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Network model for periodically strained graphene
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The long-wavelength physics of monolayer graphene in the presence of periodic strain fields has a natural
chiral scattering network description. When the strain field varies slowly compared to the graphene lattice and the
effective magnetic length of the induced valley pseudomagnetic field, the low-energy physics can be understood
in terms of valley-polarized percolating domain-wall modes. Inspired by a recent experiment, we consider a
strain field with threefold rotation and mirror symmetries but without twofold rotation symmetry, resulting in a
system with the connectivity of the oriented kagome network. Scattering processes in this network are captured
by a symmetry-constrained phenomenological S matrix. We analyze the phase diagram of the kagome network
and show that the bulk physics of the strained graphene can be qualitatively captured by the network when
we account for a percolation transition at charge neutrality. We also discuss the limitations of this approach to
properly account for boundary physics.
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I. INTRODUCTION

Superlattice engineering in low-dimensional materials by
periodic modulations that vary slowly compared to the micro-
scopic lattice has been a highly successful tool for creating
artificial crystals that host new emergent phenomena. One
route is to impose periodic potentials by patterning elec-
trostatic gates [1] or inducing periodic strain fields with a
substrate [2] or nanopillars [3]. Another platform are moiré
materials [4], which are layered materials subjected to rota-
tional mismatch or heterostrain, inducing a spatial modulation
of the interlayer coupling. The archetypal example is twisted
bilayer graphene [5] where the moiré structure induces iso-
lated nearly flat bands at the magic angle that give rise to a rich
phenomenology of correlated physics [6,7]. Similar spectrally
isolated and flattened minibands can also emerge in mono-
layer graphene subjected to a periodic strain field [2,8–12].

In graphene, a strain field couples dominantly as a vector
potential to the long-wavelength Dirac excitations with an
opposite sign for the two valleys [13–17]. Hence, a periodic
strain field in graphene results in a periodic pseudomagnetic
field (PMF), as shown in Fig. 1(a). Wherever the PMF changes
sign, which must occur for zero spatially averaged flux, there
are real-space valley Hall transitions. For example, the PMF
shown in Fig. 1(a) vanishes on disjoint closed loops as shown
in Fig. 1(b). Furthermore, for a PMF that varies slowly on the
scale of the graphene lattice and the effective magnetic length,
it is meaningful to consider the local Landau levels of regions
separated by nodal lines. If the chemical potential lies between
the mth and (m + 1)th local Landau level, the net local valley
Chern number is given by ±(m + 1

2 ) since the lowest Landau
level of graphene only contributes Chern number 1

2 per valley
[18]. Therefore, the local valley Chern number changes by
an integer amount when the PMF changes sign. It immedi-
ately follows that the nodal lines of the PMF correspond to
domain walls that host chiral modes. Due to time-reversal

symmetry, these chiral modes propagate in opposite directions
for different valleys. However, intervalley backscattering is
suppressed when the PMF varies slowly on the scale of the
graphene lattice. Furthermore, the bound chiral modes can

FIG. 1. (a) Pseudomagnetic field [Eq. (1) for φ = 0] superim-
posed on the graphene lattice for N = 10. (b) Nodal structure of
(a). The PMF is positive (negative) in the orange (green) regions
and vanishes on the thick black loops. Each loop supports a chiral
mode which can scatter to neighboring loops. Some processes are
indicated by the dashed arrows. Here, dotted hexagons highlight the
connectivity of the nodal structure with the corners acting as scatter-
ing centers (dots). (c) Reciprocal lattice for N = 4, where the large
black hexagon is the original BZ of graphene, and the small orange
hexagons give the SBZ in the extended zone scheme. (d) Effective
piecewise constant PMF (kagome tiling). The local valley Chern
number is indicated for electron doping.
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become dispersive by tunneling to neighboring loops. In our
example, the corresponding scattering centers form an effec-
tive kagome lattice, as shown in Fig. 1(b). The single-valley
low-energy physics of periodically strained graphene can thus
be understood in terms of percolating chiral modes with the
connectivity of an oriented scattering network. Moreover, for
the long-wavelength physics, the smooth PMF can be replaced
by an effective piecewise constant field [see Fig. 1(d)] with the
same symmetry and connectivity as the smooth PMF.

The above observations illustrate a more general paradigm
in which the superlattice modulates the local band topol-
ogy to give to rise to a Chern mosaic that hosts a chiral
scattering network. Similar topological scattering networks
occur in moiré materials such as minimally twisted bilayer
graphene subjected to a perpendicular electric field [19–26]
(triangular chiral network), as well as certain large twist-
angle graphene bilayers [27] (helical honeycomb network),
and double-aligned graphene-hexagonal boron nitride moirés
[28] (chiral kagome network).

In this work, we analyze the scattering network appropriate
for periodically strained graphene with zero total flux per val-
ley. We find that the network model captures many attributes
of the spectral structure obtained from the valley-projected
Hamiltonian.

This paper is organized as follows. In Sec. II, we in-
troduce our model for the periodic pseudomagnetic field in
graphene and calculate the resulting band structure with a
valley-projected continuum theory. We then argue that the
low-energy physics can be understood in terms of an effec-
tive chiral kagome network. The phenomenological network
model is developed in Sec. III, where we discuss its phase
diagram and corroborate our results by finite-width ribbon cal-
culations. Finally, in Sec. IV, we show that the network model
can qualitatively reproduce the bulk low-energy physics of
graphene subjected to a periodic strain field and highlight its
limitations.

