]. In such expressions,
the in-plane wave vector k = (kx, ky), and the lattice primitive
vectors a = (a, 0) and b = (0, b) are specified.

Considering the symmetry (D2h group) of the atomic lattice
in phosphorene, the equivalence onsite energy between atoms
A(B) and D(C), with the Fermi level taken as the zero-energy
reference, the Hamiltonian can be simplified to the two-band
model as follows:

Ĥ [2]
k =

(
HAD HAB + HAC

H∗
AB + H∗

AC HAD

)
≡

(
Fk Gk
G∗

k Fk

)
. (5)

Diagonalizing this operator, that is, performing det |Ĥ [2]
k −

ÎEk| = 0, the energy spectrum yields

(Ek − Fk )2 − G∗
kGk = 0, (6)

or

E±
k = Fk ± √

G∗
kGk. (7)

From this, we can derive the magnitude of the bandgap at
the � point (kx = 0, ky = 0), which separates the valence and
conduction bands by the magnitude:

� = E+
k=0 − E−

k=0 = 4t1 + 2t2 + 4t3 + 2t5 = 1.54 eV. (8)

FIG. 2. (a) Possible electronic device based on gated phospho-
rene superlattices. The single layer of phosphorene is deposited
on an isolated substrate and encapsulated between two protecting
dielectric layers. Electrodes are installed as top gates that generate
the electrostatic potential profile. (b) Effect of the structural disorder
introduced in the width of the barriers on the superlattice profile.
(c) Effect of the structural disorder introduced in the height of the
barriers on the superlattice profile. The solid black lines represent the
ordered superlattice profile, while the dashed green lines represent
the disorder variation in each case.

In this paper, we theoretically study an electronic device
made of phosphorene (see Fig. 2). To manipulate the elec-
tronic transport properties, a series of metallic electrodes are
installed on top of the phosphorene layer, which is deposited
on an insulating substrate. The electrodes generate a gated
superlattice structure formed by N rectangular electrostatic
barriers with potential or height UB and width dB, which are
separated by zero potential regions or wells with distance dW .
The superlattice is arranged along the x axis that represents the
armchair direction. Due to the presence of potential barriers,
the cones at the γ point in the phosphorene band structure
experience a shifting effect in energy and without changing
the width of the gap (�). In addition, in Fig. 2, the Fermi
energy level of the incident charge carriers is indicated on the
cones so that the occupancy of states in the cones changes
with respect of the height of the barriers.

The operator that includes the superlattice potential is
given by

Ĥk + UÎ =
(

Fk + Uj Gk
G∗

k Fk + Uj

)
, (9)

and whose dispersion relation is now

[(Ek − Uj ) − Fk]2 − G∗
kGk = 0. (10)
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Here, the subscript j denotes either a barrier (B) region or a
well (W ) region.

The eigenfunction that solves the operator in Eq. (9) with
its corresponding eigenvalue Ek, associated with each region
j, is expressed as

ψk(r) = 1√
2

[
Aj

(
1
ν+

j

)
exp(ikx, jx)

+ Bj

(
1
ν−

j

)
exp(−ikx, jx)

]
exp(ikyy), (11)

where r = (x, y), and the coefficients of the incident (+) and
reflected (−) wave are defined as

ν±
j = G(∓kx, j, ky)

λ j
√

G∗
kGk

. (12)

The factor λ j = ±1 depends on if (Ek − Uj ) > Fk or (Ek −
Uj ) < Fk, respectively. According to Eqs. (4) and (5), it is
easy to note that G(∓kx, j, ky) = G∗(±kx, j, ky).

