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The chirality-induced spin selectivity (CISS) effect gives rise to strongly spin-dependent transport through
many organic molecules and structures. Its discovery raises fascinating fundamental questions as well as the
prospect of possible applications. The basic phenomenology, a strongly asymmetric magnetoresistance despite
the absence of magnetism, is now understood to result from the combination of spin-orbit coupling and chiral
geometry. However, experimental signatures of electronic helicity were observed at room temperature, i.e., at
an energy scale that exceeds the typical spin-orbit coupling in organic systems by several orders of magnitude.
This paper shows that a much larger energy scale for CISS emerges for currents carried by polarons, i.e., in
the presence of strong electron-phonon coupling. In particular, we found that polaron fluctuations play a crucial
role in the two manifestations of CISS in transport measurements—the spin-dependent transmission probability
through the system and asymmetric magnetoresistance.
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I. INTRODUCTION

Organic molecules and structures—the building blocks
of all organisms—commonly exhibit a well-defined chiral-
ity. For example, amino acids, enzymes, and various sugars
break inversion symmetry. Pasteur first discovered this prop-
erty; he observed that shining linearly polarized light on
organic molecules in their natural form rotates the polariza-
tion axis. Soon after, a connection was made between the
chiral structure of the molecules and their optical activity.
Recent experiments have found that, in addition to being
optically active, chiral organic molecules and structures also
exhibit strongly spin-dependent electronic transport [1–13].
Such behavior was completely unexpected, as the molecules
are neither magnetic nor do they exhibit strong spin-orbit
coupling (SOC). This effect, called chirality-induced spin se-
lectivity (CISS), has been observed in various organic chiral
molecules and structures at room temperature and under an
applied voltage on the order of 1 V.

The basic experimental setup for observing CISS is com-
posed of a layer of molecules adsorbed on a metallic
surface [1,2,10]. Electrons are photoexcited from the metal
and pass through the molecular layer, at which point their
spin polarization is measured. Through such experiments,
it was discovered that the resulting spin polarization de-
pends strongly on the molecule’s chirality: the right-handed
(left-handed) molecules preferentially transmit the positive
(negative) spin projection. For example, the intensity of the
outgoing electron beam passing through a layer of double-
stranded DNA exhibits a ratio of more than 4 : 1 between the
spin projection along and opposite to the propagation direc-
tion [2]. This measurement directly probes the transmission
probability through the molecules, Ts′,s, where s (s′) is the
spin of the incoming (outgoing) electron. The experimental
observations thus imply that the probability of an outgoing
s′ =↑ electron is different from that of one with s′ =↓, for un-
polarized incoming electrons, i.e.,

∑
s=↓,↑ T↑,s �= ∑

s=↓,↑ T↓,s.

This property could readily be accounted for if the molecules
had been magnetic. However, there is no other evidence of
time-reversal symmetry breaking in these systems.

The manifestation of the CISS effect in scattering ex-
periments can be explained by the emergence of chirality-
dependent correlations between the electron spin and its
direction of propagation. Theories [14–27] suggest that these
correlations stem from a combination of the curved geometry
of the molecule with SOC. As a consequence of the weak SOC
in organic materials, all these models predict spin polarization
of only a few percent, well below the observed values and in a
narrow energy window compared to the temperature at which
the effect is observed. Finding the mechanism amplifying this
relatively weak spin-dependent transport phenomenon is one
of the most basic questions in the field.

A potential clue to the missing enhancement mecha-
nism lies in measurements of the current through single
molecules [3], superhelical polymer microfibers [12], multi-
heme electron conduits [8], and two-dimensional chiral hybrid
organic-inorganic perovskites [9,11] connected to a magnetic
substrate. The substrate is magnetized perpendicular to its
surface, and the current through these systems is measured
in a two-terminal geometry. A comparison of the currents
for two opposite magnetization directions reveals a nontrivial
asymmetry in response to a voltage bias. This property is
similar to giant magnetoresistance (GMR) observed when a
current flows through a tunneling junction between two ferro-
magnets [28]. There, switching the magnetic moment of one
ferromagnetic layer results in a significant change in the con-
ductance. In the CISS experiments mentioned above, however,
the nonmagnetic molecule respects time-reversal symmetry.
Consequently, the observed asymmetry in the resistance R
is forbidden in linear response [29], where Onsager-Casimir
relations [30,31] constrain it to be an even function of the
magnetic field B, i.e., R(B) = R(−B). By contrast, this con-
straint does not apply to GMR, since only one of the two
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magnets is reversed. Experimentally, the typical voltage in
which the current rises above the noise level is on the order
of 0.1 V in chiral molecules exhibiting asymmetric magne-
toresistance (AMR; for a review, see Ref. [32]). Crucially, the
current-voltage characteristics are strongly nonlinear; hence,
violations of Onsager relations are allowed. Nevertheless,
without interactions, the current still obeys I (B) = I (−B),
and an asymmetry in B can be obtained only in the presence
of inelastic effects [33]. Thus, the two-terminal experiments
open a unique window into interaction effects.

Biological systems where CISS is observed are mostly
band insulators, and electron-electron interactions should not
play a significant role in their transport properties. By contrast,
vibrational modes abound in these soft biological systems
at room temperature. As a consequence, charge transfer fre-
quently occurs via polarons [34–36]. The polaron motion
along the molecule polarizes the environment, resulting in
nontrivial charge dynamics. In particular, each polaron con-
sists of a phonon cloud that substantially increases its mass
compared to the electronic band mass. The time evolution of
a polaron in a chiral molecule was studied in Refs. [37–39] for
noninteracting polarons, i.e., accounting for the enhancement
of the effective mass alone. They found that the polaron spin
is polarized during its propagation through the system. While
the mean-field effect may explain the spin polarization in the
scattering experiment, it does not provide the strong nonlin-
earity required for obtaining asymmetric magnetoresistance
[40].

The present paper systematically studies CISS of polarons
beyond mean field, where the interactions between the polaron
and the accompanying cloud of phonons modify their dynam-
ics. In Ref. [41] it was shown that the dynamical readjustment
of the environment to a charge entering and exiting the chiral
molecule, the Franck-Condon factor [42], can further increase
the energy window over which spin selective scattering is
observed. Such a boundary effect does not give rise to an
increased spin polarization with the molecule length, as was
observed in experiment [2,9]. Moreover, the Franck-Condon
factor does not induce the nonlinear effects required for
generating an asymmetric magnetoresistance. Therefore, we
consider here energy exchange between the polarons and the
phonons as the former move along the molecule. We derive
the nonperturbative polaron currents in both the scattering and
magnetoresistance setups. Specifically, we consider only cor-
rections to the electronic spectrum that include two scattering
events of the polarons by the phonons. Our approximation is
equivalent to keeping the lowest order in the GW expansion
[43–45] of the self-energy. Although the GW approximation
is typically applied in studying electron-electron interactions
in molecules and solids, it is known to capture the qualitative
behavior of many phenomena induced by electron-phonon
coupling [46,47].