II. PERIODICALLY STRAINED GRAPHENE

To investigate monolayer graphene subjected to periodic
strain, we consider a pseudomagnetic field (PMF) with zero
net flux that is commensurate with the graphene lattice.
Specifically, we consider the case with threefold rotation
symmetry (C3z) about the origin [see Fig. 1(a)] and mirror
symmetry across the y axis (Mx), but with broken twofold
rotation symmetry (C2z). Together with translations, these
symmetries form the wallpaper group 14 (p3m1) with point
group C3v . The strain field thus reduces the graphene point
group from C6v to C3v , which is the case for graphene on top
of NbSe2 [2]. Alternatively, one can engineer this strain field
using an artificial substrate with a spatially varying periodic
height profile [3,12]. In the first-star approximation, a PMF
with zero net flux that satisfies these symmetry constraints can
be written as

Bν (r) = ezνB0

3∑
i=1

cos(Gi · r + φ), (1)

where ν = ±1 is the valley index, and we take B0 > 0 for
concreteness. This PMF is shown in Fig. 1(a) for φ = 0. Note

that Eq. (1) conserves time-reversal symmetry (T ) since it has
an opposite sign in valleys K+ (ν = +1) and K− (ν = −1).
We further note that C2z is conserved for φ = π/2 and maxi-
mally broken for φ = 0. Since we are mainly interested in the
latter case, we set φ = 0 in the remainder of this work. Here,
Gi (i = 1, 2, 3) are three of the shortest superlattice reciprocal
vectors related by C3z symmetry [see Fig. 1(c)]. We further
choose the primitive superlattice lattice vectors

L1 = L(1/2,
√

3/2), L2 = L(−1, 0), (2)

with L = Na, N > 1 a positive integer, and a the microscopic
lattice constant of graphene [see Fig. 1(a)]. Because the su-
perlattice has a larger periodicity than the original graphene
lattice, the graphene Brillouin zone (BZ) is folded onto a
smaller superlattice BZ (SBZ) that fits N2 times into the
graphene BZ. This is illustrated in Fig. 1(c). For N ∈ 3N, the
K+ and K− points are folded on top of each other and the
system is an insulator, otherwise the system is a semimetal
[12]. However, for N � 1, this distinction becomes moot due
to an emergent conservation of valley charge. In this case, the
PMF varies slowly on the scale of the graphene lattice such
that the valleys are effectively decoupled, and one can use a
valley-projected continuum theory.

A. Valley-projected theory

The valley-projected long-wavelength Hamiltonian in the
presence of a pseudovector potential is given by

Ĥν = h̄vF

∫
d2r ψ̂†

ν

[(
−i∇ + eAν

h̄

)
· (νσx, σy)

]
ψ̂ν, (3)

where ψ̂ν (r) = (ψ̂νA(r), ψ̂νB(r))t are the field operators for
sublattices A and B, and σx,y are Pauli matrices that act in sub-
lattice space. In dimensionless units, the only free parameter
of this theory is given by the ratio L/l0, where l0 = √

h̄/eB0

is a measure of the magnetic length of the PMF. For example,
at the maxima of the PMF, the local magnetic length is given
by l0/

√
3.

The symmetries of the single-valley theory are generated
by {C3z,MxT } yielding the magnetic point group 3m′. Note
that twofold rotation C2z is not conserved since it sends
Bν (r) �→ −Bν (r). In addition, there is a chiral symmetry due
to the absence of terms proportional to σ0 or σz in Eq. (3).
This is a model-dependent symmetry since such terms are
symmetry allowed, e.g., a strain-induced pseudoelectrostatic
potential or a constant sublattice-staggering term. However,
in this work, we will not consider these terms since they do
not qualitatively change our results, as long as they are small
compared to h̄vF /l0, i.e., the local Landau level splitting,
which we assume throughout this work. Since we consider the
case where the net flux of the PMF vanishes, the Hamiltonian
(3) can be readily diagonalized in momentum space. We refer
to Appendix A for more details on the continuum model and
its symmetries.

The resulting band structure is shown in Fig. 2 along
high-symmetry lines of the SBZ for two realistic values of
L/l0 > 1, which is our regime of interest. Owing to the chiral
symmetry, the bands are symmetric about zero energy and
we label them as Eν,n(k) = sgn(n)E|n|(νk) with n a nonzero
integer. Moreover, one can show that in the presence of chiral

045405-2



NETWORK MODEL FOR PERIODICALLY STRAINED … PHYSICAL REVIEW B 107, 045405 (2023)

FIG. 2. Band structure for valley K+ (solid blue) and K− (dashed
red) of the valley-projected theory along high-symmetry lines of the
SBZ [green path in Fig. 1(c)] for (a) L/l0 = 5 and (b) L/l0 = 8,
where energy is given in units h̄vF k0 with k0 = 4π/3L. The valley
Chern numbers for K+ are shown in (a) where the two nontrival bands
are contained in the gray energy window.

symmetry, the bands for a given valley always degenerate
in pairs at zero energy [12,29]. However, this crossing can
be avoided by symmetry-allowed terms, which we assume
are small as outlined in the previous paragraph. Since C2z

is broken and the valley projection implicitly breaks T , the
bands can have a nonzero Chern number. We find that the two
bands near charge neutrality carry a net (valley) Chern number
[12]

Cν,1 + Cν,−1 = ν, (4)

while all remote low-energy bands that are shown in Fig. 2
are Chern trivial. Note that the net Chern number of the
low-energy bands forms an obstruction to an effective lattice
model for the single-valley physics that retains only the low-
energy degrees of freedom. The low-energy band manifold
can thus be thought of as a single Landau level that is half-
filled at charge neutrality. This situation bears resemblance
to the system of monolayer graphene in the presence of a
constant, real magnetic field. In that case, the n = 0 Landau
levels are also half-filled at charge neutrality. Invoking chiral
symmetry, one can argue that the Hall conductivity must be
the same in magnitude but opposite in sign in gaps related by
E �→ −E . This leads to the nontrivial prediction that the gaps
right above and below the n = 0 Landau level must have Hall
conductivity equal to ± 1

2
e2

h per valley and spin [30–32]. This
half-integer quantum Hall effect stems from the π -quantized
Berry phase of the Dirac cones, and is related to the parity
anomaly [33–36]. Anomaly cancellation is obtained when
both valleys are simultaneously considered.