Using the standard transfer matrix method, we can connect
the unknown amplitudes of the incident and transmitted waves
through the superlattice structure. Indeed, the input and output
states that correspond to the semi-infinite left and right regions
are related by the equation:(

Ain

Bin

)
= MT

(
Aout

0

)
, (13)

where the total transfer matrix is detailed as follows:

MT = D−1
0

⎛
⎝∏

j

D jPjD
−1
j

⎞
⎠D0, (14)

with

Dj =
(

1 1
ν+

j ν−
j

)
, (15)

and

Pj =
[

exp(ikx, jd j ) 0
0 exp(−ikx, jd j )

]
, (16)

which are called the dynamic and propagation matrices, re-
spectively. Here, d j symbolizes the width of the barriers and
wells ( j = B,W ). According to Eq. (10), the component kx, j

admits a real or imaginary solution depending on the energy
Ek, transverse component ky, and height Uj of the barrier. In
the case of real component kx, j , the physical meaning is a
propagating wave inside of the barrier, while the imaginary
case represents an evanescent wave.

Now we can calculate the ballistic transport properties of
GPSLs. First, it is possible to estimate the transmission prob-
ability of the charge carriers by

T (E , ky) = 1

|MT (1,1)|2 . (17)

Then under the Landauer-Büttiker formalism, the conduc-
tance is calculated as the integral of the transmission for all
transverse channels of the component ky, namely,

G(E ) = G0

∫ kmax
y

−kmax
y

T (E , ky)dky, (18)

where G0 = e2Ly/h̄, and Ly is the transverse length of the
phosphorene layer. The limit of the integration kmax

y symbol-
izes the maximum value of the transverse component (ky) in
which the propagation in the x direction vanishes (kx = 0).

Finally, the DOS associated with the superlattice structure
is given by

DOS(E ) = 1

2π

∣∣∣∣∂qSL

∂E

∣∣∣∣, (19)

where qSL is the supercell wave vector. In fact, the DOS
complements our study and offers a better understanding of
the transport properties of GPSLs.

III. RESULTS

In this section, we present a theoretical study of the effects
of structural disorder on the ballistic transport in GPSLs. We
analyze how the disorder of the superlattice affects the trans-
mission and conductance of charge carriers in the valence and
conduction bands. Specifically, the type of disorder that we
introduce is related to the size of the width as well as in the
height of the electrostatic barriers.

First of all, we consider an ordered superlattice struc-
ture formed by N = 5 barriers with potential or height U0 =
0.15 eV, width dB0 = 4 nm, and separated by wells of width
dW = 12 nm. This structure serves as the basis for our model.
Then we introduce a certain degree of disorder using the
following mathematical expressions:

dBj = dB0 (1 + ε jδ), (20)

and

UBj = U0(1 + ε jδ), (21)

where δ is the degree or percentage of disorder, and ε j in the
range [−1, 1] represents a random number that modifies each
barrier (Bj) independently. In our calculations, we consider
both weak (0–20%) and strong (30–50%) disorder. An ordered
superlattice corresponds to the case without disorder (0%).
The methodology that we follow generates a large number
(>100) of random superlattice profiles for each disorder per-
centage. Then we numerically calculate the average of the
transmission and conductance of all profiles. As we know,
100 is the number of profiles where this calculation stabilizes
and the changes in the average are negligible; however, in this
paper, we choose a number of 200 profiles to ensure better
accuracy.

First, we analyze the transport properties for the case of
disorder in the width (dBj ) of the barriers. For this, we consider
200 superlattice profiles where the widths of the 5 barriers
are randomly generated using Eq. (20) in each profile in-
dependently. Specifically, the variation of the width directly
affects the exponential factor within the propagating matrix
[Eq. (16)].

In Fig. 3, we show a color map of the transmission proba-
bility (T ) as a function of the Fermi energy (EF) and the wave
vector component ky. Here, several degrees of disorder—both
weak: (a) 0% (b) 5%, (c) 10%, and (d) 20%; and strong:
(e) 30% and (f) 50%—have been considered. The value of
transmission probability is measured from 0 (blue color) indi-
cating total reflection to 1 (dark red color) indicating perfect
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FIG. 3. Transmission probability (T ) as a function of Fermi
energy (EF) and transversal wave vector component (ky) for a su-
perlattice of 5 barriers of potential or height U = 0.15 eV and width
dB = 4 nm, for different degrees of disorder (0, 5, 10, 20, 30, and
50%) in the width of the barriers. The transmission is appreciated
below the top of the valence band (EF < −1.18 eV) and above the
bottom of the conduction band (EF > 0.34 eV). The same energy
interval is considered in all figures.