A theoretical study by Fransson [48] recently found a
strong asymmetry in magnetoresistance due to spin-dependent
electron-phonon coupling. Such an interaction, which in-
volves the transfer of angular momentum between the
electrons and the vibrational modes, naturally occurs in chiral
systems. It requires nonlocal modes (for example, acoustic
phonons) that probe the molecular structure. The majority of
vibrational modes in molecules are, however, more localized.

These phonons are crucial for facilitating electron transport in
biological molecules [49] and, therefore, have the potential to
affect CISS. Our paper complements Ref. [48] and shows that
localized modes also support the CISS effect. Specifically, we
consider interactions with featureless optical phonons and ob-
tain a strongly spin-dependent charge transport in both types
of experimental setups.

We find that the unique charge dynamics of the polarons
give rise to spin-dependent transport at all energy scales. Our
calculations reveal that within mean-field theory the polaron
band narrows in the presence of optical phonons while the
SOC remains unchanged. Thus, the energy window exhibit-
ing CISS encompasses a more significant fraction of band
energies in agreement with the conclusions of Refs. [37–39].
Our result is consistent with the experimental observation
of a sizable spin-dependent transmission at energies up to a
few electron volts away from the Fermi energy [1,2,10,50].
By contrast, mean-field theory does not capture the asym-
metry in the two-terminal magnetoresistance. Therefore, we
proceed by examining the CISS effect of polarons beyond
this approximation. As the polarons propagate through the
molecule, they polarize their environment by emitting and
absorbing phonons. Consequently, they explore a large part
of the energy space, including the region of states exhibiting
strong spin selectivity. In addition to polarizing the current,
the strong fluctuations of the polarons during their motion
along the molecule give rise to highly nonlinear current-
voltage relations. Consequently, the two manifestations of
CISS in transport are of similar magnitude. Moreover, we
obtained robust spin-dependent transport at energies below
the conduction band. Since electrons entering the molecule at
such energies cannot propagate without absorbing a phonon,
interactions play a crucial role in transport. This is of particu-
lar importance since the chemical potential of most organic
molecules exhibiting CISS resides within the band gap.
Consequently, the onset of current in the magnetoresistance
measurements is due to such nonlinearities, supporting strong
asymmetry.

The remainder of the paper is organized as follows. In
Sec. II, we outline the model for CISS including interactions.
In Sec. III we introduce the Lang-Firsov [51] transforma-
tion and present expressions for the current in the presence
of polarons. Sections IV and V discuss our results for the
scattering and magnetoresistance measurements, respectively.
Finally, we conclude with a summary and discussion in the
last section.

II. MODEL FOR CISS IN CHIRAL MOLECULES

The experimental observation of CISS across many dif-
ferent molecules suggests that it is not very sensitive to
microscopic details. The questions we propose to address are
qualitative in nature. Consequently, they are best addressed
within a theoretical framework that captures the essential
properties of the molecules, such as their helical structure, in
a minimal fashion and is suitable for numerical and analytic
analyses. Microscopically, we model the chiral molecules as
helix-shaped atomic chains of length Lmol = Na0 with the
Hamiltonian

Hmol = H0 + Hint + Henvir. (1)
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The chemical bonds with neighboring atoms select a preferred
direction τ̂n at each site n (tangential to the helix), which we
use as quantization axis for the orbital angular momentum,
i.e., we introduce the quantum number � as the eigenvalue
of �Ln · τ̂n. The helical structure results in an anisotropic en-
vironment experienced at each atom that strongly lifts the
degeneracy [52] between states with the same total angular
momentum but different |�|. Therefore, the mixing between
such states is negligible, and the effective single electron
Hamiltonian can be written as

H0 =
∑
n,�,s

t̃�[c†
n,�,scn+1,�,s + c†

n+1,�,scn,�,s]

+ �SOC

∑
n,�,�′,s,s′

c†
n,�,s[�σn · �Ln]�,s;�′,s′cn,�′,s′ . (2)

The operator c†
n,�,s (cn,�,s) creates (annihilates) an electron

at orbital state � on site n inside the chain 1 < n < N . The
quantization axis of the electron spin s is along the center
of the helix, which we denote as the z direction, and �σ is a
vector of the three Pauli matrices. The first term describes the
kinetic energy associated with hopping between neighboring
atoms along the helix. The second term has the familiar form
of atomic SOC. In the present case, due to minimal orbital
mixing, SOC simply favors spin alignment of a state with
� �= 0 in the direction of the chemical bonds, τ̂n. For the
helix-shaped chain, the SOC is

�SOC �σn · �Ln

= �SOC�

[
χ sin

2πn

R̃
σx − cos

2πn

R̃
σy − b

2πR
σz

]
1�,�′ .

(3)

Here b and R are the pitch and radius of the helix, R̃ =√
(2πR)2 + b2, and χ = ± denotes the handedness of the

atomic helix. The spin quantization axis lies along the molecu-
lar axis. Notice that in this model only � �= 0 bands experience
SOC. These states are typically responsible for charge transfer
via organic molecules and, thus, also for CISS. In particular,
we focus here on states with � = ±1, i.e., on transport through
px and py orbitals. To further simplify our model, we neglect
the last term of the SOC in Eq. (3), which has a limited
influence on the strength of the spin-dependent transport. Our
Hamiltonian is the low-energy limit of the models used in
Refs. [24–27] for demonstrating the CISS effect.

The environment includes atomic vibrations and localized
charges that interact with the electrons. Some of these modes
are sensitive to the helical structure of the molecule, for ex-
ample, the acoustic vibrations. The majority of the modes are,
however, relatively localized on a small number of atoms and
do not hold information about the lattice structure. To keep
the environment featureless, we model it as a set of optical
phonon modes [53]:

Henvir =
∑

q

�q

∑
n

a†
q,naq,n. (4)

The operator a†
q,n (aq,n) creates (annihilates) a phonon of fre-

quency �q on site n. The scattering of electrons by an optical
phonon, which is characterized by the coupling constant Mq,

is diagonal in space and spin [53]:

Hint =
∑

n,q,�,s

Mqc†
n,�,scn,�,s(a

†
q,n + aq,n). (5)

The Hamiltonian Hmol is the starting point of our deriva-
tions. In the following parts, we study the manifestation
of the electron-environment coupling on the spin-dependent
transport properties of the chiral molecules. We focus on the
polaron limit where the charge carriers consist of electrons
surrounded by a cloud of phonons. To calculate the transport
properties of a molecule, we need to connect each end to an
electrode [58]:

Htot =HL + Hmol + HR

+
∑
�,s

[
γ L

s c†
1,�,sdL,1,�,s+ γ R

s c†
N,�,sdR,1,�,s+ H.c.