We also show the density ρA/B(r), which is defined in
Appendix A, of the lowest conduction band (n = 1) in Fig. 3.
Here, we omit the valley index since the density is the same for
both valleys due to time-reversal symmetry. We observe that
the charge density on sublattice B is localized with support on
a triangular lattice corresponding to the maxima of the PMF,

FIG. 3. Density of the lowest conduction band (n = 1) for
L/l0 = 5 [energy bands shown in Fig. 2(a)] for sublattice A (ρA, left)
and B (ρB, right) where the white hexagon gives the unit cell. The
color scale is relative to the maximum of the density which is a factor
3 larger for sublattice B.

while on sublattice A it is extended with support on the PMF
minima which together form a honeycomb lattice. Note also
that ρA breaks C2z symmetry. The separation of the density of
the two sublattices can be understood in analogy to the zeroth
Landau level of graphene in a constant magnetic field, whose
wave function only has support on one of the two sublattices,
depending on the sign of the magnetic field and the valley
[37]. For a PMF, the valleys experience an opposite field and
thus the support is identical for both valleys.

B. Chiral interface modes

Next, we consider the nodal lines of the PMF, which are
given here by disjoint closed loops that encircle the maxima
of the PMF, as shown in Fig. 1(b). In the limit L � l0, we
can define a local valley Chern number inside and outside
of these loops. For example, if the chemical potential lies
in-between the mth and (m + 1)th local Landau levels, the
net local valley Chern number is given by sgn(Bν )(m + 1

2 ).
The valley Chern number thus changes by an integer when
the PMF changes sign. This results in a triangular lattice of
circular domain walls given by the nodal lines of the PMF,
that host well-defined chiral modes in the limit L � l0.

We demonstrate the existence of these domain-wall modes
explicitly by considering an isolated nodal loop which we ap-
proximate by a circle. We then consider a piecewise constant
PMF, Bν (r) = νB(r)ez in polar coordinates (r, φ) where

B(r) = Bin�(R − r) + Bout�(r − R), (5)

with radius R. For concreteness, we take R/lin = 6.5 where
lin = √

h̄/eBin and Bout/Bin = −3 with Bin > 0. We use the
gauge Aν (r) = ν(r2 − R2)B(r)eφ/2r with the spinor ansatz
	(r) = ei( j−νσz/2)φψ (r) where j = ± 1

2 ,± 3
2 , . . . is the eigen-

value of Jz = −i∂φ + νσz/2. A normalizable solution can then
be found in each region and the spectrum is obtained from
continuity of the spinor at r = R. In Fig. 4(a), we show
the spectrum for valley ν = 1 versus j. Note that the net
number of chiral modes matches the difference in the local
valley Chern number between the inner and outer regions.
In Fig. 4(b), we show the single-particle density for different
states. As before, ρA (ρB) is mostly localized in the region
with negative (positive) field. Moreover, for large | j|, the
energy converges to the local Landau levels and the center
of the single-particle wave function in the outer region moves
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FIG. 4. (a) Spectrum of a circular pseudomagnetic domain wall
[Eq. (5)] for valley K+ where ωout = √

2vF /lout . Orange and green
columns show the local Landau level and Chern number sequence
in the hexagons and triangles of the kagome tiling, respectively
[see Fig. 1(d)], and arrows indicate the number and orientation of
domain-wall modes. (b)–(d) Single-particle density (arb. units) for
states indicated in (a).

away from the domain wall. Hence, the chiral modes percolate
to neighboring loops at zero energy. This is illustrated in
Fig. 1(b), where the effective scattering centers form a kagome
lattice.

For the long-wavelength physics, we can further replace
the smooth PMF by an effective piecewise constant PMF with
the same symmetry and connectivity. This yields a kagome
tiling, as shown in Fig. 1(d). The values of the constant pseu-
domagnetic field in the hexagons and triangles of the kagome
tiling are determined by the condition that the net flux should
vanish �h + 2�t = 0 which gives Bt = −3Bh. The sequence
of Chern numbers and interface modes for the kagome tiling
are shown in Fig. 4(a). The low-energy physics can thus be un-
derstood in terms of chiral modes bound to nodal lines of the
PMF that percolate at charge neutrality with the connectivity
of the oriented kagome network.

III. NETWORK MODEL

In the previous section, we argued that the single-valley
low-energy physics of periodically strained graphene in the
limit L � l0 can be understood in terms of a kagome network
of chiral modes [see Fig. 1(d)]. Moreover, at low energies,
each link of the network hosts a single chiral mode for a given
valley and spin. In this section, we develop a phenomenolog-
ical theory for the chiral kagome network. To this end, we
assume that all microscopic details of the scattering process
can be absorbed into an S matrix that relates incoming and
outgoing amplitudes at a pointlike scattering node. Hence, we
assume that the extent l0 of the scattering region, which is
of the order of the extent of the wave function of the chiral

FIG. 5. (a) Unit cell of the chiral kagome network. Here, arrows
represent chiral modes propagating along oriented links and the three
colored dots correspond to the three subnodes. (b) The lattice vectors
L1, L2, and L3.

modes, is small compared to L. The S matrix is only con-
strained by unitarity and the valley-preserving symmetries:
C3z and MxT .

A. Scattering matrix

The unit cell of the chiral kagome network is shown in
Fig. 5(a). It consists of three scattering nodes which we refer
to as subnodes. Each cell can be labeled by a superlattice
lattice vector R = n1L1 + n2L2 with n1,2 integers. Since the
S matrix only relates local incoming and outgoing scattering
amplitudes, the total S matrix of the unit cell is block diagonal
in the subnodes:

S =
⎛
⎝S1 0 0

0 S2 0
0 0 S3

⎞
⎠, (6)

such that bR = SaR where

a = (a11, a12, a21, a22, a31, a32)t , (7)

b = (b11, b12, b21, b22, b31, b32)t (8)

are the incoming and outgoing amplitudes of one cell, re-
spectively, and which are defined in Fig. 5. Threefold rotation
symmetry C3z yields S0 = S1 = S2 = S3 and MxT gives S0 =
(S0)t . We thus have

S0 = eiE0

(
eiϕ

√
P

√
1 − P

√
1 − P −e−iϕ

√
P

)
, (9)

where 0 � P � 1, and ϕ and E0 are phases. Here, P is the
probability for scattering along the acute corner of the triangle
and ϕ is the relative phase difference of the amplitudes, as
illustrated in Fig. 5(a). A detailed derivation of the S matrix is
given in Appendix B.