transmission associated with the tunnel effect phenomenon.
The transmission in each disorder case is shown both for the
valence and conduction bands located below and above the
Fermi level EF = 0, respectively. The energy bands are sepa-
rated by a bandgap with magnitude of 1.52 eV [see Eq. (8)],
whose limits are found at −1.18 and 0.34 eV, indicated by
vertical dashed lines. It is very important to mention that, ac-
cording to scientific reports [25], the energy range of validity
of the tight-binding theory in phosphorene is ∼0.3 eV below
and above the bandgap; therefore, we have adapted to that fact
in our calculations and analysis.

As we can see in Fig. 3(a), the ordered case shows high-
transmission zones called minibands colored in red, which
are alternated with low-transmission zones called minigaps
colored in blue. Inside the minibands, there are very marked
peak zones that achieve perfect transmission (T = 1) as a
consequence of the tunnel effect. Additionally, we note that
the valence band is formed by larger minibands in contrast to
the conduction band, which can be explained by the implicit
nature of phosphorene as a p-type semiconductor.

Now as the disorder degree increases, the transmission
minibands are significantly reduced. At the same time, the
transmission minigaps are slightly increased. Also, we ob-
serve that the reduction effect is stronger in the valence band

FIG. 4. Conductance (G) as a function of Fermi energy (EF) for
a superlattice of 5 barriers of height U = 0.15 eV and width dB = 4
nm, for different degrees of disorder in the width (0, 5, 10, 20, 30,
and 50%). The conductance is shown for (a) the valence band and
(b) the conduction band.

than in the conduction band. For weak disorder (5%), the
structure of the minibands with the tunnel peaks is still pre-
served. However, for greater disorder, the miniband structure
is rapidly degraded since the borders of the minibands are
expanded and vanished due to the narrowing of the minigaps.
Additionally, it is notable that the tunnel peaks are com-
pletely lost above disorder of 10%. This is because the tunnel
channels are strongly linked to the width of the barriers and
wells, so the disorder interferes directly with the Fabry-Pérot
resonances. In fact, here, in the case of GPSLs, Fabry-Pérot
resonances take place at normal incidence, contrary to gated
graphene superlattices in which Klein tunneling determines
the electron transmission at normal incidence [64,65]. Here,
it is also important to mention that Fabry-Pérot resonances
can arise in practically all angular range of GPSLs, in contrast
to gated graphene superlattices in which collimation effects
shape the transmission properties at near normal incidence
[64,66]. In this context, it is expected that structural disorder
has a greater impact on the Fabry-Pérot resonances of GPSLs
and consequently on their corresponding transport properties.
In general, the average of the transmission of all superlattice
profiles leads to a smoothing effect over the entire energy
range for both bands. However, we must highlight that dis-
order has a greater impact in the valence band in contrast to
the conduction band.
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FIG. 5. Density of states (DOS) as a function of Fermi energy
(EF) for a superlattice of 5 barriers of height U = 0.15 eV and width
dB = 4 nm, for different degrees of disorder in the width of the
barriers (0, 5, 10, 20, 30, and 50%). The DOS of (a) the valence
band and (b) the conduction band are appreciated.

In Fig. 4, we show the conductance (G) as a function of
the Fermi energy for degrees of disorder of 0, 5, 10, 20, 30,
and 50%. Conductance is calculated directly from the results
of the transmission (Fig. 3) using the Landauer-Büttiker for-
mula in Eq. (18). The energy range includes (a) the valence
band and (b) the conduction band, which allows us to study
the conductance of holes and electrons through GPSLs. As
we note, for ordered superlattice (0%), the conductance curve
shows a very marked oscillatory behavior. In addition, at the
low-energy range near the gap, the conductance exhibits peaks
or drastic changes, which result from the fine miniband struc-
ture of the transmission. On the other hand, at large energies
for both holes and electrons far from the gap, the conductance
loses its oscillatory property, its behavior curve becomes flat,
and the peaks are drastically reduced. This is due to the fact
that the transmission increases and the minibands become
wider. It is important to highlight that the conductance of
the valence band is higher than the one corresponding to the
conduction band; in contrast, the peaks in the conduction band
are more pronounced.