]
. (6)

The parameter γ α
s is the coupling of the molecule to lead α.

The index s allows us to implement a magnetic lead where the
coupling is spin dependent. The left and right leads are gov-
erned by a uniform nearest-neighbor hopping Hamiltonian,
i.e.,

HL/R = − ζ

∞∑
n=1

∑
�,s

[d†
L/R,n+1,�,sdL/R,n,�,s+ H.c.]. (7)

The operator d†
L/R,n,l,s (dL/R,n,l,s) creates (annihilates) an elec-

tron in state �, s on site n of lead L/R.

III. STRONG ELECTRON-PHONON COUPLING:
POLARONS IN A CHIRAL SYSTEM

In the strong-coupling limit, the electron motion is ac-
companied by a cloud of phonons. Such combined identities,
also known as polarons, are the natural quasiparticles of the
system [51,54]. These quasiparticles are found by applying
the Lang-Firsov transformation

cn → eScne−S ≡ cnXn, (8)

where

S =
∑
n,q,s

Mq

�q
c†

n,scn,s(a
†
q,n − aq,n). (9)

The operator Xn (X †
n ) annihilates (creates) the phonons’ cloud:

Xn = exp

⎧⎨
⎩

∑
q,s

M

�q
(aq,n − a†

q,n)

⎫⎬
⎭. (10)

Applying the transformation on the Hamiltonian in Eq. (1),
H̄mol = eSHmole−S , results in

H̄�
mol = −

∑
n,s,s′

c†
n,�,s

(
�SOC �Ln · �σ s,s′

n + Uδs,s′
)
cn,�,s′

+
∑

q

�qa†
qaq + t̃

∑
s,n

[λn+1,nc†
n,�,scn+1,�,s + H.c.]

+ t̃
∑
s,n

[(X †
n Xn+1 − λn+1,n)c†

n,�,scn+1,�,s + H.c.].

(11)
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Here λn,n+1 ≡ λ = 〈X †
n+1Xn〉 < 1 denotes the average

phononic fluctuations in the absence of electrons and

U = ∑
q

M2
q

�q
is the polaron shift. The polaron-phonon

interaction terms in the last line describe the phonons’
reorganization to the polaron’s new location after a hopping
event occurred. The amplitude λn,n+1 includes only processes
where the phonon state is unchanged, and thus it merely
accounts for their modified potential energy. The last term
in the Hamiltonian contains adjustments that involve phonon
emission and absorption. Notice that a phonon-mediated
electron-electron interaction term also exists, but we are
mainly interested in transport properties at energies within
the band gap. Therefore, it is reasonable to assume very few
electrons are involved in the process. Moreover, properly
accounting for the effect of electron-electron interactions on
CISS also requires adding Coulomb repulsion [55] and is
beyond the scope of this paper.

Within mean-field theory, i.e., neglecting the last term in
Eq. (11), the sole effect of the polarons is to reduce the hop-
ping amplitude to t = t̃λ. Equivalently, the polarons’ mass is
larger than the one of the electrons, and their band is narrower.
The mean-field theory is an extreme case of the large polaron
limit. In the next section, we show that band narrowing can
enhance the manifestation of CISS in scattering experiments
(as demonstrated in Refs. [37–39]), but it cannot capture
the asymmetry in magnetoresistance. The last term in the
Hamiltonian facilitates hopping events that are accompanied
by phonons’ emission and absorption. Below, we show that
these fluctuations can explain the large polarization in both
scattering and transport experiments.

A. Mean-field theory approximation

Within mean-field theory, the polaronic Hamiltonian (11)
describes free particles on a chiral lattice with a temperature-
dependent hopping amplitude:

t (T ) = t̃λ = t̃ exp

⎧⎨
⎩−

∑
q

(
Mq

�q

)2

coth

(
�q

2T

)⎫⎬
⎭. (12)

The hopping amplitude and, correspondingly, the band’s
width become smaller as temperature increases. By contrast,
the SOC remains independent of temperature. This is a pecu-
liar feature of the mean-field solution of polarons composed
of electrons and optical phonons. The vibrations are all locally
on-site and do not affect the intersite coupling, therefore only
fluctuations beyond mean field can modify the SOC. Alter-
natively, strain can induce changes in the SOC, as shown both
experimentally [56] and theoretically [57]. The strength of the
CISS effect is quantified through the spin polarization P (ε) =
[T↑(ε) − T↓(ε)]/[T↑(ε) + T↓(ε)], where Ts(ε) = ∑

s′ Ts′,s(ε)
is the transmission probability of a particle with incoming
spin s. The spin-dependent transmission probability to pass
through such a system of noninteracting particles connected
to two leads can be straightforwardly calculated [58].

The spin polarization in the absence of interactions
is determined by a delicate interplay between the spin-
dependent hopping amplitude and the SOC (see the analysis
in Refs. [24–26]). To clearly see the role of these two terms in

building up the CISS effect, we use the spin-dependent trans-
formation cn,�,s = e−iχsπn/R̃ fn,�,s on the mean-field Hamilto-
nian and obtain

HMF = − U
∑
n,�,s

f †
n,�,s fn,�,s +

∑
n,�,s

[τs f †
n,�,s fn+1,�,s + H.c.]

− �SOC

∑
n,�,s,s′

f †
n,�,s�σ

s,s′
y fn,�,s′ . (13)

In this basis, the hopping parameter is spin dependent, τs =
te−iχsπ/R̃. The hopping and SOC terms tend to align the
spins in different directions: The former acts as an effec-
tive magnetic field along the z axis that is proportional to
the polaron momentum. Consequently, it splits the polaron
spectrum according to their helicity—the projection of the
spin on the momentum h ≡ k̂ · �s = ±1/2. This splitting alone,
however, does not lead to spin-dependent transport. The SOC
is an effective magnetic field in the �ŷ direction. In the limit,
�SOC � t (T ), the main effect of the SOC term is to gap states
of one helicity while keeping the other intact. As a result, spin
selectivity is obtained at energies within this partial gap. Since
the gap is proportional to �SOC, only a small fraction of the
band supports CISS. In the opposite limit �SOC  t (T ), the
polarons get spin polarized along �ŷ, thereby lacking a well-
defined helicity. No CISS effect can be seen in this limit as
different orbital states � = ±1 are spin polarized in opposite
directions. Thus, we expect spin polarization to depend on
temperature nonmonotonically. For a detailed discussion of
the mean-field Hamiltonian see Refs. [24–26].