B. Link phases

Neighboring scattering nodes in the network are connected
by oriented links of length L/2 along which chiral modes
freely propagate. During propagation between adjacent nodes,
they acquire a phase λ = exp(−i2πE/EL ) with EL = 2hv/L.
Here, we assume that the modes have linear dispersion with
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FIG. 6. Network energy bands for valley K+ (solid blue) and K− (dashed red) in the fundamental domain along high-symmetry lines of the
SBZ [green path in Fig. 1(c)] for constant scattering parameters (ϕ, P) as indicated on Fig. 7.

slope v ∼ vF . Explicitly,

a11R = λb31R−L3 , (10)

a12R = λb32R, (11)

a21R = λb11R−L1 , (12)

a22R = λb12R, (13)

a31R = λb21R−L2 , (14)

a32R = λb22R. (15)

Since the network has translation symmetry, we Fourier trans-
form to momentum space,

bτ jR = 1√
N

∑
k

eik·Rbτ jk, (16)

where N is the number of cells, and similarly for incoming
amplitudes. Note that we work in Bloch form. Here, τ =
1, 2, 3 is the subnode index, and j = 1, 2 is the link index.
We then obtain

ak = λMkbk, (17)

where

Mk =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 e−ik3 0
0 0 0 0 0 1

e−ik1 0 0 0 0 0
0 1 0 0 0 0
0 0 e−ik2 0 0 0
0 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

(18)

is the connectivity matrix with ki = k · Li (i = 1, 2, 3) and
L3 = −(L1 + L2) [see Fig. 5(b)]. Since the links always con-
nect different subnodes, Mk is block antidiagonal.

C. Network bands

Combining bk = Sak with (17) yields

Ukbk = ei2πE/EL bk, (19)

where Uk = SMk. Solving for the energy gives

En,s(k) = EL

3

[
n + s

arccos f (k)

2π

]
, (20)

with s = ±1 and integer n, and where we set E0 = −π/6
to obtain symmetric bands. The result for the other valley is

obtained by letting k → −k. Here, we have also defined

f (k) =
√

P

[
(1 − P)

3∑
i=1

sin(ki + ϕ) + P sin 3ϕ

]
. (21)

Note that shifting the origin to K̄± is equivalent to sending
ϕ → ϕ ± 2π/3 in Eq. (21), respectively, such that all unique
cases are contained in ϕ ∈ [−π/3, π/3].

When the scattering parameters P and ϕ are constant, the
energy enters only in the link phases and Eq. (19) is periodic
in energy with period EL. However, the network energy bands
in Eq. (20), shown in Fig. 6, have a smaller period EL/3. This
can be understood from the phase-rotation symmetry [38,39]

DUkD−1 = e−i2π/3Uk, (22)

where

D = diag(1, ei4π/3, ei2π/3) ⊗ 12, (23)

such that Dbn,s is an eigenstate with energy En+1,s = En,s +
EL/3. Note that D3 = 1, corresponding to one full period and
bn+3,s = bn,s. Hence, we only need to consider two bands,
called the fundamental domain, chosen here as −EL/6 < E �
EL/6. We further note that (22) is a result of the cyclic struc-
ture of the network. It is independent of symmetry constraints,
and holds for any subnode block-diagonal S matrix.

D. Phase diagram

The phase diagram of the oriented kagome network with a
single channel has been discussed previously in the context of
photonic systems [40]. Here, we discuss the phase diagram
from a different perspective and give some new analytical
results.

We start by identifying the gap closings between pairs of
bands En,± and between En,+ and En+1,−. In general, the gap
closes for f (k)2 = 1 [see Eq. (20)] which occurs only at the
high-symmetry points �̄ and K̄±. This yields

P�̄ = 1

4 sin2 ϕ
, PK̄± = 1

4 sin2(ϕ ± 2π/3)
, (24)

which define gap-closing lines in the (ϕ, P) plane, as shown
in Fig. 7.

1. Flat-band limits

Now consider the two flat-band limits of the chiral kagome
network, namely, P = 0 and 1. In these limits, the bands
are isolated and correspond to classical loop configurations,

045405-5



DE BEULE, PHONG, AND MELE PHYSICAL REVIEW B 107, 045405 (2023)

FIG. 7. Phase diagram of the chiral kagome network. White
(gray) regions are trivial (Chern) gapped phases, where the Chern
number C+ of the band En,+ is shown. The curves correspond to gap
closings at high-symmetry points and the dots indicate the parame-
ters for the bands shown in Fig. 6.

such that the Chern number vanishes. This can also be under-
stood from a strong phase-rotation symmetry in the flat-band
limit, which reduces the fundamental domain to a single band
[38,39]. Since the Chern number is invariant under unitary
transformations, it follows together with completeness that the
sum of the Chern numbers in each fundamental domain van-
ishes. At a strong-phase rotation symmetric point, all bands
are therefore Chern trivial. In the following, we refer to the
phases that are adiabatically connected to the P = 0 and 1
flat-band limit as the H and T phase, respectively. Indeed, for
P = 0, the flat bands correspond to hexagonal closed orbits
in real space, while for P = 1, the network is localized in
triangular orbits, as illustrated in Fig. 7. As such, the two
flat-band limits correspond to two distinct classical limits. We
further note that there are two T phases, depending on which
of the two triangles of the kagome network the density of a
given band is mostly localized (see Appendix B). The H and
T phases are connected by a metallic phase at two points in
the phase diagram where two gap-closing lines cross, called
a percolation point. Hence, an interface between the trivial H
and T phases supports a chiral mode which propagates in a
snakelike fashion. This indicates that the Chern trivial phases
do possess a notion of relative topology, similar to a massive
Dirac electron subjected to a mass inversion on a domain wall.