Now as we increase the degree of disorder, the conductance
gradually losses the oscillations as well as the peaks. The aver-
aging process of the random profiles leads to a flattening effect

FIG. 6. Transmission probability (T ) as a function of Fermi
energy (EF) and transversal wave vector component (ky) for a su-
perlattice of 5 barriers of height U = 0.15 eV and width dB = 4 nm,
for different degrees of disorder: (a) 0%, (b) 5%, (c) 10%, (d) 20%,
(e) 30%, and (f) 50% in the height of the barriers. The transmission
is appreciated below the top of the valence band (EF < −1.18 eV)
and above the bottom of the conduction band (EF > 0.34 eV). The
same energy interval is considered in all figures.

in the conductance. It is evident that the effects of disorder
have more impact in the valence band than the conduction
band. Furthermore, an important fact is that, for weak disorder
(5–20%), the conductance that corresponds to the conduction
band still maintains the qualitative oscillating trend shown by
the ordered superlattice (0%), which is an aspect to consider
in the possible manufacture of electronic devices for this type
of nanostructures with possible disorder.

To end this first analysis, in Fig. 5, we show the DOS
as a function of Fermi energy (EF) for different degrees of
disorder in the width of the barriers, which we have previously
considered. The DOS shows the allowed energy levels in (a)
the valence band and (b) the conduction band, as well as the
occupation number for holes and electrons in each band, re-
spectively. As we can see in Fig. 5, for the ordered superlattice
case (0%), the DOS shows that the occupancy number of
charge carriers that contributes in the transport is the largest.
Then as the degree of disorder increases, the DOS gradually
decreases. This is consistent with the fact that the probability
of transmission is reduced by the introduction of the disorder.
In addition, the peaks of high accumulation of the DOS also
disappear. Hence, the charge carriers are redistributed and
moved to occupy other energy levels where the occupation
number is low, balancing the DOS in both bands. The redistri-
bution of the DOS is an important characteristic observed in
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FIG. 7. Conductance (G) as a function of Fermi energy (EF) for
a superlattice of 5 barriers of height U = 0.15 eV and width dB = 4
nm, for different degrees of disorder in the height (0, 5, 10, 20, 30,
and 50%). The conductance is shown for (a) the valence band and
(b) the conduction band.

this class of low-dimensional materials, which is used to study
different phenomena and electronic applications.

The second case that we analyze is the disorder in the
height of the electrostatic barriers. We carry out an analogous
procedure considering 200 superlattice profiles where the
height of the 5 barriers is randomly generated using Eq. (21)
in each profile independently. Specifically, for each potential
generated, it is numerically required to solve the dispersion
relation given in Eq. (10) to obtain the component kx, j .

Figure 6 shows a map of the transmission (T ) as a func-
tion of Fermi energy (EF) and the transverse component (ky).
Again, the degrees of disorder that we introduce are 0, 5, 10,
20, 30, and 50% in the height of the barrier. Also, in each
disorder case are visualized the valence and conduction bands
in an energy range of 0.34 eV above and below the bandgap.
For the ordered superlattice (0%), the transmission exhibits a
well-defined miniband structure. In addition, we can appre-
ciate peak zones with T = 1 (dark red) indicating a perfect
transmission associated with the tunnel effect phenomenon as
well as zones with T = 0 (blue) indicating a total reflection.

As the degree of disorder increases, the transmission in
both bands considerably decreases. The conduction band is
very affected for this type of disorder (see Fig. 6). The mini-
band structure is stable and maintains both well-defined shape

FIG. 8. Density of states (DOS) as a function of Fermi energy
(EF) for a superlattice of 5 barriers of height U = 0.15 eV and width
dB = 4 nm, for different degrees of disorder in the height of the
barriers (0, 5, 10, 20, 30, and 50%). The DOS of (a) the valence
band and (b) the conduction band are appreciated.

and borders until 20% degree of disorder. Also, the peak
zones of the tunnel effect are still observed until this degree
of disorder. For strong disorder (>30%), the miniband struc-
ture disappears since its borders are wider and the minigaps
are narrower. This is because the height of the barriers have
more relevance in the evanescent waves; hence, the disorder
directly affects the magnitude of the transmission. In general,
a smoothing effect of the transmission between minibands and
minigaps throughout the energy range considered in this paper
(0.34 eV around the gap) is appreciated. We emphasize that
the disorder has a stronger impact on the transmission of the
conduction band than the valence band, as confirmed below
with the conductance calculation.