In Fig. 1 we present the spin polarization P (ε) as a function
of the energy, for four different temperatures. At low temper-
ature, Fig. 1(a), polarization is seen only at a small fraction
of the band. At temperatures where �SOC � t (T ) the window
of energies that shows CISS becomes comparable with the
bandwidth [see Fig. 1(b)]. Finally, as illustrated in Fig. 1(d),
the polarization vanishes at a high enough temperature.

To quantify the strength of the CISS effect, we calculate
the polarization of the average transmission:

〈P〉E =
∑E

ε=−∞[T↑(ε) − T↓(ε)]∑E
ε=−∞[T↑(ε) + T↓(ε)]

. (14)

The average here is taken over energies in the window ε < E ,
and it corresponds to sending an electron beam with a wide
range of energies. For convenience, we ignore the constant
change in energy inflicted by the polaron shift. The average
polarization in the lower half band 〈P〉E=0 as a function of
temperature is shown in Fig. 2. The figure clearly illustrates
the expected nonmonotonous dependence of the CISS effect
on temperature. We anticipate, however, that the experiments
on organic molecules can only observe an enhancement of the
CISS effect with temperature. The SOC of organic structures,
which is on the order of a few meV, is much smaller than
the coupling between neighboring sites ≈100 meV. Conse-
quently, the down turn of the polarization occurs well above
room temperature when t (T ) becomes comparable to �SOC.

One of the main mysteries of the CISS effect is the dis-
crepancy between its strength and robustness in contrast to the
small SOC in organic systems. Our results above reproduce
the finding of Refs. [37–39] that the spin selectivity of the
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FIG. 1. The transmission probability (black) and the correspond-
ing spin polarization (blue) calculated within mean-field theory as
a function of energy for four different temperatures: (a) T = 0.02t0,
(b) T = 0.3t0, (c) T = 0.675t0, and (d) T = 1.05t0. The transmission
illustrates the narrowing of the band with increasing temperature.
Moreover, as a consequence of SOC, the energy spectrum splits
into two subbands at high enough temperatures t (T ) � |�SOC�|. At
the lowest temperature [panel (a)] only a small fraction of the band
|�SOC�|/t exhibits significant spin polarization. This fraction grows
with temperature and eventually the transmission at all energies is
spin dependent [panel (b)]. As t (T ) � |�SOC�|, however, the spin
polarization of all states decreases with increasing T [panels (c) and
(d)]. The calculation is done for a single optical mode with �0 =
0.1t0 and M = 0.05t0, where t0 is the hopping at zero temperature;
the SOC amplitude is �SOC = 0.15t0.

scattering probability is enhanced in the polaron regime at
moderate temperatures. The high-temperature regime, though
not accessed in experiment, should exhibit opposite behavior.

To complete our discussion of the mean-field theory, we
demonstrate its insufficiency in explaining the asymmetry in
magnetoresistance measurements. For this purpose, we cal-
culate the transmission probability in the presence of one
magnetic lead, specifically in the left one, �L

↑ �= �L
↓. Reversing

the magnetization M corresponds to interchanging �L
↑ ↔ �L

↓.
Within the mean-field theory, the current as a function of

FIG. 2. The average mean-field spin polarization of the lower
half band as a function of temperature. The calculation is performed
for the same parameters as Fig. 1.

voltage is given by the Landauer formula [59]

I (M ) = e

h̄

∑
s=↑,↓

∫
dε[ fL(ε) − fR(ε)]Ts(M, ε), (15)

where f j (ε) is the distribution function in leads. For measure-
ment of the magnetoresistance, the leads are at equilibrium
with chemical potentials μL and μR = μL + eV ; f j (ε) =
[e(ε−μ j )/T + 1]−1 is the Fermi-Dirac distribution function of
lead j. We found that I (M ) = I (−M ), as expected in the
absence of interactions [40]. Thus, to understand the CISS
effect on its different manifestations, we must include hopping
events accompanied by phonon emission and absorption.

B. Transport properties beyond mean field

The molecule’s transport properties, those measured in
the scattering and in the magnetoresistance experiments, are
determined, within mean-field theory, by the transmission
probability through the system. This relation to Ts does not
hold, however, beyond mean field. We extract both mea-
surable quantities from the generalization of the Landauer
formula for the current through interacting systems [60]:

I j (M ) = ie

h̄

∫
dε

∑
n,n′,�,�′,s,s′

�
j
n′,�′,s′;n�,s

× {G<
n,�,s;n′,�,s(ε)[1 − f j (ε)] + G>

n,�,s;n′,�,s(ε) f j (ε)}.
(16)

The above equation describes the current flowing from
the molecule to the lead j, and Gn′,n is the interacting
Green’s function (GF) in Keldysh space [61]. The
superscripts < and > denote the lesser and greater
components, G<

n,�,s;n′,�′,s′ (t ) = i〈c†
n′,�′,s′ (0)cn,�,s(t )〉 and

G>
n,�,s;n′,�′,s′ (t ) = −i〈cn,�,s(t )c†

n′,�′,s′ (0)〉. The bare current

vertex is �
j
n,�,s;n′,�′,s′ = 2πρ

j
�,sδ�,�′δs,s′δn′, jδn, j , where ρ

j
�,s

denotes the density of states with spin s and orbital � in the
lead j. The Green’s functions are renormalized by both the
coupling to the leads and the interactions:

G< = i
∑
j=L,R

f j (ε)GR� jGA + GR�<GA, (17a)

G> = i
∑
j=L,R

( f j − 1)GR� jGA + GR�>GA, (17b)

where matrix multiplication is implied. The self-energy �(ε)
includes all interaction corrections; the corresponding compo-
nents of the GF are

[GR,A]−1 = ε − HMF ± i

2
[�L + �R] − �R,A

≡ [gR,A]−1 − �R,A. (18)

To calculate the current, we apply the widely used GW
approximation and include only the lowest order corrections
to the self-energy [62]. In this nonperturbative approach, the
current contains contributions of all orders in the polaron
fluctuations. However, we sum over only an infinite subset
of corrections in which the self-energy is the simplest. One
of the challenges in calculating the current within the GW
approximation is to properly include vertex corrections. For
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the calculation of the magnetoresistance, we use the expres-
sion for the current derived in Ref. [62] for the two-terminal
setup. The leads are set to be at equilibrium with two different
chemical potentials [see also the discussion below Eq. (15)].
In the scattering experiment, on the other hand, the leads are
out of equilibrium:

(i) The lead where the current is measured is empty, i.e.,
fL(ε) = 0.