2. Chern phases and winding number

For the remaining two gapped phases, we numerically cal-
culate the Chern number [41] and we find two Chern phases;
see Fig. 7, where pairs of bands En,± carry opposite Chern
numbers C+ + C− = 0 with C+ = ±1, as expected from
phase-rotation symmetry. However, because of the unbounded
spectrum of the network model which repeats periodically
in energy, the total Chern number of the ground state is an
ill-defined quantity. Indeed, there are two distinct gaps whose

Chern number oscillates between zero and ±1. By calculating
the spectrum in a ribbon geometry, we find that the boundary
conditions pick out one particular sequence.

We therefore need an additional invariant that is sensitive
to the choice of unit cell. To this end, one can map the net-
work to a piecewise constant Floquet lattice model [38,39,42].
The oriented kagome network can be mapped to a three-step
Floquet on a honeycomb lattice [38,43] but the details are
beyond the scope of this work. For explicit examples, we refer
to Refs. [38,42]. Importantly, this mapping is not unique and
depends on the cell choice. The resulting effective Floquet
models give rise to a continuous unitary time evolution U (t, k)
from t = 0 to T with U (0, k) = 1. In the flat-band limit,
[0, T ] × BZ �→ U is a periodic map and one can define a
single Floquet winding number (see definition below) [42].
In general, however, the unitary is periodized by defining an
effective Hamiltonian [39,44]

H eff
η (k) = 1

iT
logη U (T, k), (25)

where we assume that U (T, k) is gapped on the unit circle and
η is an angle inside a given gap. The effective Hamiltonian is
not unique and depends on the branch cut of the logarithm,
which we place inside the gap defined by η. Note that Eq. (25)
is only well defined if we can place the branch cut inside a gap.
The periodized unitary is defined as [39,45]

Vη(t, k) = U (t, k)e−itH eff
η (k), (26)

such that Vη(0, k) = Vη(T, k) = 1 and which can be continu-
ously deformed [44,46] to U (t, k) without closing the gap at
η. The bulk topological invariant is then given by the winding
number of the periodic map [0, T ] × BZ �→ Vη:

Wη[U ] = 1

8π2

∫ T

0
dt

∫
BZ

d2k

× Tr
{
V −1

η (∂tVη )
[
V −1

η

(
∂kxVη

)
,V −1

η

(
∂kyVη

)]}
. (27)

The Floquet winding number W is thus defined for each gap
of the Floquet quasispectrum and a difference in winding
numbers of two gaps equals the net Chern number of the
intervening bands [45]. Moreover, the winding number obeys
the bulk-boundary correspondence [44]

nedge(η) = Wη. (28)

where nedge(η) is the net number (accounting for chirality) of
chiral edge modes in the gap at η.

We conclude that a scattering network is characterized by
several winding numbers [39], one for each unique choice of
unit cell with a corresponding set of edge types. Moreover,
when the network is in a Chern trivial phase, the winding
number is the same for each gap, while it alternates in a Chern
phase. We can understand the need for multiple winding num-
bers intuitively as follows. Certain boundary configurations
of the network have no counterpart in the effective Floquet
theory for a given choice of cell. For example, in the kagome
network, triangle and hexagon edges are realized by two dif-
ferent Floquet models. In addition to the Chern number, the
chiral kagome network is thus also characterized by winding
numbers (WI ,WII ) for each gap, where WI corresponds to our
choice of unit cell shown in Fig. 5(a), and WII corresponds to
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FIG. 8. Network ribbons of width M = 2 with (a) triangle and
(b) hexagon edges. The shaded region gives the unit cell.

a cell whose subnodes all belong to a single hexagon of the
kagome network.

E. Network ribbon

We now consider a ribbon periodic along the x direction
with period L and finite along the y direction with width W =√

3 ML where M = 1, 2, . . . . Moreover, we consider two
types of boundaries: triangle and hexagon edges, illustrated in
Figs. 8(a) and 8(b), respectively. These are the simplest edge
types that respect current conservation, i.e., at each scattering
node the total number of incoming modes should equal the
total number of outgoing modes. The energy bands for ribbons
with triangle and hexagon edges are shown in Figs. 9(a) and
9(b) and 9(d) and 9(e) for the trivial T and Chern phases,
respectively. In the trivial phases, the existence of edge modes
depends on the type of edge. Indeed, in the flat-band limit
of the T phase (P = 1), a hexagon edge is decoupled from

the bulk which is localized in triangular orbits. Hence, the T
phase supports edge modes at a hexagon edge while there are
no edge modes at a triangle edge. The opposite situation then
holds for the H phase. In the Chern phases, edge modes exist
at any boundary. However, as we mentioned previously, while
differences of Chern numbers are well defined, the net Chern
number is undetermined because of the unbounded spectrum.
Moreover, the net Chern number depends in principle on the
entire set of occupied bands. This includes bands that are
not captured by the network model, which is only valid in a
finite-energy window near charge neutrality. It is thus a priori
not clear which of the two gaps in the fundamental domain
hosts edge modes. This is resolved in the network model by
accounting for the winding numbers (WI ,WII ) as discussed
in the previous section. Here, we use the bulk-boundary cor-
respondence [44] to obtain the winding numbers from the
finite-size calculation (see Fig. 9).

Finally, we consider a ribbon with a hexagonal edge and a
triangle edge on opposite sides. In this case, each trivial phase
hosts edge modes but only on the edge that does not support
a localized bulk mode. At the topological phase transition,
the edge mode moves to the opposite edge without changing
propagation direction. This is consistent with the fact that the
hexagonal and triangle edges naturally support edge modes of
opposite chirality (see Fig. 8). We find single-boundary edge
modes in all gapped phases for ribbons with both types of
edges. The mixed-edge ribbon is thus characterized by three
invariants: the Chern number of one of the two bands in the
fundamental domain and a pair of winding numbers, one for
each edge. The corresponding spectrum is shown in Figs. 9(c)
and 9(f), where we have indicated the boundary for each edge

FIG. 9. (a)–(c) Energy bands of a network ribbon with triangle (a), hexagon (b), and mixed (c) edges of width M = 12 for valley ν = 1
in the T phase [(ϕ, P) = (0, 1

2 )]. Here, vertical gray lines indicate the projected K̄± points at k = ∓2π/3L and the relevant winding numbers
(WI ,WII ) of the gaps are are indicated. (d)–(f) Same for the C+ = 1 phase [(c) in Fig. 7].
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mode. In a rectangular sample, it is not immediately clear
what happens to the single-boundary edge modes. We find
that in a theory with local current conservation, such a setup
is only possible if the system is coupled to a reservoir.