Figure 7 shows the conductance (G) as a function of Fermi
energy (EF), for weak (0, 5, 10, and 20%) and strong (30 and
50%) disorder in the height of the barriers for both (a) the
valence band and (b) the conduction band. The conductance
is derived from the transmission (Fig. 6) using Eq. (18). As
we can see, in the case of the ordered superlattice (0%), the
conductance shows an oscillatory behavior in both bands, that
is, high-conductance zones alternated with low-conductance
zones. Also, we can appreciate peaks or drastic changes in the
conductance. Then as the disorder of the height increases, the
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conductance greatly decreases in both bands. The reduction
of magnitude of the conductance is gradual but maintaining
its qualitative oscillatory trend. For high disorder, the curve
is flattening. Hence, the oscillatory behavior, even with the
presence of disorder, is an important aspect to consider at the
moment of fabrication of electric devices using this type of
nanostructures.

Finally, the DOS as a function of Fermi energy (EF) for
the distinct degrees of disorder introduced in the height of
the barriers is shown in Fig. 8. The DOS shows the allowed
energy levels and the occupation number for (a) holes in the
valence band and (b) electrons in the conduction band. For
the ordered superlattice case (0%), the DOS shows the largest
occupancy number of carriers contributing to the electronic
transport. Then as the disorder gradually increases, the oc-
cupation decreases. This is in agreement with the reduction
in transmission and conductance observed previously. It is
important to mention that, qualitatively, the effect is like the
one found in the DOS of the disorder in the width of barriers
(Fig. 5). However, quantitatively, the disorder related to the
width of the barriers has more impact in the DOS of the
valence band than the disorder of the height of the barriers.
For the conduction band, the impact of both disorders in the
DOS is reverted. In addition, the high accumulation peaks of
the DOS are also strongly affected. In this case, the redistri-
bution of the states is only perceived for strong disorder. In
fact, the charge carriers are redistributed, populating energy
levels with low DOS. These results provide a better vision and
understanding of how disorder affects the transport properties
of GPSLs.

IV. CONCLUSIONS

In summary, we show that structural disorder has a strong
effect on the ballistic transport of GPSLs. We have considered

two types of disorder: first, a disorder in the width of the
electrostatic barriers and, second, a disorder in the height of
the barriers. In both cases, various degrees of disorder—both
weak and strong—were analyzed, and the results obtained
were compared with the ordered case. We have found that
each type of disorder has a different influence on the trans-
port properties as well as different impacts depending on the
charge carriers. For the case of the width, as the disorder
increases, the transmission is reduced rapidly, leading to a
smoothing effect between minibands and minigaps. Addition-
ally, the miniband structure is more degraded in the valence
band than the conduction band. The peaks associated with
the tunneling effect disappear above a disorder of 5% since
the width variation directly affects the Fabry-Pérot resonances
in the barrier energy region. Consequently, the conductance
is reduced and loses its characteristic oscillatory behavior,
flattening as the disorder increases. Here, the impact is much
greater in the valence band than in the conduction band. For
the case of the height, as the disorder grows, the transmission
decays considerably. However, the miniband structure as well
as the tunneling peaks are still preserved up to a disorder
of 20% since the height variation mainly affects the magni-
tude of the transmission. The conductance is reduced in both
bands but maintains its characteristic oscillatory shape, which
is lost with strong disorder. Finally, both types of disorder
redistribute the DOS. The peaks of high accumulation of DOS
associated with the energy minibands of the ordered case are
significantly reduced as the disorder increases.
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