(ii) The other lead, from which the electrons are injected
into the molecule, consists of states at a single energy ε0 and
spin s0. The corresponding distribution function is fR(ε) ∝
δ(ε − ε0)δs,s0 .

Under these conditions, the current in the empty lead is
proportional to the transmission probability Ts(ε′, ε0). Here
the initial and final energies of the electron passing through
the system no longer have to be identical, ε′ �= ε0. We modify
the derivation of Ref. [62] to find a consistent expression
for the transmission probability (the equation is shown in
Appendix B).

The main effect of fluctuations is modifying the polaron
dynamics. For example, fluctuations generate long-distance
polaron hopping that does not exist within mean-field theory
(see Appendix A). Specifically for the chiral molecules, the
fluctuations introduce spin dependence into the polaron mo-
tion. The latter is already captured by the GW approximation,
for which the self-energy is

�<,>
n,s;n′,s′ (ε) = i

∑
q,p,p′

∫
dω

2π
D<,>

n,p;p′,n′ (q, ω)g<,>
p,s;p′,s′ (ε − ω),

(19a)

�R,A
n,s;n′,s′ (ε) = i

∑
q,p,p′

∫
dω

2π

[
D>

n,p;p′,n′ (q, ω)gR,A
p,s;p′,s′ (ε − ω)

+ DR,A
n,p;p′,n′ (q, ω)g<

p,s;p′,s′ (ε − ω)
]
. (19b)

We emphasize that the coupling to phonons in the po-
laron Hamiltonian Eq. (11) is spin diagonal. Nevertheless,
the self-energy inherits spin dependence from the polaron
propagator. As was shown in Sec. III A, the unique SOC
emerging in chiral structures induces spin selectivity in the
electron propagator even in the absence of interactions.
Since all terms are diagonal in �, we suppress this index
below. The propagation of the phonon cloud can be writ-
ten as Dn,p;p′,n′ (q, ω) = Vn,pUn,p;p′,n′ (q, ω)Vp′,n′ . The matrix
Vn,p = t[δn,p−1 + δn,p+1] appears because the polaron fluctu-
ation terms are nondiagonal in the coordinate. The function
Un,p;p′,n′ = −i[〈T [X †

q,n(t )Xq,p(t )X †
q,p′ (0)Xq,n′ (0)]〉 − λ2] is the

(time-ordered) four-point correlation function of the phonon
cloud. As discussed in the previous sections, within mean-
field theory, a strong spin-dependent polaron motion through
the chiral molecules is obtained in a limited energy window
(see Fig. 1). The self-energy corrections (19) extend the spin
dependence to all energies connected to the original narrow
range by emission and absorption of phonons.

An additional simplification of the self-energy is obtained
by neglecting the renormalization of the phonon modes by the
electrons. Such a scenario occurs for a large boson bath, i.e.,
in the presence of a large number of phonons, as we expect

to have in organic molecules. Consequently, the correlation
function of the phonon cloud maintains a simple form:

U R,A
n,p;n′,p′ (q, ω)= 2λ2

∞∑
m=1

[
1

ω − m�q ± iδ
− 1

ω + m�q ± iδ

]

× [Im(−y)|δn,p′ − δn′,p| + Im(y)|δn,n′ − δp,p′ |
+ Im(−2y)δn,p′δn′,p + Im(2y)δn,n′δp,p′ ]

× sinh

(
m�q

2T

)
. (20)

The index m counts the number of excitations in the cloud, and
Im(y) is the modified Bessel function of order m with y−1 =
(ωq/Mq)2 sinh(ωq/2T ). The lesser and greater components of
the bosonic propagator are D<(ω) = N (ω)[DR(ω) − DA(ω)]
and D>(ω) = [1 + N (ω)][DR(ω) − DA(ω)], where N (ω) is
the Bose-Einstein distribution. See Appendix A for a detailed
derivation of the self-energy.

So far, we have provided a general scheme for calcu-
lating the charge current through the chiral molecules. We
proceed with numerical simulations to obtain results for the
polarization in the scattering experiment and the asymmet-
ric magnetoresistance. The parameter space for this problem
consists of the molecule’s length Lmol; the spin-orbit coupling
�SOC; the periodicity of the helix, R̃; the temperature T ; the
electron-phonon coupling Mq; and the phonon frequencies
�q. Our goal is to give a qualitative description of the po-
laronic CISS effect and not a quantitative one. For simplicity,
we assume that band narrowing due to mean-field effects is
already substantial at zero temperature and does not change
much at the range of temperatures relevant to the experiment.
Thus, in all calculations, we set �SOC = 0.15t . We assume a
single optical mode �0 and restrict the sum over the number
of phonons in the cloud to be equal to unity, i.e., only m = 1
in Eq. (20). Summing over larger values of m and additional
modes clearly enhances the effect.

IV. SCATTERING PROBABILITIES: RESULTS

The scattering and the magnetoresistance experiments bear
complementary information on the CISS effect. The former
provides the energy-resolved spin-dependent transmission
probability and does not require any magnetic component,
i.e., time-reversal symmetry is preserved. Magnetoresistance
measurements, by contrast, yield only average quantities, but
they allow control over parameters such as temperature or the
number of molecules. To gain intuition on the origin of CISS,
we first performed a thorough calculation of the scattering
probabilities through a single chiral molecule. In particular,
we fixed the spin s0 and energy ε0 of the incoming electron
beam and found the outgoing current intensity Js0 . The latter is
proportional to the transmission probability Ts0 and is used to
extract the spin polarization P (ε0). Furthermore, we examine
the dependence on the frequencies of the phonon modes �q,
the temperature T , and the molecule’s length Lmol.

The transmission probability (proportional to the current
intensity at the exit) of an incoming beam of unpolarized
electrons J = J↑ + J↓ as a function of energy is shown in
Fig. 3. For the purpose of illustration, we consider a single
phonon mode with frequency �0 = 0.35t and set T = 0.525t .
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FIG. 3. The transmission probability as function of energy in
the presence (blue) and absence (black) of polaron fluctuations. The
transmission is found for T = 0.525t , �0 = 0.35t , and M0 = 0.09t .