IV. DISCUSSION

From our discussion on the wave functions of the circular
domain wall, shown in Fig. 4(b), it is clear that the S matrix
should depend on the energy. As we approach zero energy,
the chiral domain-wall modes merge with the bulk Landau
level and the wave function separates into two parts with
exponentially suppressed overlaps. Hence, the network modes
of neighboring nodal loops strongly overlap near charge neu-
trality. At zero energy, the network therefore undergoes a
percolation transition, similar to a quantum Hall transition at
critical filling [47–49]. This implies that the S matrix traces
out a path in the (ϕ, P) plane as a function of energy and
Eq. (19) therefore becomes a nonlinear eigenvalue problem
that is solved self-consistently. Percolation then corresponds
to crossing phase boundary where the gap closes. Further
note that the orientation of the network is reversed as the
energy changes sign since this reverses the difference in the
local valley Chern number. Reversing the network orienta-
tion amounts to letting Mk → (13 ⊗ σx )M−k(13 ⊗ σx ) in
the network model.

Ideally, one obtains the energy dependence of the S matrix
from a microscopic theory. Here, we only demonstrate that we
can qualitatively reproduce both the energy bands and their
topology by imposing an appropriate energy dependence. To
this end, we require that the resulting bands are approxi-
mately symmetric and gapless at zero energy. Moreover, the
net valley Chern number of the two bands near charge neu-
trality should equal ν = ±1. These conditions are all met
in Fig. 10(a) by taking scattering parameters ϕ = −π/6 and
P = P(E ) as shown in Fig. 10(b). The corresponding path in
the (ϕ, P) plane is shown in the bottom left corner of Fig. 7
where the path for positive (negative) energies is shown as the
solid (dashed) line. We offset the paths from ϕ = −π/6 in
the figure for clarity. This path is chosen such that part of the
highest valence band dips into the Chern phase, picking up a
unit Chern number. We note that this energy dependence re-
sults in a tiny energy gap around zero energy which allows us
to calculate the Chern number numerically [41]. This gap can
be made arbitrarily small by decreasing the energy window
of the Chern phase [see Fig. 10(b)]. The energy bands thus
obtained are in qualitative agreement with those obtained from
the continuum model. However, the energy scale in Fig. 10(a)
is different than that in Fig. 2 by a factor v/vF which controls
the bandwidth. Hence, the average group velocity v of the
chiral network modes is smaller than the Fermi velocity of
graphene. In reality, the group velocity should also depend on
the energy [see Fig. 4(a)].

While the network model can qualitatively capture both
the energy bands and the topology of the bulk low-energy
physics of the periodic PMF, it cannot address the boundary
physics discussed in Ref. [12]. This is a consequence of the
coarse-grained approach for the network that breaks down at
the boundary. Indeed, the links of the network correspond to
structures on the scale of the strain field, while all micro-

FIG. 10. (a) Network energy bands for valley K+ along high-
symmetry lines of the SBZ [green path in Fig. 1(c)] for ϕ = −π/6
and P(E ) as shown in (b). The corresponding path in the (ϕ, P) plane
is shown in Fig. 7 as the green dashed (E < 0) and solid purple
(E > 0) line. The dashed band carries unit Chern number, while all
other bands are Chern trivial. In (b), the white (shaded) region below
the curve corresponds to the H (Chern) phase of the chiral kagome
network.

scopics are smoothed over. Although both the network and
atomistic models [12] support single-boundary edge modes,
there is no clear connection between these two cases. Indeed,
there is no well-defined bulk-boundary correspondence when
both valleys are taken into account because the total Chern
number inevitably vanishes when T symmetry is restored.
As such, the fate of the single-valley edge modes depends on
intervalley scattering at the boundary.

In conclusion, we have demonstrated that the single-valley
long-wavelength physics of periodically strained graphene
can be qualitatively understood with an oriented network
model. Here, the symmetries and connectivity of the network
are solely determined by the nodal lines of the corresponding
pseudomagnetic field which host chiral domain-wall modes.
In this work, we considered a commensurate strain field with
C3v symmetry which is relevant for graphene on NbSe2. For
this system, the network corresponds to a chiral kagome net-
work constrained by the valley-preserving symmetries of the
pseudomagnetic field. Moreover, the presence of a low-energy
valley chiral network is only dependent on the nodal structure
of the pseudomagnetic field, as long as the pseudomagnetic
varies slowly with respect to the effective magnetic length.
Hence, network physics should be ubiquitous in strained
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graphenes and robust against deviations from perfect period-
icity. We finally note that, compared to atomistic methods,
the network model is computationally cheap and can there-
fore be a valuable tool for investigating electronic transport
close to charge neutrality in periodically strained graphene.
In fact, a corollary of the presence of a low-energy electronic
network is the potential for interference phenomena in a meso-
scopic transport setup upon applying a weak real magnetic
field normal to the graphene plane, or an in-plane electric
field.
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APPENDIX A: VALLEY-PROJECTED THEORY

1. Continuum model

Here, we present more details on the continuum Hamil-
tonian given in Eq. (3). For simplicity, we take the gauge
Aν = νA(r)ex where

A(r) = −B0

3∑
i=1

sin(Gi · r + φ)

Giy
, (A1)

with

G1 = 4π√
3L

(
0

1

)
, G2,3 = 4π√

3L

(
∓√

3/2

−1/2

)
. (A2)

Up to a gauge transformation, this gauge is equivalent to the
gauge that is directly related to the strain field [15],

Aν (r) = ν h̄

e

√
3β

2a

(
εxx − εyy

−2εxy

)
, (A3)

where ν = ±1 is the valley index, β ∼ 1 a dimensionless
material constant, a ≈ 0.25 nm the graphene lattice constant,
and εi j the strain tensor. The corresponding pseudomagnetic
field (PMF) is given in Eq. (1) which has vanishing net
flux,

1

Vc

∫
cell

d2r Bν · ez = νBG=0 = 0, (A4)

with Vc = √
3L2/2 the area of the unit cell.