The current is calculated in the presence (blue) and absence
(black) of polaron fluctuations. In both cases, the current is
substantial at the energy window −2t < ε < 2t , where the
band forms in the mean-field theory. Polaron fluctuations,
however, assist electron hopping and shift the onset of charge
transfer to lower energies. Next, we focus on the spin polariza-
tion at energies in the lower half of the original band −2t <

ε < 0. As explained in the previous sections, our numerical
calculations of the current intensity and the corresponding
spin polarization are performed on the simple model Hamil-
tonian given by Eq. (1). Organic molecules that exhibit CISS
typically have a much more complex structure. To focus on
the chiral properties of our model and remove other spurious
features, we add a small random potential to the Hamiltonian
δH = ∑

n,�,s Unc†
n,�,scn,�,s, where Un are randomly drawn from

a uniform distribution in the domain [−0.1t, 0.1t].
The spin polarization as a function of energy is shown

in Fig. 4 for the same parameters as in Fig. 3. We see that
the polaron fluctuations extend the energies in which P is
substantial. A similar phenomenon occurs in the upper half
band, where the spin polarization is in the opposite direction.
The average polarization in the lower half band 〈P〉E=0 as a
function of temperature and frequency is shown in Fig. 5. The
polarization grows monotonically with temperature, while its

FIG. 4. The spin polarization in the lower half band with (blue)
and without (black) polaron fluctuations. The polaron fluctuations
generate spin polarization at energies where it had been mostly
absent. We use the same parameters as in Fig. 3

FIG. 5. (a) The average spin polarization in the lower half band is
presented as a function of frequency at temperatures T = 0.02t (red)
and T = 0.525t (black). For each frequency, we chose a different
coupling strength, which is indicated on the upper x axis. (b) The
average spin polarization as a function of temperature in the presence
of an optical mode at �0 = 0.15t (red) and �0 = 0.35t (black).

frequency dependence exhibits a maximum at � ≈ 2�SOC. To
understand the above results, we recall that each hop of the
polaron is accompanied by reorganization of the environment
(phonons). For this adjustment to occur, the polaron emits or
absorbs phonons and consequently changes its energy. Thus,
even if the electron enters the molecule at energies where
CISS is weak, it is likely to inherit spin polarization by passing
through a chiral state while propagating through the system.
Since our calculation of the current within the GW approxi-
mation describes processes in which the polaron is scattered
several times [62], the window of energy with large spin po-
larization grows by much more than �0. The same exchange
of energies with the environment is responsible for lowering
the onset of charge transfer well below the bottom of the
band. The temperature dependence of the spin polarization is
expected as the probabilities of emitting or absorbing phonons
increase with T .

We recall that we did not account for the temperature
dependence of the bandwidth arising from the mean-field
corrections. As explained in Sec. III A, the narrowing of the
band is equivalent to enhanced SOC. In Fig. 6 we present
the spin polarization as a function of �SOC. Similar to the
mean-field result (see Figs. 1 and 2), the spin polarization
decreases as �SOC becomes larger than t . As a consequence
of polaron fluctuations, however, the spin polarization decays
more slowly with �SOC. Consequently, we expect the down-
turn of CISS with temperature to be inaccessible for most

045404-7



DAN KLEIN AND KAREN MICHAELI PHYSICAL REVIEW B 107, 045404 (2023)

FIG. 6. The average spin polarization as a function of �SOC.
Similar to the spin polarization as a function of temperature within
mean-field theory (2), we find a nonmonotonous curve. By contrast,
the polarization decreases much more slowly in this case.

organic materials. One important step in applying our theory
to real molecules would be to find the temperature dependence
of the bandwidth within the mean-field theory.

Finally, we note that besides temperature and frequency,
the probability of a polaron emitting or absorbing phonons
during its motion through the molecule is also influenced by
the molecule size. Since the scattering probability is simi-
lar on all sites in the molecular chain, the total number of
events grows with length. Consequently, we expect the spin
polarization to increase with Lmol. Such a change in spin
polarization with length has been seen experimentally [2], and
it is theoretically confirmed by our calculations (see Fig. 7).

So far, we have focused on the polarization at energies
inside the original conduction band. However, we have found
that polaron fluctuations give rise to significant transmission
below the band. The transmission and spin polarization for
energies below the band are shown in Fig. 8 for three different
temperatures (T = 0.02, 0.15, 0.675t ; �0 = 0.35t ; and M =
0.09t). We find that the transmission exponentially decays as
the energy of the incoming electron falls below the bottom of
the band. The decay rate reduces with temperature, and, as the
temperature increases, a significant transmission is obtained at
lower energies. Such a phenomenon is frequently observed in
measurements of the current-voltage characteristics of organic
molecules [64]. The spin polarization remains large, ≈25%,

FIG. 7. The average spin polarization in the lower half band as a
function of length (at T = 0.075t).

FIG. 8. The transmission through the molecule (a) and the cor-
responding spin polarization (b) at energies below the band for three
different temperatures: T = 0.02t (green), T = 0.15t (purple), and
T = 0.675t (blue). The transmission grows significantly with tem-
perature, while the polarization saturates to high value ≈30% already
at T = 0.15t . The temperature dependence of the spin polarization
is given in the inset for three different energies: E = −2.1t (black),
E = −2.5t (yellow), and E = −2.9t (orange).

down to energies with a very low transmission Ts � 10−5 as
long as the temperature is not too low.

A systematic study of 〈P〉E at energies below the original
band as a function of temperature reveals that it is almost
constant (see inset of Fig. 8). A substantial reduction in the
spin polarization is found only at the lowest temperatures. We
can understand this result if we recall that charge transfer at
energies below the band is governed by phonon absorption,
supporting spin polarization. Thus, 〈P〉E remains large as long
as the phonon-assisted charge transfer dominates over the
direct tunneling.

V. MAGNETORESISTANCE: RESULTS

Measurements of the magnetoresistance are typically per-
formed in a two-terminal setup. In these experiments, chiral
molecules are first adsorbed on a magnetic lead. The current
through them is then measured using an atomic force micro-
scope with a metallic tip as a second electrode [3], where
voltage is applied. Theoretically, we consider two generic
leads that are characterized by their density of states. These
densities of states enter the GF of an electron inside the
molecule through �L,R, the self-energy corrections due to the
leads [see Eq. (18)]. Specifically, we implement the magnetic
lead via a spin-dependent self-energy, �

σ0
L > �

−σ0
L , with σ0

being the majority spin. We calculate the current within the
GW approximation using the expression derived in Ref. [62].

In the previous section, we studied the manifestation
of CISS in scattering experiments. We found that polaron
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FIG. 9. Current and asymmetry in magnetoresistance as a func-
tion of voltage. The calculated current of a molecule connected to a
magnetic lead with a majority of up (blue) and down (red) spins.
The chemical potential of the magnetic lead is μL = −2.5t . The
chemical potential of the metallic lead is tuned with the voltage
μR = μL + eV . The electrons are coupled to a phonon mode of
frequency (a) �0 = 0.2t and (b) �0 = 0.4t and the temperature is
T = 0.3t and 0.5t , respectively. We obtained a large AMR that grows
with voltage and temperature, for (c) �0 = 0.2t and (d) �0 = 0.4t .
Coupling to a high-frequency phonon mode gives rise to significant
AMR at voltages well below the bottom of the electronic band.

fluctuations significantly enhance the spin polarization of an
electron beam after passing a layer of chiral molecules. In the
absence of any magnetic component, the electronic GF in a
system realizing spin-dependent transmission must satisfy

GR,A
x,↑;x′,↑ �= GR,A

x,↓;x′,↓. (21)

Without interactions, the inequality given above indicates
that T↑,↑ �= T↓,↓. Since this condition is satisfied already by
Eq. (2), a small signal of CISS can be observed in scattering
experiments even at low temperatures. By contrast, asym-
metric magnetoresistance in a two-terminal setup requires a
stronger condition:

GR,A
x,s;x′,s′ (B) �= GR,A

x′,−s′;x,−s(−B). (22)

In the absence of interactions, Eq. (18) with �r,a = 0 implies
that GR,A

x,s;x′,s′ (B) = GR,A
x′,−s′;x,−s(−B). The structure of the self-

energy corrections given by Eq. (19) implies that Eq. (22)
is satisfied only for systems out of equilibrium. Technically,
the distribution functions of the leads entering the self-energy
must satisfy f ε

R �= f ε
L (see Appendix C for further details).

Consequently, observation of CISS in two-terminal transport
experiments is made possible solely by interactions and away
from linear response [40]. We verified that our expression
for the current is symmetric, I (B) = I (−B), at low enough
voltages |μL − μR| � μL for any choice of μL.

The discussion above explains that the enhanced spin-
dependent transmission does not guarantee a strong asymme-
try in magnetoresistance. Nevertheless, our model puts both
manifestations of CISS, on equal footing. In Figs. 9(a) and
9(b) we present the calculated current as a function of ap-
plied voltage for opposite alignment of the magnetic leads. To

FIG. 10. The AMR as a function of voltage for different chemical
potentials of the magnetic lead μL . The chemical potential of the
metallic lead is tuned with the voltage μR = μL + eV . The AMR is
maximal for μL below, yet close to the bottom of the band, similar to
the spin polarization in the scattering measurement setup.

mimic the experimental setup, we set the chemical potential of
the left lead to be below the bottom of the band μL = −2.5t
while the chemical potential of the right lead is tuned by the
voltage μR = μL + eV . Additional parameters used for the
derivation are �0 = 0.4t0, M0 = 0.18t , and T = 0.5t . We find
a strong asymmetry in magnetoresistance AMR = [I (B) −
I (−B)]/[I (B) + I (−B)] on the order of 5% for low currents
that grows more with increasing voltage. The AMR is shown
as a function of voltage for different temperatures in Figs. 9(c)
and 9(d). As expected, the asymmetry in magnetoresistance
grows with temperature. We find that the AMR at eV < 0.5t ,
i.e., when both chemical potentials are below the bottom of
the band, strongly depends on the temperature and frequency
of the phonons. In particular, different phonons give rise to
strong asymmetry at different temperatures. In real systems,
we expect the phonons’ density of state to include a large
range of frequencies. Moreover, polaron fluctuations are not
limited to the absorption or emission of a single phonon. Thus,
we expect to find a significant AMR in a large class of chiral
molecules and structures. In Fig. 10 we show AMR for differ-
ent values of μL. This figure supports our conclusion from
the previous section that the most significant enhancement
of CISS by polaron-phonon interactions occurs at energies
below the conduction band. The different calculations of the
AMR demonstrate that polaron fluctuations are crucial for our
understanding of the mechanism leading to the CISS effect.

VI. DISCUSSION

We have studied CISS in the presence of strong electron-
phonon interactions. In this regime, the charge and spin are
carried by polarons, the motion of which is accompanied by
significant polarization of the environment. Our paper demon-
strates that polaron fluctuations give rise to a strong signal
of CISS in both spin-dependent scattering and magnetoresis-
tance measurements. Importantly, it is sufficient that the chiral
structure of the molecule enters through the (bare) electronic
spectrum while the phonons can be featureless, similar to the
optical modes considered here. The polarization of the envi-
ronment via the emission and absorption of phonons results
in the polaron exploring different states in energy space as
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it moves along the molecule. Thus, charge transfer in such a
system is highly nonlinear, and its effect on CISS manifests
itself in both the spin-dependent scattering probability and the
asymmetric magnetoresistance with a similar magnitude. We
note that our calculations were performed without optimizing
any model parameters.

A key property of our paper is that we provide a general
framework for calculating transport signatures of CISS within
the GW approximation. Our expression for the currents can
be applied to more accurate models of chiral molecules to
better understand CISS in real systems. For this purpose, we
only need to know the electronic states within the mean-field
theory, the phonon spectrum, and the coupling parameters be-
tween the electrons and the environment. The physical picture
should not change for a complex model as long as it exhibits
a well-defined chiral structure, but we hope to be able to fit
concrete experimental results in the future.
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APPENDIX A: POLARON SELF-ENERGY

The GW approximation significantly simplifies the deriva-
tion of the polaron Green’s function without neglecting the
effect of phonon emission and absorption during its propaga-
tion. In this Appendix, we present a detailed derivation of the
polaron self-energy given by Eqs. (19) and (20). While in the
main text the self-energy is written as a function of frequency,
we start our derivation in the time domain:

�n,s;n′,s′ (t1 − t2)

= t̃2[〈T (X †
n Xp)t1 (X †

p′Xn′ )t2〉 − λ2]gp,s;p′,s′ (t1 − t2). (A1)

For n �= p and n′ �= p′, the time ordered phonon four-point
correlation function is [51]

− i
〈
T (X †

n Xp)t1 (X †
p′Xn′ )t2

〉
= −iθ (t1 − t2)e�(t1−t2 ) − iθ (t2 − t1)e�(t2−t1 ), (A2)

where

e�(t ) = λ2e−(δn,n′+δp,p′−δn,p′−δn′ ,p)φ(t ) (A3)

and

φ(t ) =
∑

q

(
Mq

ωq

)2((
Nωq + 1

)
e−iωqt + Nωq eiωqt

)
. (A4)

The four-point correlation function of the phonon cloud
can be expressed in terms of the modified Bessel function of

the first kind Im(y) using the relations

epφ(t ) =
∑

q

∞∑
m=−∞

Im(py)emβωq/2e−imωqt . (A5)

Here y−1 = (ωq/Mq)2 sinh(ωq/2T ) and the integer p = ±1, 2
is determined by the delta functions in Eq. (A3). Finally,
performing Fourier transform of the above identity from time
to frequency domain brings us to Eq. (20), which is used in
the calculation of the self-energy.