Remember that L = Na with integer N � 1 such that
the PMF varies slowly on the graphene lattice scale. In this
case, the single-valley theory is a good approximation. We
diagonalize the continuum Hamiltonian in Eq. (3) by Fourier

transform:

ψ̂ν (r) = 1√
V

∑
k∈SBZ

∑
G

ei(k+G)·rĉνk+G, (A5)

where the sum over momentum has been written as a sum over
the superlattice Brillouin zone (SBZ) and a sum over recip-
rocal lattice vectors of the superlattice. The valley-projected
Hamiltonian given in Eq. (3) becomes

Ĥν = h̄vF

∑
k∈SBZ

∑
G,G′

ĉ†
νk+G +

[
δG,G′ (k + G − K̄ν ) · (νσx, σy)

+
3∑

i=1

e−iφδG+Gi,G′ − eiφδG−Gi,G′

2il2
0 Giy

σx

]
ĉνk+G′ , (A6)

where we have placed the momentum origin at K̄ν =
ν(4π/3L)ex. Next, we truncate the Bloch Hamiltonian by only
taking |G| < kc where kc is increased until the energy bands
under consideration converge. Because of chiral symmetry,
the bands are symmetric about zero energy and we label them
as Eν,n(k) = sgn(n)E|n|(νk) with n a nonzero integer. The
corresponding Bloch wave function is written as ψnk(r) =
ei(k−K̄ν )·runk(r)/

√
N with

unk(r) = 1√
Vc

∑
G

eiG·rφnk,G, (A7)

where N is the number of cells and φnk are eigenstates of
the Bloch Hamiltonian that we obtain numerically. The total
density of sublattice σ = A, B for band n is

ρnσ (r) = 1

N

∑
k∈SBZ

u†
nk(r)

(
σ0 ± σz

2

)
unk(r), (A8)

with a positive (+) sign for sublattice A and a negative sign
(−) for sublattice B.

Throughout this paper, we work in dimensionless units by
sending

k → k0k, (A9)

E → h̄vF k0E , (A10)

with k0 = 4π/3L. In these units, the Hamiltonian only con-
tains one dimensionless parameter

(k0l0)−1 = 3

4π

L

l0
, (A11)

where (for t ≈ 3 eV)

h̄vF k0 = 2πt√
3N

≈ 11 eV

N
, (A12)

L

l0
≈ N

100

√
B0

T
. (A13)

For example, for N = 60 (L ≈ 15 nm) and B0 = 100 T, which
are realistic values for engineering a periodic strain field with
a varying height profile [12] of the order of 6 Å, we obtain
L/l0 ≈ 6 and h̄vF k0 ≈ 180 meV.
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2. Symmetries

Here, we show how the (pseudo)vector potential is con-
strained by the symmetries of the system. Note that the C3z

symmetry inherited from the strain field is not the microscopic
C3z symmetry, which has to be broken since otherwise the
strain tensor is only given by its trace (pure dilatation) and the
pseudovector potential would be absent. Indeed, one can think
about the pseudovector potential in terms of a strain-induced
local shift of the Dirac point from the zone corner, to which
it would be fixed when microscopic C3z were conserved. The
remaining symmetries that we consider are spinless time re-
versal (T ), twofold rotation (C2z), and mirror symmetry across
the y axis (Mx ). We take the following representation for the
action of the symmetries on the field operators:

T̂ ψ̂ν (r)T̂ −1 = ψ̂−ν (r), (A14)

Ĉ2zψν (r)Ĉ−1
2z = σxψ̂−ν (−r), (A15)

M̂xψ̂ν (x, y)M̂−1
x = ψ̂−ν (−x, y), (A16)

Ĉ3zψ̂ν (r)Ĉ−1
3z = eiν(2π/3)σz ψ̂ν (C3zr). (A17)

Next, we investigate how these symmetries act on the (pe-
sudo)vector potential. Under time reversal, we find from
T̂ Ĥ T̂ −1 = Ĥ with Ĥ = Ĥ+ + Ĥ−,

T : A(r) → −A(r), Aν (r) → Aν (r), (A18)

where A (Aν) corresponds to a real vector potential (pseu-
dovector potential) and we used T iT −1 = −i. We see that
a PMF conserves T . On the other hand, under a twofold
rotation, we have

C2z : A(r) → −A(−r), Aν (r) → Aν (−r), (A19)

such that C2z is conserved when A(r) = −A(−r) + ∇ f
for a real magnetic field and Aν (r) = Aν (−r) + ∇ f for
a PMF, where f (r) is a scalar function. Hence, the real
(pseudo)magnetic field has to be an even (odd) function of
the position vector. The PMF that we consider in this work
[see Eq. (1)] generally does not conserve C2z which is in
fact broken by the substrate. Only the special case φ = π/2
conserves C2z, yielding a gapless spectrum that can be mapped
to a triangular chiral network. Finally, the mirror Mx gives

A(x, y) →
[
−Ax(−x, y)

+Ay(−x, y)

]
, (A20)

Aν (x, y) →
[
+Aνx(−x, y)

−Aνy(−x, y)

]
, (A21)

such that for a PMF, Mx is conserved if

Aνx(x, y) = +Aνx(−x, y) + ∂x f , (A22)

Aνy(x, y) = −Aνy(−x, y) + ∂y f , (A23)

and Bν (x, y) = Bν (−x, y). Note that, in general, the mirror
axis is offset to x = −2φ/3.

Finally, we note that the Hamiltonian in Eq. (3) also has a
chiral symmetry,

Ĉψ̂ν (r)Ĉ−1 = ψ̂†
ν (r)σz, ĈiĈ−1 = −i, (A24)

such that ĈĤν Ĉ−1 = Ĥν . However, this is a model-dependent
symmetry due to the absence of terms proportional to σ0 or
σz in the Hamiltonian. Such terms are in principle allowed by
symmetry, e.g., a strain-induced pseudoelectrostatic potential
or a constant sublattice-staggering term, respectively. The lat-
ter is proportional to the trace of the strain tensor [13,50]. In
the tight-binding framework, the pseudoelectrostatic potential
originates from a modulation of intrasublattice hopping terms.

APPENDIX B: NETWORK MODEL

1. Symmetry constraints

Under the threefold rotation, the subnodes of the kagome
network undergo a cyclic permutation 1 → 2 → 3 → 1 and
therefore S0 = S1 ∼ S2 ∼ S3 where ∼ indicates that the equal-
ity holds up to a diagonal unitary transformation. However,
the resulting phases can always be removed by choos-
ing a suitable basis for the amplitudes, i.e., (a1, a2, a3) →
(a1,U2a2,U3a3) and similar for outgoing amplitudes, where
U2 and U3 are diagonal 2 × 2 unitary matrices.

The composite symmetry MxT is more tricky. First, we
consider the action of Mx and T separately. To this end,
we need to consider both valleys. For subnode 1 [red dot in
Fig. 5(a)] we have(

b1

b′
1

)
=

(
S1 0
0 S′

1

)(
a1

a′
1

)
, (B1)

where the unprimed and primed quantities correspond to val-
leys K+ and K−, respectively. Here, we have assumed that
there is no intervalley scattering. Under Mx, the amplitudes
transform as

Mxa1M−1
x = a′

1, (B2)

Mxb1M−1
x = b′

1, (B3)

which is clear from Fig. 5(a). We then obtain(
b′

1
b1

)
= Mx

(
S1 0
0 S′

1

)
M−1

x

(
a′

1
a1

)
(B4)

or

Mx

(
S1 0
0 S′

1

)
M−1

x =
(

S′
1 0

0 S1

)
. (B5)

When Mx is a symmetry, we have S1 ∼ S′
1. On the other hand,

time-reversal symmetry yields

T a1T −1 = (b′
1)∗, (B6)

T b1T −1 = (a′
1)∗, (B7)

or

T
(

S1 0
0 S′

1

)
T −1 =

(
S′

1 0
0 S1

)t

, (B8)

such that S1 ∼ (S′
1)t when T is conserved. The combined

symmetry MxT yields S1 ∼ (S1)t . Since the diagonal unitary
only acts within subnode 1, it can removed independently of
the phases that were removed under the constraint given by
C3z.
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FIG. 11. Loop order parameters for the band En,+ shown in the (ϕ, P) scattering parameter space of the chiral kagome network, where the
white curves give the gap-closing lines.

In summary, threefold rotation symmetry (C3z) and mir-
ror symmetry combined with time-reversal symmetry (MxT )
constrain the S matrix as follows:

S = 13 ⊗ S0, S0 = (S0)t . (B9)

Any symmetric unitary matrix can be written as S0 = exp(iX )
with X = X t real symmetric. In this case, we can write
X = E0σ0 + d1σ1 + d3σ3 with three real parameters, which is
equivalent to Eq. (9).

2. Classical loop configurations

Since there are two nonequivalent triangles in the kagome
lattice, as C2z is broken, there are three possible classical loop
configurations, depending on whether the loops are going
along one of two nonequivalent triangles or the hexagon.
On average, for a single band, the loops run only along one
of the two triangles for P ≈ 1. To this end, we calculated
the following “loop order parameters” for the network bands
En,s(k):

t1,s = 33

N

∑
k

|b11b21b31|2s , (B10)

t2,s = 33

N

∑
k

|b12b22b32|2s , (B11)

hs = 66

N

∑
k

|b11b12b21b22b31b32|2s , (B12)

which are shown in Fig. 11. Here, t1s (t2s) is close to unity if
the band corresponds to a classical loop configuration along
the downward (upward) pointing triangles in the kagome net-
work and hs is close to unity if it corresponds to loops around
hexagons (see Fig. 7). We find that h+ = h− and t1,s = t2,−s.

Note also that t1,s and t2,s do not vanish entirely in the H phase
because, in that case, the amplitude is equal for all links, and
they attain the average value 33/63 = 1

8 .

3. Network ribbons

The calculation for the network ribbons goes as follows:
one first constructs a large S matrix that describes scattering
within the unit cell of the ribbon. Next, one constructs the
matrix M(k) which contains the Bloch phases. We then obtain

SM(k)bk = ei2πE/EL bk, (B13)

where now S contains many copies of S0 together with bound-
ary S matrices for the top and bottom edges. The connectivity
matrix M(k) for the ribbon is obtained in a similar way as for
the bulk system [see Eqs. (10)–(15)].

4. Energy dependence of the S matrix

When the S matrix depends on the energy, Eq. (19)
becomes a nonlinear eigenvalue problem, which we solve
self-consistently as follows. At each momentum, we first solve
Eq. (19) by replacing S (E ) with S (E1) where E1 is our first
guess. We then obtain energies {E2,n} where n labels the
eigenenergies from the lowest to the highest value. For each
n, the energy is updated by setting S = S (E2,n) and calculat-
ing the nth eigenvalue. Then we repeat this procedure until
convergence.

The energy dependence of the scattering parameters that
we have used to obtain the network band structure shown in
Fig. 10(a) is explicitly given by

P(E ) = 1 + f (E ) − f (0)

4 sin2(ϕ + 2π/3)
, ϕ = −π

6
, (B14)

with f (E ) = exp(−a|3E/EL − b|) and where we take a =
1.2 and b = −0.1.
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