APPENDIX B: CURRENT IN THE SCATTERING
EXPERIMENT SETUP

In the scattering setup, a layer of molecules is adsorbed on
a metallic electrode. A beam of photoelectrons with a narrow
distribution of energy is extracted from the lead, and the cur-
rent intensity is measured after the electrons pass through the
molecules. The spin of the electron beam can be controlled
by choosing an electrode with a large spin-orbit coupling
(such as gold) and shining it with circularly polarized light
[1,2]. The spin of the electrons exiting the system is often
also measured. To derive the expression for the current, we
consider a molecule connected to two leads. The first lead,
where the current is measured, has all its states empty. The
second, where the spin-polarized electron beam enters the
molecule, has only one occupied state. Consequently, we use
the Meir-Wingreen formula for the current through an inter-
acting finite region with nonequilibrium distribution functions
of the left and right leads fL(ε) = 0 and fR(ε) = δε,ε0δs,s0 .
Since we cannot calculate the exact Green’s function of the
polarons, we approximate its self-energy to the lowest order
in the interaction. This simplification, commonly dubbed the
GW approximation, goes beyond a simple perturbation theory.
Recently we showed [62] that the corresponding approximate
current must also include vertex corrections to be consistent.
There, we derived the current for cases where the leads are at
equilibrium. We use the expression of Ref. [62] for calculating
the magnetoresistance in Sec. V. Here, we modify the current
derivation for the unique distribution functions of the leads in
the scattering experiment setup.

The expression for the scattering current is

JL(ε) =J0δε,ε0Ia + J0

2
δε,ε0

∫
dω1

2π

[
Nω1 + 1

]

× [Ib − Ic + Id − Ie + 2iI f + 2iIg − 2iIh]

+ i
J0

2
δε,ε0

∫
dω1dω2

(2π )2
[Ii + I j + 2iIk]

[
Nω1+ω2 + 1

]

× [
Nph

ω2
− Nph

−ω1

]
. (B1)

Here, J0 is the intensity of the incoming current, and Iα

are the following products of polaron and phonon Green’s
functions:

Ia = [�LGR�RSGA]εn,s;n,s, (B2a)

Ib = [gR�RSgA�LgR − gA�LgR�RSgA]εn′,s′,n,s[D
R − DA]ω1

n,p;p′,n′ [GR�LGA]ε−ω1
p,s;p′,s′ , (B2b)
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Ic = [gR�RSgA�LgR − gA�LgR�RSgA]εn′,s′,n,s[D
R − DA]ω1

n,p;p′,n′ [gR�LgA]ε−ω1
p,s;p′,s′ , (B2c)

Id = [gR�RSgA�LgR − gA�LgR�RSgA]ε−ω1
n′,s′;n,s[D

R − DA]ω1
p′,n′;n,p[GR�RGA]εp,s;p′,s′ , (B2d)

Ie = [gR�RSgA�LgR − gA�LgR�RSgA]ε−ω1
n′,s′;n,s[D

R − DA]ω1
p′,n′;n,p[gR�RgA]εp,s;p′,s′ , (B2e)

I f = [gA�LgR]ε−ω1
n′,s′;n,s[D

R − DA]ω1
p′,n′;n,p[GR�RSGA]εp,s;p′,s′ , (B2f)

Ig = [GA�LGR]ε−ω1
n′,s′;n,s[D

R − DA]ω1
p′,n′;n,p[gR�RSgA]εp,s;p′,s′ , (B2g)

Ih = [gA�LgR]ε−ω1
n′,s′;n,s[D

R − DA]ω1
p′,n′;n,p[gR�RSgA]εp,s;p′,s′ , (B2h)

Ii = [gR�RSgA�LgR − gA�LgR�RSgA]εn′,s′;n,s[D
R − DA]ω1

n,p;p′,n′

× GR
p,s,m,σ (ε − ω1)[DR − DA]ω2

m,q;q′,m′ [gR�LgA]ε−ω1−ω2
q,σ ;q′,σ ′ GA

m′,σ ′;p′,s′ (ε − ω1), (B2i)

I j = [gR�RSgA�LgR − gA�LgR�RSgA]ε−ω1−ω2
n′,s′;n,s [DR − DA]ω2

p′,n′;n,p

× GR
p,s;m,σ (ε − ω1)[DR − DA]ω1

q′,m′;m,q[gR�RgA]εq,σ ;q′,σ ′GA
m′,σ ′;p′,s′ (ε − ω1), (B2j)

Ik = [gA�LgR]ε−ω1−ω2
n′,s′;n,s [DR − DA]ω2

p′,n′;n,p

× GR
p,s;m,σ (ε − ω1)[DR − DA]ω1

q′,m′;m,q[gR�RSgA]εq,σ ;q′,σ ′GA
m′,σ ′;p′,s′ (ε − ω1). (B2k)

The matrix Sn,s;n′,s′ = δn,Rδn′,nδs,s′δs,s0 polarizes the incoming current at the right lead (at n = Lmol) and the current is measured
at the left lead (n = 1). For clarity, we write Iα with the same energy dependence as the diagrams used for expressing the current
in Ref. [62].

APPENDIX C: NECESSITY OF NONEQUILIBRIUM FOR AMR

In the main text, we state that the condition

GR,A
x,s;x′,s′ (B) �= GR,A

x′,−s′;x,−s(−B) (C1)

must hold in order to observe AMR in the two terminal experimental setups involving a single magnetic lead. Within perturbation
theory, we can show that the difference between the two retarded Green’s functions is proportional to

GR
x,s;x′,s′ (ε, B) − GR

x′,−s′;x,−s(ε,−B) ∝
∫

dω

4π

[
f ε−ω
L − f ε−ω

R

]
DR

x1,x2;x3,x4
(ω)gR

x,s;x1,s1
(ε, B)gR

x4,s2;x′,s′ (ε, B)

× [gR(�L − �R)gA − gA(�L − �R)gR]ε−ω,B
x2,s1;x3,s2

. (C2)

Here one can see explicitly that the difference depends on nonequilibrium conditions, in addition to interactions. In the derivation
we used the identity GA − GR = G< − G> and the relation gR,A

x,s;x′,s′ (B) = gR,A
x′,−s′;x,−s(−B) valid for noninteracting systems.

Similar results hold for the advanced GFs.
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